@@ -74,6 +74,8 @@ class DataFetcher(): | |||
message = 'Invalid Dataset name "' + self._name + '".' | |||
message += '\nAvailable datasets are as follows: \n\n' | |||
message += '\n'.join(ds for ds in sorted(DATASET_META)) | |||
message += '\n\nFollowing special suffices can be added to the name:' | |||
message += '\n\n' + '\n'.join(['_unlabeled']) | |||
raise ValueError(message) | |||
else: | |||
self.write_archive_file(self._name) | |||
@@ -127,9 +129,9 @@ class DataFetcher(): | |||
def write_archive_file(self, ds_name): | |||
path = osp.join(self._root, ds_name) | |||
url = DATASET_META[ds_name]['url'] | |||
# filename_dir = osp.join(path,filename) | |||
if not osp.exists(path) or self._reload: | |||
url = DATASET_META[ds_name]['url'] | |||
response = self.download_file(url) | |||
if response is None: | |||
return False | |||
@@ -152,7 +154,7 @@ class DataFetcher(): | |||
with tarfile.open(filename_archive, 'r:gz') as tar: | |||
if self._reload and self._verbose: | |||
print(filename + ' Downloaded.') | |||
subpath = os.path.join(path, tar.getnames()[0]) | |||
subpath = os.path.join(path, tar.getnames()[0].split('/')[0]) | |||
if not osp.exists(subpath) or self._reload: | |||
tar.extractall(path = path) | |||
return subpath | |||
@@ -7,24 +7,14 @@ Created on Thu Mar 26 18:48:27 2020 | |||
""" | |||
import numpy as np | |||
import networkx as nx | |||
from gklearn.utils.graph_files import load_dataset | |||
import os | |||
from gklearn.dataset import DATASET_META, DataFetcher, DataLoader | |||
class Dataset(object): | |||
def __init__(self, filename=None, filename_targets=None, **kwargs): | |||
if filename is None: | |||
self._graphs = None | |||
self._targets = None | |||
self._node_labels = None | |||
self._edge_labels = None | |||
self._node_attrs = None | |||
self._edge_attrs = None | |||
else: | |||
self.load_dataset(filename, filename_targets=filename_targets, **kwargs) | |||
def __init__(self, inputs=None, root='datasets', filename_targets=None, targets=None, mode='networkx', clean_labels=True, reload=False, verbose=False, **kwargs): | |||
self._substructures = None | |||
self._node_label_dim = None | |||
self._edge_label_dim = None | |||
@@ -49,15 +39,61 @@ class Dataset(object): | |||
self._node_attr_dim = None | |||
self._edge_attr_dim = None | |||
self._class_number = None | |||
self._ds_name = None | |||
if inputs is None: | |||
self._graphs = None | |||
self._targets = None | |||
self._node_labels = None | |||
self._edge_labels = None | |||
self._node_attrs = None | |||
self._edge_attrs = None | |||
# If inputs is a list of graphs. | |||
elif isinstance(inputs, list): | |||
node_labels = kwargs.get('node_labels', None) | |||
node_attrs = kwargs.get('node_attrs', None) | |||
edge_labels = kwargs.get('edge_labels', None) | |||
edge_attrs = kwargs.get('edge_attrs', None) | |||
self.load_graphs(inputs, targets=targets) | |||
self.set_labels(node_labels=node_labels, node_attrs=node_attrs, edge_labels=edge_labels, edge_attrs=edge_attrs) | |||
if clean_labels: | |||
self.clean_labels() | |||
elif isinstance(inputs, str): | |||
# If inputs is predefined dataset name. | |||
if inputs in DATASET_META: | |||
self.load_predefined_dataset(inputs, root=root, clean_labels=clean_labels, reload=reload, verbose=verbose) | |||
self._ds_name = inputs | |||
elif inputs.endswith('_unlabeled'): | |||
self.load_predefined_dataset(inputs[:len(inputs) - 10], root=root, clean_labels=clean_labels, reload=reload, verbose=verbose) | |||
self._ds_name = inputs | |||
# Deal with special suffices. | |||
self.check_special_suffices() | |||
# If inputs is a file name. | |||
elif os.path.isfile(inputs): | |||
self.load_dataset(inputs, filename_targets=filename_targets, clean_labels=clean_labels, **kwargs) | |||
# If inputs is a file name. | |||
else: | |||
raise ValueError('The "inputs" argument "' + inputs + '" is not a valid dataset name or file name.') | |||
else: | |||
raise TypeError('The "inputs" argument cannot be recognized. "Inputs" can be a list of graphs, a predefined dataset name, or a file name of a dataset.') | |||
def load_dataset(self, filename, filename_targets=None, **kwargs): | |||
self._graphs, self._targets, label_names = load_dataset(filename, filename_targets=filename_targets, **kwargs) | |||
def load_dataset(self, filename, filename_targets=None, clean_labels=True, **kwargs): | |||
self._graphs, self._targets, label_names = DataLoader(filename, filename_targets=filename_targets, **kwargs).data | |||
self._node_labels = label_names['node_labels'] | |||
self._node_attrs = label_names['node_attrs'] | |||
self._edge_labels = label_names['edge_labels'] | |||
self._edge_attrs = label_names['edge_attrs'] | |||
self.clean_labels() | |||
if clean_labels: | |||
self.clean_labels() | |||
def load_graphs(self, graphs, targets=None): | |||
@@ -67,84 +103,33 @@ class Dataset(object): | |||
# self.set_labels_attrs() # @todo | |||
def load_predefined_dataset(self, ds_name): | |||
current_path = os.path.dirname(os.path.realpath(__file__)) + '/' | |||
if ds_name == 'Acyclic': | |||
ds_file = current_path + '../../datasets/Acyclic/dataset_bps.ds' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'AIDS': | |||
ds_file = current_path + '../../datasets/AIDS/AIDS_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'Alkane': | |||
ds_file = current_path + '../../datasets/Alkane/dataset.ds' | |||
fn_targets = current_path + '../../datasets/Alkane/dataset_boiling_point_names.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file, filename_targets=fn_targets) | |||
elif ds_name == 'COIL-DEL': | |||
ds_file = current_path + '../../datasets/COIL-DEL/COIL-DEL_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'COIL-RAG': | |||
ds_file = current_path + '../../datasets/COIL-RAG/COIL-RAG_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'COLORS-3': | |||
ds_file = current_path + '../../datasets/COLORS-3/COLORS-3_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'Cuneiform': | |||
ds_file = current_path + '../../datasets/Cuneiform/Cuneiform_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'DD': | |||
