Browse Source

Add DataLoader and DataSaver.

v0.2.x
jajupmochi 4 years ago
parent
commit
508cc2c37d
3 changed files with 838 additions and 1 deletions
  1. +2
    -1
      gklearn/dataset/__init__.py
  2. +824
    -0
      gklearn/dataset/file_managers.py
  3. +12
    -0
      gklearn/utils/graph_files.py

+ 2
- 1
gklearn/dataset/__init__.py View File

@@ -16,6 +16,7 @@ __date__ = "October 2020"
from gklearn.dataset.metadata import DATABASES, DATASET_META
from gklearn.dataset.metadata import GREYC_META, IAM_META, TUDataset_META
from gklearn.dataset.metadata import list_of_databases, list_of_datasets
from gklearn.dataset.data_fetcher import DataFetcher
from gklearn.dataset.graph_synthesizer import GraphSynthesizer
from gklearn.dataset.data_fetcher import DataFetcher
from gklearn.dataset.file_managers import DataLoader, DataSaver
from gklearn.dataset.dataset import Dataset, split_dataset_by_target

+ 824
- 0
gklearn/dataset/file_managers.py View File

@@ -0,0 +1,824 @@
""" Utilities function to manage graph files
"""
from os.path import dirname, splitext


class DataLoader():
def __init__(self, filename, filename_targets=None, gformat=None, **kwargs):
"""Read graph data from filename and load them as NetworkX graphs.
Parameters
----------
filename : string
The name of the file from where the dataset is read.
filename_targets : string
The name of file of the targets corresponding to graphs.
Notes
-----
This function supports following graph dataset formats:
'ds': load data from .ds file. See comments of function loadFromDS for a example.
'cxl': load data from Graph eXchange Language file (.cxl file). See
`here <http://www.gupro.de/GXL/Introduction/background.html>`__ for detail.
'sdf': load data from structured data file (.sdf file). See
`here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__
for details.
'mat': Load graph data from a MATLAB (up to version 7.1) .mat file. See
README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__
for details.
'txt': Load graph data from the TUDataset. See
`here <https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets>`__
for details. Note here filename is the name of either .txt file in
the dataset directory.
"""
extension = splitext(filename)[1][1:]
if extension == "ds":
self._graphs, self._targets, self._label_names = self.load_from_ds(filename, filename_targets)
elif extension == "cxl":
dir_dataset = kwargs.get('dirname_dataset', None)
self._graphs, self._targets, self._label_names = self.load_from_xml(filename, dir_dataset)
elif extension == 'xml':
dir_dataset = kwargs.get('dirname_dataset', None)
self._graphs, self._targets, self._label_names = self.load_from_xml(filename, dir_dataset)
elif extension == "mat":
order = kwargs.get('order')
self._graphs, self._targets, self._label_names = self.load_mat(filename, order)
elif extension == 'txt':
self._graphs, self._targets, self._label_names = self.load_tud(filename)
else:
raise ValueError('The input file with the extension ".', extension, '" is not supported. The supported extensions includes: ".ds", ".cxl", ".xml", ".mat", ".txt".')
def load_from_ds(self, filename, filename_targets):
"""Load data from .ds file.
Possible graph formats include:
'.ct': see function load_ct for detail.
'.gxl': see dunction load_gxl for detail.
Note these graph formats are checked automatically by the extensions of
graph files.
"""
dirname_dataset = dirname(filename)
data = []
y = []
label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
with open(filename) as fn:
content = fn.read().splitlines()
extension = splitext(content[0].split(' ')[0])[1][1:]
if extension == 'ct':
load_file_fun = self.load_ct
elif extension == 'gxl' or extension == 'sdf': # @todo: .sdf not tested yet.
load_file_fun = self.load_gxl
if filename_targets is None or filename_targets == '':
for i in range(0, len(content)):
tmp = content[i].split(' ')
# remove the '#'s in file names
g, l_names = load_file_fun(dirname_dataset + '/' + tmp[0].replace('#', '', 1))
data.append(g)
self._append_label_names(label_names, l_names)
y.append(float(tmp[1]))
else: # targets in a seperate file
for i in range(0, len(content)):
tmp = content[i]
# remove the '#'s in file names
g, l_names = load_file_fun(dirname_dataset + '/' + tmp.replace('#', '', 1))
data.append(g)
self._append_label_names(label_names, l_names)
with open(filename_targets) as fnt:
content_y = fnt.read().splitlines()
# assume entries in filename and filename_targets have the same order.
for item in content_y:
tmp = item.split(' ')
# assume the 3rd entry in a line is y (for Alkane dataset)
y.append(float(tmp[2]))
return data, y, label_names


