Browse Source

New translations marginalized.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
5026caf5ad
1 changed files with 338 additions and 0 deletions
  1. +338
    -0
      lang/fr/gklearn/kernels/marginalized.py

+ 338
- 0
lang/fr/gklearn/kernels/marginalized.py View File

@@ -0,0 +1,338 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 3 22:22:57 2020

@author: ljia

@references:

[1] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between
labeled graphs. In Proceedings of the 20th International Conference on
Machine Learning, Washington, DC, United States, 2003.

[2] Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and
Jean-Philippe Vert. Extensions of marginalized graph kernels. In
Proceedings of the twenty-first international conference on Machine
learning, page 70. ACM, 2004.
"""

import sys
from multiprocessing import Pool
from tqdm import tqdm
import numpy as np
import networkx as nx
from gklearn.utils import SpecialLabel
from gklearn.utils.kernels import deltakernel
from gklearn.utils.parallel import parallel_gm, parallel_me
from gklearn.utils.utils import untotterTransformation
from gklearn.kernels import GraphKernel


class Marginalized(GraphKernel):
def __init__(self, **kwargs):
GraphKernel.__init__(self)
self.__node_labels = kwargs.get('node_labels', [])
self.__edge_labels = kwargs.get('edge_labels', [])
self.__p_quit = kwargs.get('p_quit', 0.5)
self.__n_iteration = kwargs.get('n_iteration', 10)
self.__remove_totters = kwargs.get('remove_totters', False)
self.__ds_infos = kwargs.get('ds_infos', {})
self.__n_iteration = int(self.__n_iteration)


def _compute_gm_series(self):
self.__add_dummy_labels(self._graphs)
if self.__remove_totters:
if self._verbose >= 2:
iterator = tqdm(self._graphs, desc='removing tottering', file=sys.stdout)
else:
iterator = self._graphs
# @todo: this may not work.
self._graphs = [untotterTransformation(G, self.__node_labels, self.__edge_labels) for G in iterator]
# compute Gram matrix.
gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
from itertools import combinations_with_replacement
itr = combinations_with_replacement(range(0, len(self._graphs)), 2)
if self._verbose >= 2:
iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout)
else:
iterator = itr
for i, j in iterator:
kernel = self.__kernel_do(self._graphs[i], self._graphs[j])
gram_matrix[i][j] = kernel
gram_matrix[j][i] = kernel # @todo: no directed graph considered?
return gram_matrix
def _compute_gm_imap_unordered(self):
self.__add_dummy_labels(self._graphs)
if self.__remove_totters:
pool = Pool(self._n_jobs)
itr = range(0, len(self._graphs))
if len(self._graphs) < 100 * self._n_jobs:
chunksize = int(len(self._graphs) / self._n_jobs) + 1
else:
chunksize = 100
remove_fun = self._wrapper_untotter
if self._verbose >= 2:
iterator = tqdm(pool.imap_unordered(remove_fun, itr, chunksize),
desc='removing tottering', file=sys.stdout)
else:
iterator = pool.imap_unordered(remove_fun, itr, chunksize)
for i, g in iterator:
self._graphs[i] = g
pool.close()
pool.join()
# compute Gram matrix.
gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
def init_worker(gn_toshare):
global G_gn
G_gn = gn_toshare
do_fun = self._wrapper_kernel_do
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker,
glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose)
return gram_matrix
def _compute_kernel_list_series(self, g1, g_list):
self.__add_dummy_labels(g_list + [g1])
if self.__remove_totters:
g1 = untotterTransformation(g1, self.__node_labels, self.__edge_labels) # @todo: this may not work.
if self._verbose >= 2:
iterator = tqdm(g_list, desc='removing tottering', file=sys.stdout)
else:
iterator = g_list
# @todo: this may not work.
g_list = [untotterTransformation(G, self.__node_labels, self.__edge_labels) for G in iterator]
# compute kernel list.
kernel_list = [None] * len(g_list)
if self._verbose >= 2:
iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout)
else:
iterator = range(len(g_list))
for i in iterator:
kernel = self.__kernel_do(g1, g_list[i])
kernel_list[i] = kernel
return kernel_list
def _compute_kernel_list_imap_unordered(self, g1, g_list):
self.__add_dummy_labels(g_list + [g1])
if self.__remove_totters:
g1 = untotterTransformation(g1, self.__node_labels, self.__edge_labels) # @todo: this may not work.
pool = Pool(self._n_jobs)
itr = range(0, len(g_list))
if len(g_list) < 100 * self._n_jobs:
chunksize = int(len(g_list) / self._n_jobs) + 1
else:
chunksize = 100
remove_fun = self._wrapper_untotter
if self._verbose >= 2:
iterator = tqdm(pool.imap_unordered(remove_fun, itr, chunksize),
desc='removing tottering', file=sys.stdout)
else:
iterator = pool.imap_unordered(remove_fun, itr, chunksize)
for i, g in iterator:
g_list[i] = g
pool.close()
pool.join()
# compute kernel list.
kernel_list = [None] * len(g_list)