ds_file = current_path + '../../datasets/DD/DD_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'ENZYMES': | |||
ds_file = current_path + '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'Fingerprint': | |||
ds_file = current_path + '../../datasets/Fingerprint/Fingerprint_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'FRANKENSTEIN': | |||
ds_file = current_path + '../../datasets/FRANKENSTEIN/FRANKENSTEIN_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'Letter-high': # node non-symb | |||
ds_file = current_path + '../../datasets/Letter-high/Letter-high_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'Letter-low': # node non-symb | |||
ds_file = current_path + '../../datasets/Letter-low/Letter-low_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'Letter-med': # node non-symb | |||
ds_file = current_path + '../../datasets/Letter-med/Letter-med_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'MAO': | |||
ds_file = current_path + '../../datasets/MAO/dataset.ds' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'Monoterpenoides': | |||
ds_file = current_path + '../../datasets/Monoterpenoides/dataset_10+.ds' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'MUTAG': | |||
ds_file = current_path + '../../datasets/MUTAG/MUTAG_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'NCI1': | |||
ds_file = current_path + '../../datasets/NCI1/NCI1_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'NCI109': | |||
ds_file = current_path + '../../datasets/NCI109/NCI109_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'PAH': | |||
ds_file = current_path + '../../datasets/PAH/dataset.ds' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'SYNTHETIC': | |||
pass | |||
elif ds_name == 'SYNTHETICnew': | |||
ds_file = current_path + '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt' | |||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'Synthie': | |||
pass | |||
def load_predefined_dataset(self, ds_name, root='datasets', clean_labels=True, reload=False, verbose=False): | |||
path = DataFetcher(name=ds_name, root=root, reload=reload, verbose=verbose).path | |||
if DATASET_META[ds_name]['database'] == 'tudataset': | |||
ds_file = os.path.join(path, ds_name + '_A.txt') | |||
fn_targets = None | |||
else: | |||
raise Exception('The dataset name "', ds_name, '" is not pre-defined.') | |||
load_files = DATASET_META[ds_name]['load_files'] | |||
if isinstance(load_files[0], str): | |||
ds_file = os.path.join(path, load_files[0]) | |||
else: # load_files[0] is a list of files. | |||
ds_file = [os.path.join(path, fn) for fn in load_files[0]] | |||
fn_targets = os.path.join(path, load_files[1]) if len(load_files) == 2 else None | |||
self._graphs, self._targets, label_names = DataLoader(ds_file, filename_targets=fn_targets).data | |||
self._node_labels = label_names['node_labels'] | |||
self._node_attrs = label_names['node_attrs'] | |||
self._edge_labels = label_names['edge_labels'] | |||
self._edge_attrs = label_names['edge_attrs'] | |||
self.clean_labels() | |||
if clean_labels: | |||
self.clean_labels() | |||
# Deal with specific datasets. | |||
if ds_name == 'Alkane': | |||
self.trim_dataset(edge_required=True) | |||
self.remove_labels(node_labels=['atom_symbol']) | |||
def set_labels(self, node_labels=[], node_attrs=[], edge_labels=[], edge_attrs=[]): | |||
@@ -573,6 +558,14 @@ class Dataset(object): | |||
return dataset | |||
def check_special_suffices(self): | |||
if self._ds_name.endswith('_unlabeled'): | |||
self.remove_labels(node_labels=self._node_labels, | |||
edge_labels=self._edge_labels, | |||
node_attrs=self._node_attrs, | |||
edge_attrs=self._edge_attrs) | |||
def get_all_node_labels(self): | |||
node_labels = [] | |||
for g in self._graphs: | |||
@@ -38,7 +38,11 @@ class DataLoader(): | |||
for details. Note here filename is the name of either .txt file in | |||
the dataset directory. | |||
""" | |||
extension = splitext(filename)[1][1:] | |||
if isinstance(filename, str): | |||
extension = splitext(filename)[1][1:] | |||
else: # filename is a list of files. | |||
extension = splitext(filename[0])[1][1:] | |||
if extension == "ds": | |||
self._graphs, self._targets, self._label_names = self.load_from_ds(filename, filename_targets) | |||
elif extension == "cxl": | |||
@@ -67,13 +71,24 @@ class DataLoader(): | |||
Note these graph formats are checked automatically by the extensions of | |||
graph files. | |||
""" | |||
dirname_dataset = dirname(filename) | |||
""" | |||
if isinstance(filename, str): | |||
dirname_dataset = dirname(filename) | |||
with open(filename) as f: | |||
content = f.read().splitlines() | |||
else: # filename is a list of files. | |||
dirname_dataset = dirname(filename[0]) | |||
content = [] | |||
for fn in filename: | |||
with open(fn) as f: | |||
content += f.read().splitlines() | |||
# to remove duplicate file names. | |||
data = [] | |||
y = [] | |||
label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []} | |||
with open(filename) as fn: | |||
content = fn.read().splitlines() | |||
content = [line for line in content if not line.endswith('.ds')] # Alkane | |||
content = [line for line in content if not line.startswith('#')] # Acyclic | |||
extension = splitext(content[0].split(' ')[0])[1][1:] | |||
if extension == 'ct': | |||
load_file_fun = self.load_ct | |||
@@ -32,7 +32,7 @@ GREYC_META = { | |||
'domain': 'small molecules', | |||
'train_valid_test': [], | |||
'stereoisomerism': True, | |||
'load_files': [], | |||
'load_files': ['data.ds'], | |||
}, | |||
'Acyclic': { | |||
'database': 'greyc', | |||
@@ -165,7 +165,7 @@ GREYC_META = { | |||
'domain': 'small molecules', | |||
'train_valid_test': ['trainset_0.ds', None, 'testset_0.ds'], | |||
'stereoisomerism': False, | |||
'load_files': [], | |||
'load_files': [['trainset_0.ds', 'testset_0.ds']], | |||
}, | |||
'PTC': { | |||
'database': 'greyc', | |||
@@ -654,7 +654,7 @@ TUDataset_META = { | |||
'node_attr_dim': 0, | |||
'geometry': None, | |||
'edge_attr_dim': 0, | |||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/NCI-H23.zip-H23', | |||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/NCI-H23.zip', | |||