def load_from_xml(self, filename, dir_dataset=None):
import xml.etree.ElementTree as ET
if dir_dataset is not None:
dir_dataset = dir_dataset
else:
dir_dataset = dirname(filename)
tree = ET.parse(filename)
root = tree.getroot()
data = []
y = []
label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
for graph in root.iter('graph'):
mol_filename = graph.attrib['file']
mol_class = graph.attrib['class']
g, l_names = self.load_gxl(dir_dataset + '/' + mol_filename)
data.append(g)
self._append_label_names(label_names, l_names)
y.append(mol_class)
return data, y, label_names
def load_mat(self, filename, order): # @todo: need to be updated (auto order) or deprecated.
"""Load graph data from a MATLAB (up to version 7.1) .mat file.
Notes
------
A MAT file contains a struct array containing graphs, and a column vector lx containing a class label for each graph.
Check README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__ for detailed structure.
"""
from scipy.io import loadmat
import numpy as np
import networkx as nx
data = []
content = loadmat(filename)
for key, value in content.items():
if key[0] == 'l': # class label
y = np.transpose(value)[0].tolist()
elif key[0] != '_':
# if adjacency matrix is not compressed / edge label exists
if order[1] == 0:
for i, item in enumerate(value[0]):
g = nx.Graph(name=i) # set name of the graph
nl = np.transpose(item[order[3]][0][0][0]) # node label
for index, label in enumerate(nl[0]):
g.add_node(index, label_1=str(label))
el = item[order[4]][0][0][0] # edge label
for edge in el:
g.add_edge(edge[0] - 1, edge[1] - 1, label_1=str(edge[2]))
data.append(g)
else:
for i, item in enumerate(value[0]):
g = nx.Graph(name=i) # set name of the graph
nl = np.transpose(item[order[3]][0][0][0]) # node label
for index, label in enumerate(nl[0]):
g.add_node(index, label_1=str(label))
sam = item[order[0]] # sparse adjacency matrix
index_no0 = sam.nonzero()
for col, row in zip(index_no0[0], index_no0[1]):
g.add_edge(col, row)
data.append(g)
label_names = {'node_labels': ['label_1'], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
if order[1] == 0:
label_names['edge_labels'].append('label_1')
return data, y, label_names
def load_tud(self, filename):
"""Load graph data from TUD dataset files.
Notes
------
The graph data is loaded from separate files.
Check README in `downloadable file <http://tiny.cc/PK_MLJ_data>`__, 2018 for detailed structure.
"""
import networkx as nx
from os import listdir
from os.path import dirname, basename
def get_infos_from_readme(frm): # @todo: add README (cuniform), maybe node/edge label maps.
"""Get information from DS_label_readme.txt file.
"""
def get_label_names_from_line(line):
"""Get names of labels/attributes from a line.
"""
str_names = line.split('[')[1].split(']')[0]
names = str_names.split(',')
names = [attr.strip() for attr in names]
return names
def get_class_label_map(label_map_strings):
label_map = {}
for string in label_map_strings:
integer, label = string.split('\t')
label_map[int(integer.strip())] = label.strip()
return label_map
label_names = {'node_labels': [], 'node_attrs': [],
'edge_labels': [], 'edge_attrs': []}
class_label_map = None
class_label_map_strings = []
with open(frm) as rm:
content_rm = rm.read().splitlines()
i = 0
while i < len(content_rm):
line = content_rm[i].strip()
# get node/edge labels and attributes.
if line.startswith('Node labels:'):
label_names['node_labels'] = get_label_names_from_line(line)
elif line.startswith('Node attributes:'):
label_names['node_attrs'] = get_label_names_from_line(line)
elif line.startswith('Edge labels:'):