def init_worker(g1_toshare, g_list_toshare):
global G_g1, G_g_list
G_g1 = g1_toshare
G_g_list = g_list_toshare
do_fun = self._wrapper_kernel_list_do
def func_assign(result, var_to_assign):
var_to_assign[result[0]] = result[1]
itr = range(len(g_list))
len_itr = len(g_list)
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr,
init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered',
n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose)
return kernel_list
def _wrapper_kernel_list_do(self, itr):
return itr, self.__kernel_do(G_g1, G_g_list[itr])
def _compute_single_kernel_series(self, g1, g2):
self.__add_dummy_labels([g1] + [g2])
if self.__remove_totters:
g1 = untotterTransformation(g1, self.__node_labels, self.__edge_labels) # @todo: this may not work.
g2 = untotterTransformation(g2, self.__node_labels, self.__edge_labels)
kernel = self.__kernel_do(g1, g2)
return kernel
def __kernel_do(self, g1, g2):
"""Calculate marginalized graph kernel between 2 graphs.
Parameters
----------
g1, g2 : NetworkX graphs
2 graphs between which the kernel is calculated.
Return
------
kernel : float
Marginalized kernel between 2 graphs.
"""
# init parameters
kernel = 0
num_nodes_G1 = nx.number_of_nodes(g1)
num_nodes_G2 = nx.number_of_nodes(g2)
# the initial probability distribution in the random walks generating step
# (uniform distribution over |G|)
p_init_G1 = 1 / num_nodes_G1
p_init_G2 = 1 / num_nodes_G2
q = self.__p_quit * self.__p_quit
r1 = q
# # initial R_inf
# # matrix to save all the R_inf for all pairs of nodes
# R_inf = np.zeros([num_nodes_G1, num_nodes_G2])
#
# # calculate R_inf with a simple interative method
# for i in range(1, n_iteration):
# R_inf_new = np.zeros([num_nodes_G1, num_nodes_G2])
# R_inf_new.fill(r1)
#
# # calculate R_inf for each pair of nodes
# for node1 in g1.nodes(data=True):
# neighbor_n1 = g1[node1[0]]
# # the transition probability distribution in the random walks
# # generating step (uniform distribution over the vertices adjacent
# # to the current vertex)
# if len(neighbor_n1) > 0:
# p_trans_n1 = (1 - p_quit) / len(neighbor_n1)
# for node2 in g2.nodes(data=True):
# neighbor_n2 = g2[node2[0]]
# if len(neighbor_n2) > 0:
# p_trans_n2 = (1 - p_quit) / len(neighbor_n2)
#
# for neighbor1 in neighbor_n1:
# for neighbor2 in neighbor_n2:
# t = p_trans_n1 * p_trans_n2 * \
# deltakernel(g1.node[neighbor1][node_label],
# g2.node[neighbor2][node_label]) * \
# deltakernel(
# neighbor_n1[neighbor1][edge_label],
# neighbor_n2[neighbor2][edge_label])
#
# R_inf_new[node1[0]][node2[0]] += t * R_inf[neighbor1][
# neighbor2] # ref [1] equation (8)
# R_inf[:] = R_inf_new
#
# # add elements of R_inf up and calculate kernel
# for node1 in g1.nodes(data=True):
# for node2 in g2.nodes(data=True):
# s = p_init_G1 * p_init_G2 * deltakernel(
# node1[1][node_label], node2[1][node_label])
# kernel += s * R_inf[node1[0]][node2[0]] # ref [1] equation (6)
R_inf = {} # dict to save all the R_inf for all pairs of nodes