'domain': 'small molecules', | |||
}, | |||
'NCI-H23H': { | |||
@@ -670,7 +670,7 @@ TUDataset_META = { | |||
'node_attr_dim': 0, | |||
'geometry': None, | |||
'edge_attr_dim': 0, | |||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/NCI-H23H.zip-H23H', | |||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/NCI-H23H.zip', | |||
'domain': 'small molecules', | |||
}, | |||
'OVCAR-8': { | |||
@@ -686,7 +686,7 @@ TUDataset_META = { | |||
'node_attr_dim': 0, | |||
'geometry': None, | |||
'edge_attr_dim': 0, | |||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/OVCAR-8.zip-8', | |||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/OVCAR-8.zip', | |||
'domain': 'small molecules', | |||
}, | |||
'OVCAR-8H': { | |||
@@ -702,7 +702,7 @@ TUDataset_META = { | |||
'node_attr_dim': 0, | |||
'geometry': None, | |||
'edge_attr_dim': 0, | |||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/OVCAR-8H.zip-8H', | |||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/OVCAR-8H.zip', | |||
'domain': 'small molecules', | |||
}, | |||
'P388': { | |||
@@ -9,10 +9,11 @@ import numpy as np | |||
import networkx as nx | |||
import multiprocessing | |||
import time | |||
from gklearn.utils import normalize_gram_matrix | |||
class GraphKernel(object): | |||
def __init__(self): | |||
self._graphs = None | |||
self._parallel = '' | |||
@@ -22,14 +23,14 @@ class GraphKernel(object): | |||
self._run_time = 0 | |||
self._gram_matrix = None | |||
self._gram_matrix_unnorm = None | |||
def compute(self, *graphs, **kwargs): | |||
self._parallel = kwargs.get('parallel', 'imap_unordered') | |||
self._n_jobs = kwargs.get('n_jobs', multiprocessing.cpu_count()) | |||
self._normalize = kwargs.get('normalize', True) | |||
self._verbose = kwargs.get('verbose', 2) | |||
if len(graphs) == 1: | |||
if not isinstance(graphs[0], list): | |||
raise Exception('Cannot detect graphs.') | |||
@@ -40,9 +41,9 @@ class GraphKernel(object): | |||
self._gram_matrix = self._compute_gram_matrix() | |||
self._gram_matrix_unnorm = np.copy(self._gram_matrix) | |||
if self._normalize: | |||
self._gram_matrix = self.normalize_gm(self._gram_matrix) | |||
self._gram_matrix = normalize_gram_matrix(self._gram_matrix) | |||
return self._gram_matrix, self._run_time | |||
elif len(graphs) == 2: | |||
if self.is_graph(graphs[0]) and self.is_graph(graphs[1]): | |||
kernel = self._compute_single_kernel(graphs[0].copy(), graphs[1].copy()) | |||
@@ -59,14 +60,14 @@ class GraphKernel(object): | |||
return kernel_list, self._run_time | |||
else: | |||
raise Exception('Cannot detect graphs.') | |||
elif len(graphs) == 0 and self._graphs is None: | |||
raise Exception('Please add graphs before computing.') | |||
else: | |||
raise Exception('Cannot detect graphs.') | |||
def normalize_gm(self, gram_matrix): | |||
import warnings | |||
warnings.warn('gklearn.kernels.graph_kernel.normalize_gm will be deprecated, use gklearn.utils.normalize_gram_matrix instead', DeprecationWarning) | |||
@@ -77,8 +78,8 @@ class GraphKernel(object): | |||
gram_matrix[i][j] /= np.sqrt(diag[i] * diag[j]) | |||
gram_matrix[j][i] = gram_matrix[i][j] | |||
return gram_matrix | |||
def compute_distance_matrix(self): | |||
if self._gram_matrix is None: | |||
raise Exception('Please compute the Gram matrix before computing distance matrix.') | |||
@@ -97,98 +98,98 @@ class GraphKernel(object): | |||
dis_min = np.min(np.min(dis_mat[dis_mat != 0])) | |||
dis_mean = np.mean(np.mean(dis_mat)) | |||
return dis_mat, dis_max, dis_min, dis_mean | |||
def _compute_gram_matrix(self): | |||
start_time = time.time() | |||
if self._parallel == 'imap_unordered': | |||
gram_matrix = self._compute_gm_imap_unordered() | |||
elif self._parallel is None: | |||
gram_matrix = self._compute_gm_series() | |||
else: | |||
raise Exception('Parallel mode is not set correctly.') | |||
self._run_time = time.time() - start_time | |||
if self._verbose: | |||
print('Gram matrix of size %d built in %s seconds.' | |||
% (len(self._graphs), self._run_time)) | |||
return gram_matrix | |||
def _compute_gm_series(self): | |||
pass | |||
def _compute_gm_imap_unordered(self): | |||
pass | |||
def _compute_kernel_list(self, g1, g_list): | |||
start_time = time.time() | |||
if self._parallel == 'imap_unordered': | |||
kernel_list = self._compute_kernel_list_imap_unordered(g1, g_list) | |||
elif self._parallel is None: | |||
kernel_list = self._compute_kernel_list_series(g1, g_list) | |||
else: | |||
raise Exception('Parallel mode is not set correctly.') | |||
self._run_time = time.time() - start_time | |||
if self._verbose: | |||
print('Graph kernel bewteen a graph and a list of %d graphs built in %s seconds.' | |||
% (len(g_list), self._run_time)) | |||
return kernel_list | |||
def _compute_kernel_list_series(self, g1, g_list): | |||
pass | |||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
pass | |||
def _compute_single_kernel(self, g1, g2): | |||
start_time = time.time() | |||
kernel = self._compute_single_kernel_series(g1, g2) | |||
self._run_time = time.time() - start_time | |||
if self._verbose: | |||
print('Graph kernel bewteen two graphs built in %s seconds.' % (self._run_time)) | |||
return kernel | |||
def _compute_single_kernel_series(self, g1, g2): | |||
pass | |||
def is_graph(self, graph): | |||
if isinstance(graph, nx.Graph): | |||
return True | |||
if isinstance(graph, nx.DiGraph): | |||
return True | |||
return True | |||
if isinstance(graph, nx.MultiGraph): | |||
return True | |||
return True | |||
if isinstance(graph, nx.MultiDiGraph): | |||
return True | |||
return True | |||
return False | |||
@property | |||
def graphs(self): | |||
return self._graphs | |||
@property | |||
def parallel(self): | |||
return self._parallel | |||
@property | |||
def n_jobs(self): | |||
return self._n_jobs | |||
@@ -197,30 +198,30 @@ class GraphKernel(object): | |||
@property | |||
def verbose(self): | |||
return self._verbose | |||
@property | |||
def normalize(self): | |||
return self._normalize | |||
@property | |||
def run_time(self): | |||
return self._run_time | |||
@property | |||
def gram_matrix(self): | |||