label_names['edge_labels'] = get_label_names_from_line(line)
elif line.startswith('Edge attributes:'):
label_names['edge_attrs'] = get_label_names_from_line(line)
# get class label map.
elif line.startswith('Class labels were converted to integer values using this map:'):
i += 2
line = content_rm[i].strip()
while line != '' and i < len(content_rm):
class_label_map_strings.append(line)
i += 1
line = content_rm[i].strip()
class_label_map = get_class_label_map(class_label_map_strings)
i += 1
return label_names, class_label_map
# get dataset name.
dirname_dataset = dirname(filename)
filename = basename(filename)
fn_split = filename.split('_A')
ds_name = fn_split[0].strip()
# load data file names
for name in listdir(dirname_dataset):
if ds_name + '_A' in name:
fam = dirname_dataset + '/' + name
elif ds_name + '_graph_indicator' in name:
fgi = dirname_dataset + '/' + name
elif ds_name + '_graph_labels' in name:
fgl = dirname_dataset + '/' + name
elif ds_name + '_node_labels' in name:
fnl = dirname_dataset + '/' + name
elif ds_name + '_edge_labels' in name:
fel = dirname_dataset + '/' + name
elif ds_name + '_edge_attributes' in name:
fea = dirname_dataset + '/' + name
elif ds_name + '_node_attributes' in name:
fna = dirname_dataset + '/' + name
elif ds_name + '_graph_attributes' in name:
fga = dirname_dataset + '/' + name
elif ds_name + '_label_readme' in name:
frm = dirname_dataset + '/' + name
# this is supposed to be the node attrs, make sure to put this as the last 'elif'
elif ds_name + '_attributes' in name:
fna = dirname_dataset + '/' + name
# get labels and attributes names.
if 'frm' in locals():
label_names, class_label_map = get_infos_from_readme(frm)
else:
label_names = {'node_labels': [], 'node_attrs': [],
'edge_labels': [], 'edge_attrs': []}
class_label_map = None
with open(fgi) as gi:
content_gi = gi.read().splitlines() # graph indicator
with open(fam) as am:
content_am = am.read().splitlines() # adjacency matrix
# load targets.
if 'fgl' in locals():
with open(fgl) as gl:
content_targets = gl.read().splitlines() # targets (classification)
targets = [float(i) for i in content_targets]
elif 'fga' in locals():
with open(fga) as ga:
content_targets = ga.read().splitlines() # targets (regression)
targets = [int(i) for i in content_targets]
else:
raise Exception('Can not find targets file. Please make sure there is a "', ds_name, '_graph_labels.txt" or "', ds_name, '_graph_attributes.txt"', 'file in your dataset folder.')
if class_label_map is not None:
targets = [class_label_map[t] for t in targets]
# create graphs and add nodes
data = [nx.Graph(name=str(i)) for i in range(0, len(content_targets))]
if 'fnl' in locals():
with open(fnl) as nl:
content_nl = nl.read().splitlines() # node labels
for idx, line in enumerate(content_gi):
# transfer to int first in case of unexpected blanks
data[int(line) - 1].add_node(idx)
labels = [l.strip() for l in content_nl[idx].split(',')]
if label_names['node_labels'] == []: # @todo: need fix bug.
for i, label in enumerate(labels):
l_name = 'label_' + str(i)
data[int(line) - 1].nodes[idx][l_name] = label
label_names['node_labels'].append(l_name)
else:
for i, l_name in enumerate(label_names['node_labels']):
data[int(line) - 1].nodes[idx][l_name] = labels[i]
else:
for i, line in enumerate(content_gi):
data[int(line) - 1].add_node(i)
# add edges
for line in content_am:
tmp = line.split(',')
n1 = int(tmp[0]) - 1
n2 = int(tmp[1]) - 1
# ignore edge weight here.
g = int(content_gi[n1]) - 1
data[g].add_edge(n1, n2)
# add edge labels
if 'fel' in locals():
with open(fel) as el:
content_el = el.read().splitlines()