# initial R_inf, the 1st iteration.
for node1 in g1.nodes():
for node2 in g2.nodes():
# R_inf[(node1[0], node2[0])] = r1
if len(g1[node1]) > 0:
if len(g2[node2]) > 0:
R_inf[(node1, node2)] = r1
else:
R_inf[(node1, node2)] = self.__p_quit
else:
if len(g2[node2]) > 0:
R_inf[(node1, node2)] = self.__p_quit
else:
R_inf[(node1, node2)] = 1
# compute all transition probability first.
t_dict = {}
if self.__n_iteration > 1:
for node1 in g1.nodes():
neighbor_n1 = g1[node1]
# the transition probability distribution in the random walks
# generating step (uniform distribution over the vertices adjacent
# to the current vertex)
if len(neighbor_n1) > 0:
p_trans_n1 = (1 - self.__p_quit) / len(neighbor_n1)
for node2 in g2.nodes():
neighbor_n2 = g2[node2]
if len(neighbor_n2) > 0:
p_trans_n2 = (1 - self.__p_quit) / len(neighbor_n2)
for neighbor1 in neighbor_n1:
for neighbor2 in neighbor_n2:
t_dict[(node1, node2, neighbor1, neighbor2)] = \
p_trans_n1 * p_trans_n2 * \
deltakernel(tuple(g1.nodes[neighbor1][nl] for nl in self.__node_labels), tuple(g2.nodes[neighbor2][nl] for nl in self.__node_labels)) * \
deltakernel(tuple(neighbor_n1[neighbor1][el] for el in self.__edge_labels), tuple(neighbor_n2[neighbor2][el] for el in self.__edge_labels))
# calculate R_inf with a simple interative method
for i in range(2, self.__n_iteration + 1):
R_inf_old = R_inf.copy()
# calculate R_inf for each pair of nodes
for node1 in g1.nodes():
neighbor_n1 = g1[node1]
# the transition probability distribution in the random walks
# generating step (uniform distribution over the vertices adjacent
# to the current vertex)
if len(neighbor_n1) > 0:
for node2 in g2.nodes():
neighbor_n2 = g2[node2]
if len(neighbor_n2) > 0:
R_inf[(node1, node2)] = r1
for neighbor1 in neighbor_n1:
for neighbor2 in neighbor_n2:
R_inf[(node1, node2)] += \
(t_dict[(node1, node2, neighbor1, neighbor2)] * \
R_inf_old[(neighbor1, neighbor2)]) # ref [1] equation (8)
# add elements of R_inf up and calculate kernel
for (n1, n2), value in R_inf.items():
s = p_init_G1 * p_init_G2 * deltakernel(tuple(g1.nodes[n1][nl] for nl in self.__node_labels), tuple(g2.nodes[n2][nl] for nl in self.__node_labels))
kernel += s * value # ref [1] equation (6)
return kernel
def _wrapper_kernel_do(self, itr):
i = itr[0]
j = itr[1]
return i, j, self.__kernel_do(G_gn[i], G_gn[j])

def _wrapper_untotter(self, i):
return i, untotterTransformation(self._graphs[i], self.__node_labels, self.__edge_labels) # @todo: this may not work.
def __add_dummy_labels(self, Gn):
if len(self.__node_labels) == 0 or (len(self.__node_labels) == 1 and self.__node_labels[0] == SpecialLabel.DUMMY):
for i in range(len(Gn)):
nx.set_node_attributes(Gn[i], '0', SpecialLabel.DUMMY)
self.__node_labels = [SpecialLabel.DUMMY]
if len(self.__edge_labels) == 0 or (len(self.__edge_labels) == 1 and self.__edge_labels[0] == SpecialLabel.DUMMY):
for i in range(len(Gn)):
nx.set_edge_attributes(Gn[i], '0', SpecialLabel.DUMMY)
self.__edge_labels = [SpecialLabel.DUMMY]

Loading…
Cancel
Save