return self._gram_matrix | |||
@gram_matrix.setter | |||
def gram_matrix(self, value): | |||
self._gram_matrix = value | |||
@property | |||
def gram_matrix_unnorm(self): | |||
return self._gram_matrix_unnorm | |||
return self._gram_matrix_unnorm | |||
@gram_matrix_unnorm.setter | |||
def gram_matrix_unnorm(self, value): |
@@ -12,7 +12,7 @@ GRAPH_KERNELS = { | |||
'common walk': '', | |||
'marginalized': '', | |||
'sylvester equation': '', | |||
'fixed_point': '', | |||
'fixed point': '', | |||
'conjugate gradient': '', | |||
'spectral decomposition': '', | |||
### based on paths. | |||
@@ -5,9 +5,9 @@ Created on Tue Apr 7 15:24:58 2020 | |||
@author: ljia | |||
@references: | |||
[1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData | |||
@references: | |||
[1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData | |||
Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE. | |||
""" | |||
@@ -17,33 +17,36 @@ from itertools import product | |||
from multiprocessing import Pool | |||
from tqdm import tqdm | |||
import numpy as np | |||
import networkx as nx | |||
from gklearn.utils.parallel import parallel_gm, parallel_me | |||
from gklearn.utils.utils import getSPGraph | |||
from gklearn.kernels import GraphKernel | |||
class ShortestPath(GraphKernel): | |||
def __init__(self, **kwargs): | |||
GraphKernel.__init__(self) | |||
self._node_labels = kwargs.get('node_labels', []) | |||
self._node_attrs = kwargs.get('node_attrs', []) | |||
self._edge_weight = kwargs.get('edge_weight', None) | |||
self._node_kernels = kwargs.get('node_kernels', None) | |||
self._fcsp = kwargs.get('fcsp', True) | |||
self._ds_infos = kwargs.get('ds_infos', {}) | |||
def _compute_gm_series(self): | |||
self._all_graphs_have_edges(self._graphs) | |||
# get shortest path graph of each graph. | |||
if self._verbose >= 2: | |||
iterator = tqdm(self._graphs, desc='getting sp graphs', file=sys.stdout) | |||
else: | |||
iterator = self._graphs | |||
self._graphs = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
from itertools import combinations_with_replacement | |||
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
if self._verbose >= 2: | |||
@@ -54,11 +57,12 @@ class ShortestPath(GraphKernel): | |||
kernel = self._sp_do(self._graphs[i], self._graphs[j]) | |||
gram_matrix[i][j] = kernel | |||
gram_matrix[j][i] = kernel | |||
return gram_matrix | |||
def _compute_gm_imap_unordered(self): | |||
self._all_graphs_have_edges(self._graphs) | |||
# get shortest path graph of each graph. | |||
pool = Pool(self._n_jobs) | |||
get_sp_graphs_fun = self._wrapper_get_sp_graphs | |||
@@ -76,21 +80,22 @@ class ShortestPath(GraphKernel): | |||
self._graphs[i] = g | |||
pool.close() | |||
pool.join() | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
def init_worker(gs_toshare): | |||
global G_gs | |||
G_gs = gs_toshare | |||
do_fun = self._wrapper_sp_do | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
return gram_matrix | |||
def _compute_kernel_list_series(self, g1, g_list): | |||
self._all_graphs_have_edges([g1] + g_list) | |||
# get shortest path graphs of g1 and each graph in g_list. | |||
g1 = getSPGraph(g1, edge_weight=self._edge_weight) | |||
if self._verbose >= 2: | |||
@@ -98,7 +103,7 @@ class ShortestPath(GraphKernel): | |||
else: | |||
iterator = g_list | |||
g_list = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
if self._verbose >= 2: | |||
@@ -108,11 +113,12 @@ class ShortestPath(GraphKernel): | |||
for i in iterator: | |||
kernel = self._sp_do(g1, g_list[i]) | |||
kernel_list[i] = kernel | |||
return kernel_list | |||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
self._all_graphs_have_edges([g1] + g_list) | |||
# get shortest path graphs of g1 and each graph in g_list. | |||
g1 = getSPGraph(g1, edge_weight=self._edge_weight) | |||
pool = Pool(self._n_jobs) | |||
@@ -131,49 +137,58 @@ class ShortestPath(GraphKernel): | |||
g_list[i] = g | |||
pool.close() | |||
pool.join() | |||
# compute Gram matrix. | |||
kernel_list = [None] * len(g_list) | |||
def init_worker(g1_toshare, gl_toshare): | |||
global G_g1, G_gl | |||
G_g1 = g1_toshare | |||
G_gl = gl_toshare | |||
G_g1 = g1_toshare | |||
G_gl = gl_toshare | |||
do_fun = self._wrapper_kernel_list_do | |||
def func_assign(result, var_to_assign): | |||
def func_assign(result, var_to_assign): | |||
var_to_assign[result[0]] = result[1] | |||
itr = range(len(g_list)) | |||
len_itr = len(g_list) | |||
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
return kernel_list | |||
def _wrapper_kernel_list_do(self, itr): | |||
return itr, self._sp_do(G_g1, G_gl[itr]) | |||
def _compute_single_kernel_series(self, g1, g2): | |||
self._all_graphs_have_edges([g1] + [g2]) | |||
g1 = getSPGraph(g1, edge_weight=self._edge_weight) | |||
g2 = getSPGraph(g2, edge_weight=self._edge_weight) | |||
kernel = self._sp_do(g1, g2) | |||
return kernel | |||
return kernel | |||
def _wrapper_get_sp_graphs(self, itr_item): | |||
g = itr_item[0] | |||
i = itr_item[1] | |||
return i, getSPGraph(g, edge_weight=self._edge_weight) | |||
def _sp_do(self, g1, g2): | |||
if self._fcsp: # @todo: it may be put outside the _sp_do(). | |||
return self._sp_do_fcsp(g1, g2) | |||
else: | |||
return self._sp_do_naive(g1, g2) | |||
def _sp_do_fcsp(self, g1, g2): | |||
kernel = 0 | |||
# compute shortest path matrices first, method borrowed from FCSP. | |||
vk_dict = {} # shortest path matrices dict | |||
if len(self._node_labels) > 0: | |||
if len(self._node_labels) > 0: # @todo: it may be put outside the _sp_do(). | |||
# node symb and non-synb labeled | |||
if len(self._node_attrs) > 0: | |||
kn = self._node_kernels['mix'] | |||
@@ -208,7 +223,7 @@ class ShortestPath(GraphKernel): | |||
if e1[2]['cost'] == e2[2]['cost']: | |||
kernel += 1 | |||
return kernel | |||
# compute graph kernels | |||
if self._ds_infos['directed']: | |||
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||
@@ -225,7 +240,7 @@ class ShortestPath(GraphKernel): | |||
kn1 = nk11 * nk22 | |||
kn2 = nk12 * nk21 | |||
kernel += kn1 + kn2 | |||
# # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | |||
# # compute vertex kernels | |||
# try: | |||
@@ -238,7 +253,7 @@ class ShortestPath(GraphKernel): | |||
# vk_mat[i1][i2] = kn( | |||
# n1[1][node_label], n2[1][node_label], | |||
# [n1[1]['attributes']], [n2[1]['attributes']]) | |||
# range1 = range(0, len(edge_w_g[i])) | |||
# range2 = range(0, len(edge_w_g[j])) | |||
# for i1 in range1: | |||
@@ -254,11 +269,74 @@ class ShortestPath(GraphKernel): | |||
# kn1 = vk_mat[x1][x2] * vk_mat[y1][y2] | |||
# kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | |||
# kernel += kn1 + kn2 | |||
return kernel | |||
def _sp_do_naive(self, g1, g2): | |||
kernel = 0 | |||
# Define the function to compute kernels between vertices in each condition. | |||
if len(self._node_labels) > 0: | |||
# node symb and non-synb labeled | |||
if len(self._node_attrs) > 0: | |||
def compute_vk(n1, n2): | |||
kn = self._node_kernels['mix'] | |||
n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||
n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||
n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||
n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||
return kn(n1_labels, n2_labels, n1_attrs, n2_attrs) | |||
# node symb labeled | |||
else: | |||
def compute_vk(n1, n2): | |||
kn = self._node_kernels['symb'] | |||
n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||
n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||
return kn(n1_labels, n2_labels) | |||
else: | |||
# node non-synb labeled | |||
if len(self._node_attrs) > 0: | |||
def compute_vk(n1, n2): | |||
kn = self._node_kernels['nsymb'] | |||
n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||
n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||
return kn(n1_attrs, n2_attrs) | |||
# node unlabeled | |||
else: | |||
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||
if e1[2]['cost'] == e2[2]['cost']: | |||
kernel += 1 | |||
return kernel | |||
# compute graph kernels | |||
if self._ds_infos['directed']: | |||
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||
if e1[2]['cost'] == e2[2]['cost']: | |||
nk11, nk22 = compute_vk(e1[0], e2[0]), compute_vk(e1[1], e2[1]) | |||
kn1 = nk11 * nk22 | |||
kernel += kn1 | |||
else: | |||
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||
if e1[2]['cost'] == e2[2]['cost']: | |||
# each edge walk is counted twice, starting from both its extreme nodes. | |||
nk11, nk12, nk21, nk22 = compute_vk(e1[0], e2[0]), compute_vk( | |||
e1[0], e2[1]), compute_vk(e1[1], e2[0]), compute_vk(e1[1], e2[1]) | |||
kn1 = nk11 * nk22 | |||
kn2 = nk12 * nk21 | |||
kernel += kn1 + kn2 | |||
return kernel | |||
def _wrapper_sp_do(self, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, self._sp_do(G_gs[i], G_gs[j]) | |||
return i, j, self._sp_do(G_gs[i], G_gs[j]) | |||
def _all_graphs_have_edges(self, graphs): | |||
for G in graphs: | |||
if nx.number_of_edges(G) == 0: | |||
raise ValueError('Not all graphs have edges!!!') |
@@ -5,9 +5,9 @@ Created on Mon Mar 30 11:59:57 2020 | |||
@author: ljia | |||
@references: | |||
@references: | |||
[1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For | |||
[1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For | |||
Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360). | |||
""" | |||
import sys | |||
@@ -23,7 +23,7 @@ from gklearn.kernels import GraphKernel | |||
class StructuralSP(GraphKernel): | |||
def __init__(self, **kwargs): | |||
GraphKernel.__init__(self) | |||
self._node_labels = kwargs.get('node_labels', []) | |||
@@ -34,6 +34,7 @@ class StructuralSP(GraphKernel): | |||
self._node_kernels = kwargs.get('node_kernels', None) | |||
self._edge_kernels = kwargs.get('edge_kernels', None) | |||
self._compute_method = kwargs.get('compute_method', 'naive') | |||
self._fcsp = kwargs.get('fcsp', True) | |||
self._ds_infos = kwargs.get('ds_infos', {}) | |||
@@ -50,10 +51,10 @@ class StructuralSP(GraphKernel): | |||
else: | |||
for g in iterator: | |||
splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])) | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
from itertools import combinations_with_replacement | |||
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
if self._verbose >= 2: | |||
@@ -72,10 +73,10 @@ class StructuralSP(GraphKernel): | |||
# print("error here ") | |||
gram_matrix[i][j] = kernel | |||
gram_matrix[j][i] = kernel | |||
return gram_matrix | |||
def _compute_gm_imap_unordered(self): | |||
# get shortest paths of each graph in the graphs. | |||
splist = [None] * len(self._graphs) | |||
@@ -87,9 +88,9 @@ class StructuralSP(GraphKernel): | |||
chunksize = 100 | |||
# get shortest path graphs of self._graphs | |||
if self._compute_method == 'trie': | |||
get_sps_fun = self._wrapper_get_sps_trie | |||
get_sps_fun = self._wrapper_get_sps_trie | |||
else: | |||
get_sps_fun = self._wrapper_get_sps_naive | |||
get_sps_fun = self._wrapper_get_sps_naive | |||
if self.verbose >= 2: | |||
iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize), | |||
desc='getting shortest paths', file=sys.stdout) | |||
@@ -99,24 +100,24 @@ class StructuralSP(GraphKernel): | |||
splist[i] = sp | |||
pool.close() | |||
pool.join() | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
def init_worker(spl_toshare, gs_toshare): | |||
global G_spl, G_gs | |||
G_spl = spl_toshare | |||
G_gs = gs_toshare | |||
if self._compute_method == 'trie': | |||
G_gs = gs_toshare | |||
if self._compute_method == 'trie': | |||
do_fun = self._wrapper_ssp_do_trie | |||
else: | |||
do_fun = self._wrapper_ssp_do_naive | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
else: | |||
do_fun = self._wrapper_ssp_do_naive | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
glbv=(splist, self._graphs), n_jobs=self._n_jobs, verbose=self._verbose) | |||
return gram_matrix | |||
def _compute_kernel_list_series(self, g1, g_list): | |||
# get shortest paths of g1 and each graph in g_list. | |||
sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | |||
@@ -131,7 +132,7 @@ class StructuralSP(GraphKernel): | |||
else: | |||
for g in iterator: | |||
splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])) | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