for idx, line in enumerate(content_el):
labels = [l.strip() for l in line.split(',')]
n = [int(i) - 1 for i in content_am[idx].split(',')]
g = int(content_gi[n[0]]) - 1
if label_names['edge_labels'] == []:
for i, label in enumerate(labels):
l_name = 'label_' + str(i)
data[g].edges[n[0], n[1]][l_name] = label
label_names['edge_labels'].append(l_name)
else:
for i, l_name in enumerate(label_names['edge_labels']):
data[g].edges[n[0], n[1]][l_name] = labels[i]
# add node attributes
if 'fna' in locals():
with open(fna) as na:
content_na = na.read().splitlines()
for idx, line in enumerate(content_na):
attrs = [a.strip() for a in line.split(',')]
g = int(content_gi[idx]) - 1
if label_names['node_attrs'] == []:
for i, attr in enumerate(attrs):
a_name = 'attr_' + str(i)
data[g].nodes[idx][a_name] = attr
label_names['node_attrs'].append(a_name)
else:
for i, a_name in enumerate(label_names['node_attrs']):
data[g].nodes[idx][a_name] = attrs[i]
# add edge attributes
if 'fea' in locals():
with open(fea) as ea:
content_ea = ea.read().splitlines()
for idx, line in enumerate(content_ea):
attrs = [a.strip() for a in line.split(',')]
n = [int(i) - 1 for i in content_am[idx].split(',')]
g = int(content_gi[n[0]]) - 1
if label_names['edge_attrs'] == []:
for i, attr in enumerate(attrs):
a_name = 'attr_' + str(i)
data[g].edges[n[0], n[1]][a_name] = attr
label_names['edge_attrs'].append(a_name)
else:
for i, a_name in enumerate(label_names['edge_attrs']):
data[g].edges[n[0], n[1]][a_name] = attrs[i]
return data, targets, label_names
def load_ct(self, filename): # @todo: this function is only tested on CTFile V2000; header not considered; only simple cases (atoms and bonds are considered.)
"""load data from a Chemical Table (.ct) file.
Notes
------
a typical example of data in .ct is like this:
3 2 <- number of nodes and edges
0.0000 0.0000 0.0000 C <- each line describes a node (x,y,z + label)
0.0000 0.0000 0.0000 C
0.0000 0.0000 0.0000 O
1 3 1 1 <- each line describes an edge : to, from, bond type, bond stereo
2 3 1 1
Check `CTFile Formats file <https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&ved=2ahUKEwivhaSdjsTlAhVhx4UKHczHA8gQFjAJegQIARAC&url=https%3A%2F%2Fwww.daylight.com%2Fmeetings%2Fmug05%2FKappler%2Fctfile.pdf&usg=AOvVaw1cDNrrmMClkFPqodlF2inS>`__
for detailed format discription.
"""
import networkx as nx
from os.path import basename
g = nx.Graph()
with open(filename) as f:
content = f.read().splitlines()
g = nx.Graph(name=str(content[0]), filename=basename(filename)) # set name of the graph
# read the counts line.
tmp = content[1].split(' ')
tmp = [x for x in tmp if x != '']
nb_atoms = int(tmp[0].strip()) # number of atoms
nb_bonds = int(tmp[1].strip()) # number of bonds
count_line_tags = ['number_of_atoms', 'number_of_bonds', 'number_of_atom_lists', '', 'chiral_flag', 'number_of_stext_entries', '', '', '', '', 'number_of_properties', 'CT_version']
i = 0
while i < len(tmp):
if count_line_tags[i] != '': # if not obsoleted
g.graph[count_line_tags[i]] = tmp[i].strip()
i += 1
# read the atom block.
atom_tags = ['x', 'y', 'z', 'atom_symbol', 'mass_difference', 'charge', 'atom_stereo_parity', 'hydrogen_count_plus_1', 'stereo_care_box', 'valence', 'h0_designator', '', '', 'atom_atom_mapping_number', 'inversion_retention_flag', 'exact_change_flag']
for i in range(0, nb_atoms):
tmp = content[i + 2].split(' ')
tmp = [x for x in tmp if x != '']
g.add_node(i)
j = 0
while j < len(tmp):
if atom_tags[j] != '':
g.nodes[i][atom_tags[j]] = tmp[j].strip()
j += 1
# read the bond block.
bond_tags = ['first_atom_number', 'second_atom_number', 'bond_type', 'bond_stereo', '', 'bond_topology', 'reacting_center_status']
for i in range(0, nb_bonds):
tmp = content[i + g.number_of_nodes() + 2].split(' ')
tmp = [x for x in tmp if x != '']
n1, n2 = int(tmp[0].strip()) - 1, int(tmp[1].strip()) - 1
g.add_edge(n1, n2)
j = 2
while j < len(tmp):
if bond_tags[j] != '':
g.edges[(n1, n2)][bond_tags[j]] = tmp[j].strip()
j += 1
# get label names.
label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
atom_symbolic = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, None, None, 1, 1, 1]
for nd in g.nodes():
for key in g.nodes[nd]:
if atom_symbolic[atom_tags.index(key)] == 1:
label_names['node_labels'].append(key)
else:
label_names['node_attrs'].append(key)
break
bond_symbolic = [None, None, 1, 1, None, 1, 1]
for ed in g.edges():
for key in g.edges[ed]:
if bond_symbolic[bond_tags.index(key)] == 1:
label_names['edge_labels'].append(key)
else:
label_names['edge_attrs'].append(key)
break
return g, label_names
def load_gxl(self, filename): # @todo: directed graphs.
from os.path import basename
import networkx as nx
import xml.etree.ElementTree as ET
tree = ET.parse(filename)
root = tree.getroot()
index = 0
g = nx.Graph(filename=basename(filename), name=root[0].attrib['id'])
dic = {} # used to retrieve incident nodes of edges
for node in root.iter('node'):
dic[node.attrib['id']] = index
labels = {}
for attr in node.iter('attr'):
labels[attr.attrib['name']] = attr[0].text
g.add_node(index, **labels)
index += 1
for edge in root.iter('edge'):
labels = {}
for attr in edge.iter('attr'):
labels[attr.attrib['name']] = attr[0].text
g.add_edge(dic[edge.attrib['from']], dic[edge.attrib['to']], **labels)
# get label names.
label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
for node in root.iter('node'):
for attr in node.iter('attr'):
if attr[0].tag == 'int': # @todo: this maybe wrong, and slow.
label_names['node_labels'].append(attr.attrib['name'])
else:
label_names['node_attrs'].append(attr.attrib['name'])
break
for edge in root.iter('edge'):
for attr in edge.iter('attr'):
if attr[0].tag == 'int': # @todo: this maybe wrong, and slow.
label_names['edge_labels'].append(attr.attrib['name'])
else:
label_names['edge_attrs'].append(attr.attrib['name'])
break
return g, label_names
def _append_label_names(self, label_names, new_names):
for key, val in label_names.items():
label_names[key] += [name for name in new_names[key] if name not in val]
@property
def data(self):
return self._graphs, self._targets, self._label_names
@property
def graphs(self):
return self._graphs
@property
def targets(self):
return self._targets
@property
def label_names(self):
return self._label_names
class DataSaver():
def __init__(self, graphs, targets=None, filename='gfile', gformat='gxl', group=None, **kwargs):
"""Save list of graphs.
"""
import os
dirname_ds = os.path.dirname(filename)
if dirname_ds != '':
dirname_ds += '/'
os.makedirs(dirname_ds, exist_ok=True)
if 'graph_dir' in kwargs:
graph_dir = kwargs['graph_dir'] + '/'
os.makedirs(graph_dir, exist_ok=True)
del kwargs['graph_dir']
else:
graph_dir = dirname_ds
if group == 'xml' and gformat == 'gxl':
with open(filename + '.xml', 'w') as fgroup:
fgroup.write("<?xml version=\"1.0\"?>")
fgroup.write("\n<!DOCTYPE GraphCollection SYSTEM \"http://www.inf.unibz.it/~blumenthal/dtd/GraphCollection.dtd\">")
fgroup.write("\n<GraphCollection>")
for idx, g in enumerate(graphs):
fname_tmp = "graph" + str(idx) + ".gxl"
self.save_gxl(g, graph_dir + fname_tmp, **kwargs)
fgroup.write("\n\t<graph file=\"" + fname_tmp + "\" class=\"" + str(targets[idx]) + "\"/>")
fgroup.write("\n</GraphCollection>")
fgroup.close()