if self._verbose >= 2: | |||
@@ -146,10 +147,10 @@ class StructuralSP(GraphKernel): | |||
for i in iterator: | |||
kernel = self._ssp_do_naive(g1, g_list[i], sp1, splist[i]) | |||
kernel_list[i] = kernel | |||
return kernel_list | |||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
# get shortest paths of g1 and each graph in g_list. | |||
sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | |||
@@ -162,9 +163,9 @@ class StructuralSP(GraphKernel): | |||
chunksize = 100 | |||
# get shortest path graphs of g_list | |||
if self._compute_method == 'trie': | |||
get_sps_fun = self._wrapper_get_sps_trie | |||
get_sps_fun = self._wrapper_get_sps_trie | |||
else: | |||
get_sps_fun = self._wrapper_get_sps_naive | |||
get_sps_fun = self._wrapper_get_sps_naive | |||
if self.verbose >= 2: | |||
iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize), | |||
desc='getting shortest paths', file=sys.stdout) | |||
@@ -174,7 +175,7 @@ class StructuralSP(GraphKernel): | |||
splist[i] = sp | |||
pool.close() | |||
pool.join() | |||
# compute Gram matrix. | |||
kernel_list = [None] * len(g_list) | |||
@@ -182,27 +183,27 @@ class StructuralSP(GraphKernel): | |||
global G_sp1, G_spl, G_g1, G_gl | |||
G_sp1 = sp1_toshare | |||
G_spl = spl_toshare | |||
G_g1 = g1_toshare | |||
G_gl = gl_toshare | |||
if self._compute_method == 'trie': | |||
G_g1 = g1_toshare | |||
G_gl = gl_toshare | |||
if self._compute_method == 'trie': | |||
do_fun = self._wrapper_ssp_do_trie | |||
else: | |||
else: | |||
do_fun = self._wrapper_kernel_list_do | |||
def func_assign(result, var_to_assign): | |||
def func_assign(result, var_to_assign): | |||
var_to_assign[result[0]] = result[1] | |||
itr = range(len(g_list)) | |||
len_itr = len(g_list) | |||
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
init_worker=init_worker, glbv=(sp1, splist, g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
return kernel_list | |||
def _wrapper_kernel_list_do(self, itr): | |||
return itr, self._ssp_do_naive(G_g1, G_gl[itr], G_sp1, G_spl[itr]) | |||
def _compute_single_kernel_series(self, g1, g2): | |||
sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | |||
sp2 = get_shortest_paths(g2, self._edge_weight, self._ds_infos['directed']) | |||
@@ -210,26 +211,33 @@ class StructuralSP(GraphKernel): | |||
kernel = self._ssp_do_trie(g1, g2, sp1, sp2) | |||
else: | |||
kernel = self._ssp_do_naive(g1, g2, sp1, sp2) | |||
return kernel | |||
return kernel | |||
def _wrapper_get_sps_naive(self, itr_item): | |||
g = itr_item[0] | |||
i = itr_item[1] | |||
return i, get_shortest_paths(g, self._edge_weight, self._ds_infos['directed']) | |||
def _ssp_do_naive(self, g1, g2, spl1, spl2): | |||
if self._fcsp: # @todo: it may be put outside the _sp_do(). | |||
return self._sp_do_naive_fcsp(g1, g2, spl1, spl2) | |||
else: | |||
return self._sp_do_naive_naive(g1, g2, spl1, spl2) | |||
def _sp_do_naive_fcsp(self, g1, g2, spl1, spl2): | |||
kernel = 0 | |||
# First, compute shortest path matrices, method borrowed from FCSP. | |||
vk_dict = self._get_all_node_kernels(g1, g2) | |||
# Then, compute kernels between all pairs of edges, which is an idea of | |||
# extension of FCSP. It suits sparse graphs, which is the most case we | |||
# went though. For dense graphs, this would be slow. | |||
ek_dict = self._get_all_edge_kernels(g1, g2) | |||
# compute graph kernels | |||
if vk_dict: | |||
if ek_dict: | |||
@@ -244,6 +252,7 @@ class StructuralSP(GraphKernel): | |||
if not kpath: | |||
break | |||
kernel += kpath # add up kernels of all paths | |||
# print(kernel, ',', p1, ',', p2) | |||
else: | |||
for p1, p2 in product(spl1, spl2): | |||
if len(p1) == len(p2): | |||
@@ -279,7 +288,7 @@ class StructuralSP(GraphKernel): | |||
print(g1.nodes(data=True)) | |||
print(g1.edges(data=True)) | |||
raise Exception | |||
# # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | |||
# # compute vertex kernel matrix | |||
# try: | |||
@@ -292,7 +301,7 @@ class StructuralSP(GraphKernel): | |||
# vk_mat[i1][i2] = kn( | |||
# n1[1][node_label], n2[1][node_label], | |||
# [n1[1]['attributes']], [n2[1]['attributes']]) | |||
# range1 = range(0, len(edge_w_g[i])) | |||
# range2 = range(0, len(edge_w_g[j])) | |||
# for i1 in range1: | |||
@@ -309,18 +318,137 @@ class StructuralSP(GraphKernel): | |||
# kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | |||
# Kmatrix += kn1 + kn2 | |||
return kernel | |||
def _sp_do_naive_naive(self, g1, g2, spl1, spl2): | |||
kernel = 0 | |||
# Define the function to compute kernels between vertices in each condition. | |||
if len(self._node_labels) > 0: | |||
# node symb and non-synb labeled | |||
if len(self._node_attrs) > 0: | |||
def compute_vk(n1, n2): | |||
kn = self._node_kernels['mix'] | |||
n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||
n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||
n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||
n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||
return kn(n1_labels, n2_labels, n1_attrs, n2_attrs) | |||
# node symb labeled | |||
else: | |||
def compute_vk(n1, n2): | |||
kn = self._node_kernels['symb'] | |||
n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||
n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||
return kn(n1_labels, n2_labels) | |||
else: | |||
# node non-synb labeled | |||
if len(self._node_attrs) > 0: | |||
def compute_vk(n1, n2): | |||
kn = self._node_kernels['nsymb'] | |||
n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||
n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||
return kn(n1_attrs, n2_attrs) | |||
# # node unlabeled | |||
# else: | |||
# for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||
# if e1[2]['cost'] == e2[2]['cost']: | |||
# kernel += 1 | |||
# return kernel | |||
# Define the function to compute kernels between edges in each condition. | |||
if len(self._edge_labels) > 0: | |||
# edge symb and non-synb labeled | |||
if len(self._edge_attrs) > 0: | |||
def compute_ek(e1, e2): | |||
ke = self._edge_kernels['mix'] | |||
e1_labels = [g1.edges[e1][el] for el in self._edge_labels] | |||