def save_gxl(self, graph, filename, method='default', node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
if method == 'default':
gxl_file = open(filename, 'w')
gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
if 'name' in graph.graph:
name = str(graph.graph['name'])
else:
name = 'dummy'
gxl_file.write("<graph id=\"" + name + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
for v, attrs in graph.nodes(data=True):
gxl_file.write("<node id=\"_" + str(v) + "\">")
for l_name in node_labels:
gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
str(attrs[l_name]) + "</int></attr>")
for a_name in node_attrs:
gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
str(attrs[a_name]) + "</float></attr>")
gxl_file.write("</node>\n")
for v1, v2, attrs in graph.edges(data=True):
gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
for l_name in edge_labels:
gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
str(attrs[l_name]) + "</int></attr>")
for a_name in edge_attrs:
gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
str(attrs[a_name]) + "</float></attr>")
gxl_file.write("</edge>\n")
gxl_file.write("</graph>\n")
gxl_file.write("</gxl>")
gxl_file.close()
elif method == 'benoit':
import xml.etree.ElementTree as ET
root_node = ET.Element('gxl')
attr = dict()
attr['id'] = str(graph.graph['name'])
attr['edgeids'] = 'true'
attr['edgemode'] = 'undirected'
graph_node = ET.SubElement(root_node, 'graph', attrib=attr)
for v in graph:
current_node = ET.SubElement(graph_node, 'node', attrib={'id': str(v)})
for attr in graph.nodes[v].keys():
cur_attr = ET.SubElement(
current_node, 'attr', attrib={'name': attr})
cur_value = ET.SubElement(cur_attr,
graph.nodes[v][attr].__class__.__name__)
cur_value.text = graph.nodes[v][attr]
for v1 in graph:
for v2 in graph[v1]:
if (v1 < v2): # Non oriented graphs
cur_edge = ET.SubElement(
graph_node,
'edge',
attrib={
'from': str(v1),
'to': str(v2)
})
for attr in graph[v1][v2].keys():
cur_attr = ET.SubElement(
cur_edge, 'attr', attrib={'name': attr})
cur_value = ET.SubElement(
cur_attr, graph[v1][v2][attr].__class__.__name__)
cur_value.text = str(graph[v1][v2][attr])
tree = ET.ElementTree(root_node)
tree.write(filename)
elif method == 'gedlib':
# reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
# pass
gxl_file = open(filename, 'w')
gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"true\" edgemode=\"undirected\">\n")
for v, attrs in graph.nodes(data=True):
gxl_file.write("<node id=\"_" + str(v) + "\">")
gxl_file.write("<attr name=\"" + "chem" + "\"><int>" + str(attrs['chem']) + "</int></attr>")
gxl_file.write("</node>\n")
for v1, v2, attrs in graph.edges(data=True):
gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
gxl_file.write("<attr name=\"valence\"><int>" + str(attrs['valence']) + "</int></attr>")
# gxl_file.write("<attr name=\"valence\"><int>" + "1" + "</int></attr>")
gxl_file.write("</edge>\n")
gxl_file.write("</graph>\n")
gxl_file.write("</gxl>")
gxl_file.close()
elif method == 'gedlib-letter':
# reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
# and https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/Letter/HIGH/AP1_0000.gxl
gxl_file = open(filename, 'w')
gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
for v, attrs in graph.nodes(data=True):
gxl_file.write("<node id=\"_" + str(v) + "\">")
gxl_file.write("<attr name=\"x\"><float>" + str(attrs['attributes'][0]) + "</float></attr>")
gxl_file.write("<attr name=\"y\"><float>" + str(attrs['attributes'][1]) + "</float></attr>")
gxl_file.write("</node>\n")
for v1, v2, attrs in graph.edges(data=True):
gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\"/>\n")
gxl_file.write("</graph>\n")
gxl_file.write("</gxl>")
gxl_file.close()