e2_labels = [g2.edges[e2][el] for el in self._edge_labels] | |||
e1_attrs = [g1.edges[e1][ea] for ea in self._edge_attrs] | |||
e2_attrs = [g2.edges[e2][ea] for ea in self._edge_attrs] | |||
return ke(e1_labels, e2_labels, e1_attrs, e2_attrs) | |||
# edge symb labeled | |||
else: | |||
def compute_ek(e1, e2): | |||
ke = self._edge_kernels['symb'] | |||
e1_labels = [g1.edges[e1][el] for el in self._edge_labels] | |||
e2_labels = [g2.edges[e2][el] for el in self._edge_labels] | |||
return ke(e1_labels, e2_labels) | |||
else: | |||
# edge non-synb labeled | |||
if len(self._edge_attrs) > 0: | |||
def compute_ek(e1, e2): | |||
ke = self._edge_kernels['nsymb'] | |||
e1_attrs = [g1.edges[e1][ea] for ea in self._edge_attrs] | |||
e2_attrs = [g2.edges[e2][ea] for ea in self._edge_attrs] | |||
return ke(e1_attrs, e2_attrs) | |||
# compute graph kernels | |||
if len(self._node_labels) > 0 or len(self._node_attrs) > 0: | |||
if len(self._edge_labels) > 0 or len(self._edge_attrs) > 0: | |||
for p1, p2 in product(spl1, spl2): | |||
if len(p1) == len(p2): | |||
kpath = compute_vk(p1[0], p2[0]) | |||
if kpath: | |||
for idx in range(1, len(p1)): | |||
kpath *= compute_vk(p1[idx], p2[idx]) * \ | |||
compute_ek((p1[idx-1], p1[idx]), | |||
(p2[idx-1], p2[idx])) | |||
if not kpath: | |||
break | |||
kernel += kpath # add up kernels of all paths | |||
# print(kernel, ',', p1, ',', p2) | |||
else: | |||
for p1, p2 in product(spl1, spl2): | |||
if len(p1) == len(p2): | |||
kpath = compute_vk(p1[0], p2[0]) | |||
if kpath: | |||
for idx in range(1, len(p1)): | |||
kpath *= compute_vk(p1[idx], p2[idx]) | |||
if not kpath: | |||
break | |||
kernel += kpath # add up kernels of all paths | |||
else: | |||
if len(self._edge_labels) > 0 or len(self._edge_attrs) > 0: | |||
for p1, p2 in product(spl1, spl2): | |||
if len(p1) == len(p2): | |||
if len(p1) == 0: | |||
kernel += 1 | |||
else: | |||
kpath = 1 | |||
for idx in range(0, len(p1) - 1): | |||
kpath *= compute_ek((p1[idx], p1[idx+1]), | |||
(p2[idx], p2[idx+1])) | |||
if not kpath: | |||
break | |||
kernel += kpath # add up kernels of all paths | |||
else: | |||
for p1, p2 in product(spl1, spl2): | |||
if len(p1) == len(p2): | |||
kernel += 1 | |||
try: | |||
kernel = kernel / (len(spl1) * len(spl2)) # Compute mean average | |||
except ZeroDivisionError: | |||
print(spl1, spl2) | |||
print(g1.nodes(data=True)) | |||
print(g1.edges(data=True)) | |||
raise Exception | |||
return kernel | |||
def _wrapper_ssp_do_naive(self, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, self._ssp_do_naive(G_gs[i], G_gs[j], G_spl[i], G_spl[j]) | |||
def _get_all_node_kernels(self, g1, g2): | |||
return compute_vertex_kernels(g1, g2, self._node_kernels, node_labels=self._node_labels, node_attrs=self._node_attrs) | |||
def _get_all_edge_kernels(self, g1, g2): | |||
# compute kernels between all pairs of edges, which is an idea of | |||
# extension of FCSP. It suits sparse graphs, which is the most case we | |||
@@ -368,5 +496,5 @@ class StructuralSP(GraphKernel): | |||
# edge unlabeled | |||
else: | |||
pass | |||
return ek_dict | |||
return ek_dict |
@@ -5,9 +5,9 @@ Created on Thu Sep 27 10:56:23 2018 | |||
@author: linlin | |||
@references: | |||
@references: | |||
[1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For | |||
[1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For | |||
Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360). | |||
""" | |||
@@ -43,7 +43,7 @@ def structuralspkernel(*args, | |||
---------- | |||
Gn : List of NetworkX graph | |||
List of graphs between which the kernels are computed. | |||
G1, G2 : NetworkX graphs | |||
Two graphs between which the kernel is computed. | |||
@@ -51,25 +51,25 @@ def structuralspkernel(*args, | |||
Node attribute used as label. The default node label is atom. | |||
edge_weight : string | |||
Edge attribute name corresponding to the edge weight. Applied for the | |||
Edge attribute name corresponding to the edge weight. Applied for the | |||
computation of the shortest paths. | |||
edge_label : string | |||
Edge attribute used as label. The default edge label is bond_type. | |||
node_kernels : dict | |||
A dictionary of kernel functions for nodes, including 3 items: 'symb' | |||
for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix' | |||
for both labels. The first 2 functions take two node labels as | |||
A dictionary of kernel functions for nodes, including 3 items: 'symb' | |||
for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix' | |||
for both labels. The first 2 functions take two node labels as | |||
parameters, and the 'mix' function takes 4 parameters, a symbolic and a | |||
non-symbolic label for each the two nodes. Each label is in form of 2-D | |||
dimension array (n_samples, n_features). Each function returns a number | |||
as the kernel value. Ignored when nodes are unlabeled. | |||
edge_kernels : dict | |||
A dictionary of kernel functions for edges, including 3 items: 'symb' | |||
for symbolic edge labels, 'nsymb' for non-symbolic edge labels, 'mix' | |||
for both labels. The first 2 functions take two edge labels as | |||
A dictionary of kernel functions for edges, including 3 items: 'symb' | |||
for symbolic edge labels, 'nsymb' for non-symbolic edge labels, 'mix' | |||
for both labels. The first 2 functions take two edge labels as | |||
parameters, and the 'mix' function takes 4 parameters, a symbolic and a | |||
non-symbolic label for each the two edges. Each label is in form of 2-D | |||
dimension array (n_samples, n_features). Each function returns a number | |||
@@ -89,7 +89,7 @@ def structuralspkernel(*args, | |||
Return | |||
------ | |||
Kmatrix : Numpy matrix | |||
Kernel matrix, each element of which is the mean average structural | |||
Kernel matrix, each element of which is the mean average structural | |||
shortest path kernel between 2 praphs. | |||
""" | |||
# pre-process | |||
@@ -135,9 +135,9 @@ def structuralspkernel(*args, | |||
chunksize = 100 | |||
# get shortest path graphs of Gn | |||
if compute_method == 'trie': | |||
getsp_partial = partial(wrapper_getSP_trie, weight, ds_attrs['is_directed']) | |||