# def loadSDF(filename):
# """load data from structured data file (.sdf file).

# Notes
# ------
# A SDF file contains a group of molecules, represented in the similar way as in MOL format.
# Check `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__ for detailed structure.
# """
# import networkx as nx
# from os.path import basename
# from tqdm import tqdm
# import sys
# data = []
# with open(filename) as f:
# content = f.read().splitlines()
# index = 0
# pbar = tqdm(total=len(content) + 1, desc='load SDF', file=sys.stdout)
# while index < len(content):
# index_old = index

# g = nx.Graph(name=content[index].strip()) # set name of the graph

# tmp = content[index + 3]
# nb_nodes = int(tmp[:3]) # number of the nodes
# nb_edges = int(tmp[3:6]) # number of the edges

# for i in range(0, nb_nodes):
# tmp = content[i + index + 4]
# g.add_node(i, atom=tmp[31:34].strip())

# for i in range(0, nb_edges):
# tmp = content[i + index + g.number_of_nodes() + 4]
# tmp = [tmp[i:i + 3] for i in range(0, len(tmp), 3)]
# g.add_edge(
# int(tmp[0]) - 1, int(tmp[1]) - 1, bond_type=tmp[2].strip())

# data.append(g)

# index += 4 + g.number_of_nodes() + g.number_of_edges()
# while content[index].strip() != '$$$$': # seperator
# index += 1
# index += 1

# pbar.update(index - index_old)
# pbar.update(1)
# pbar.close()

# return data


# def load_from_cxl(filename):
# import xml.etree.ElementTree as ET
#
# dirname_dataset = dirname(filename)
# tree = ET.parse(filename)
# root = tree.getroot()
# data = []
# y = []
# for graph in root.iter('graph'):
# mol_filename = graph.attrib['file']
# mol_class = graph.attrib['class']
# data.append(load_gxl(dirname_dataset + '/' + mol_filename))
# y.append(mol_class)
if __name__ == '__main__':
# ### Load dataset from .ds file.
# # .ct files.
# ds = {'name': 'Alkane', 'dataset': '../../datasets/Alkane/dataset.ds',
# 'dataset_y': '../../datasets/Alkane/dataset_boiling_point_names.txt'}
# Gn, y = loadDataset(ds['dataset'], filename_y=ds['dataset_y'])
# ds_file = '../../datasets/Acyclic/dataset_bps.ds' # node symb
# Gn, targets, label_names = load_dataset(ds_file)
# ds_file = '../../datasets/MAO/dataset.ds' # node/edge symb
# Gn, targets, label_names = load_dataset(ds_file)
## ds = {'name': 'PAH', 'dataset': '../../datasets/PAH/dataset.ds'} # unlabeled
## Gn, y = loadDataset(ds['dataset'])
# print(Gn[1].graph)
# print(Gn[1].nodes(data=True))
# print(Gn[1].edges(data=True))
# print(targets[1])
# # .gxl file.
# ds_file = '../../datasets/monoterpenoides/dataset_10+.ds' # node/edge symb
# Gn, y, label_names = load_dataset(ds_file)
# print(Gn[1].graph)
# print(Gn[1].nodes(data=True))
# print(Gn[1].edges(data=True))
# print(y[1])

# .mat file.
ds_file = '../../datasets/MUTAG_mat/MUTAG.mat'
order = [0, 0, 3, 1, 2]
gloader = DataLoader(ds_file, order=order)
Gn, targets, label_names = gloader.data
print(Gn[1].graph)
print(Gn[1].nodes(data=True))
print(Gn[1].edges(data=True))
print(targets[1])

# ### Convert graph from one format to another.
# # .gxl file.
# import networkx as nx
# ds = {'name': 'monoterpenoides',
# 'dataset': '../../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb
# Gn, y = loadDataset(ds['dataset'])
# y = [int(i) for i in y]
# print(Gn[1].nodes(data=True))
# print(Gn[1].edges(data=True))
# print(y[1])
# # Convert a graph to the proper NetworkX format that can be recognized by library gedlib.
# Gn_new = []
# for G in Gn:
# G_new = nx.Graph()
# for nd, attrs in G.nodes(data=True):
# G_new.add_node(str(nd), chem=attrs['atom'])
# for nd1, nd2, attrs in G.edges(data=True):
# G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type'])
## G_new.add_edge(str(nd1), str(nd2))
# Gn_new.append(G_new)
# print(Gn_new[1].nodes(data=True))
# print(Gn_new[1].edges(data=True))
# print(Gn_new[1])
# filename = '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/generated_datsets/monoterpenoides/gxl/monoterpenoides'
# xparams = {'method': 'gedlib'}
# saveDataset(Gn, y, gformat='gxl', group='xml', filename=filename, xparams=xparams)
# save dataset.
# ds = {'name': 'MUTAG', 'dataset': '../../datasets/MUTAG/MUTAG.mat',
# 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb
# Gn, y = loadDataset(ds['dataset'], extra_params=ds['extra_params'])
# saveDataset(Gn, y, group='xml', filename='temp/temp')
# test - new way to add labels and attributes.
# dataset = '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
# filename = '../../datasets/Fingerprint/Fingerprint_A.txt'
# dataset = '../../datasets/Letter-med/Letter-med_A.txt'
# dataset = '../../datasets/AIDS/AIDS_A.txt'
# dataset = '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'
# Gn, targets, label_names = load_dataset(filename)
pass

+ 12
- 0
gklearn/utils/graph_files.py View File

@@ -1,5 +1,9 @@
""" Utilities function to manage graph files
"""
import warnings
warnings.simplefilter('always', DeprecationWarning)
warnings.warn('The functions in the module "gklearn.utils.graph_files" will be deprecated and removed since version 0.4.0. Use the corresponding functions in the module "gklearn.dataset" instead.', DeprecationWarning)

from os.path import dirname, splitext


@@ -45,6 +49,10 @@ def load_dataset(filename, filename_targets=None, gformat=None, **kwargs):
for details. Note here filename is the name of either .txt file in
the dataset directory.
"""
import warnings
warnings.simplefilter('always', DeprecationWarning)
warnings.warn('The function "gklearn.utils.load_dataset" will be deprecated and removed since version 0.4.0. Use the class "gklearn.dataset.DataLoader" instead.', DeprecationWarning)

extension = splitext(filename)[1][1:]
if extension == "ds":
data, y, label_names = load_from_ds(filename, filename_targets)
@@ -66,6 +74,10 @@ def load_dataset(filename, filename_targets=None, gformat=None, **kwargs):
def save_dataset(Gn, y, gformat='gxl', group=None, filename='gfile', **kwargs):
"""Save list of graphs.
"""
import warnings
warnings.simplefilter('always', DeprecationWarning)
warnings.warn('The function "gklearn.utils.save_dataset" will be deprecated and removed since version 0.4.0. Use the class "gklearn.dataset.DataSaver" instead.', DeprecationWarning)
import os
dirname_ds = os.path.dirname(filename)
if dirname_ds != '':


Loading…
Cancel
Save