getsp_partial = partial(wrapper_getSP_trie, weight, ds_attrs['is_directed']) | |||
else: | |||
getsp_partial = partial(wrapper_getSP_naive, weight, ds_attrs['is_directed']) | |||
getsp_partial = partial(wrapper_getSP_naive, weight, ds_attrs['is_directed']) | |||
if verbose: | |||
iterator = tqdm(pool.imap_unordered(getsp_partial, itr, chunksize), | |||
desc='getting shortest paths', file=sys.stdout) | |||
@@ -161,17 +161,17 @@ def structuralspkernel(*args, | |||
else: | |||
for g in iterator: | |||
splist.append(get_shortest_paths(g, weight, ds_attrs['is_directed'])) | |||
# ss = 0 | |||
# ss += sys.getsizeof(splist) | |||
# for spss in splist: | |||
# ss += sys.getsizeof(spss) | |||
# for spp in spss: | |||
# ss += sys.getsizeof(spp) | |||
# time.sleep(20) | |||
# # ---- only for the Fast Computation of Shortest Path Kernel (FCSP) | |||
@@ -194,21 +194,21 @@ def structuralspkernel(*args, | |||
Kmatrix = np.zeros((len(Gn), len(Gn))) | |||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||
if parallel == 'imap_unordered': | |||
def init_worker(spl_toshare, gs_toshare): | |||
global G_spl, G_gs | |||
G_spl = spl_toshare | |||
G_gs = gs_toshare | |||
if compute_method == 'trie': | |||
do_partial = partial(wrapper_ssp_do_trie, ds_attrs, node_label, edge_label, | |||
node_kernels, edge_kernels) | |||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
glbv=(splist, Gn), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) | |||
else: | |||
do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||
node_kernels, edge_kernels) | |||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
G_gs = gs_toshare | |||
if compute_method == 'trie': | |||
do_partial = partial(wrapper_ssp_do_trie, ds_attrs, node_label, edge_label, | |||
node_kernels, edge_kernels) | |||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
glbv=(splist, Gn), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) | |||
else: | |||
do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||
node_kernels, edge_kernels) | |||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
glbv=(splist, Gn), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) | |||
# ---- direct running, normally use single CPU core. ---- | |||
elif parallel is None: | |||
@@ -232,10 +232,10 @@ def structuralspkernel(*args, | |||
# print("error here ") | |||
Kmatrix[i][j] = kernel | |||
Kmatrix[j][i] = kernel | |||
# # ---- use pool.map to parallel. ---- | |||
# pool = Pool(n_jobs) | |||
# do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||
# do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||
# node_kernels, edge_kernels) | |||
# itr = zip(combinations_with_replacement(Gn, 2), | |||
# combinations_with_replacement(splist, 2), | |||
@@ -249,7 +249,7 @@ def structuralspkernel(*args, | |||
# pool.join() | |||
# # ---- use pool.imap_unordered to parallel and track progress. ---- | |||
# do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||
# do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||
# node_kernels, edge_kernels) | |||
# itr = zip(combinations_with_replacement(Gn, 2), | |||
# combinations_with_replacement(splist, 2), | |||
@@ -282,7 +282,7 @@ def structuralspkernel(*args, | |||
def structuralspkernel_do(g1, g2, spl1, spl2, ds_attrs, node_label, edge_label, | |||
node_kernels, edge_kernels): | |||
kernel = 0 | |||
# First, compute shortest path matrices, method borrowed from FCSP. | |||
@@ -373,25 +373,25 @@ def structuralspkernel_do(g1, g2, spl1, spl2, ds_attrs, node_label, edge_label, | |||
return kernel | |||
def wrapper_ssp_do(ds_attrs, node_label, edge_label, node_kernels, | |||
def wrapper_ssp_do(ds_attrs, node_label, edge_label, node_kernels, | |||
edge_kernels, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, structuralspkernel_do(G_gs[i], G_gs[j], G_spl[i], G_spl[j], | |||
ds_attrs, node_label, edge_label, | |||
return i, j, structuralspkernel_do(G_gs[i], G_gs[j], G_spl[i], G_spl[j], | |||
ds_attrs, node_label, edge_label, | |||
node_kernels, edge_kernels) | |||
def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | |||
node_kernels, edge_kernels): | |||
# # traverse all paths in graph1. Deep-first search is applied. | |||
# def traverseBothTrie(root, trie2, kernel, pcurrent=[]): | |||
# for key, node in root['children'].items(): | |||
# pcurrent.append(key) | |||
# if node['isEndOfWord']: | |||
# # print(node['count']) | |||
# traverseTrie2(trie2.root, pcurrent, kernel, | |||
# traverseTrie2(trie2.root, pcurrent, kernel, | |||
# pcurrent=[]) | |||
# if node['children'] != {}: | |||
# traverseBothTrie(node, trie2, kernel, pcurrent) | |||
@@ -399,14 +399,14 @@ def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | |||
# del pcurrent[-1] | |||
# if pcurrent != []: | |||
# del pcurrent[-1] | |||
# | |||
# | |||
# # traverse all paths in graph2 and find out those that are not in | |||
# # graph1. Deep-first search is applied. | |||
# | |||
# | |||
# # traverse all paths in graph2 and find out those that are not in | |||
# # graph1. Deep-first search is applied. | |||
# def traverseTrie2(root, p1, kernel, pcurrent=[]): | |||
# for key, node in root['children'].items(): | |||
# pcurrent.append(key) | |||
# if node['isEndOfWord']: | |||
# if node['isEndOfWord']: | |||
# # print(node['count']) | |||
# kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict) | |||
# if node['children'] != {}: | |||
@@ -415,8 +415,8 @@ def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | |||
# del pcurrent[-1] | |||
# if pcurrent != []: | |||
# del pcurrent[-1] | |||
# | |||
# | |||
# | |||
# | |||
# kernel = [0] | |||
# | |||
# # First, compute shortest path matrices, method borrowed from FCSP. | |||
@@ -437,7 +437,7 @@ def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | |||
# pcurrent.append(key) | |||
# if node['isEndOfWord']: | |||
# # print(node['count']) | |||
# traverseTrie2(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||
# traverseTrie2(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||
# pcurrent=[]) | |||
# if node['children'] != {}: | |||
# traverseBothTrie(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | |||
@@ -445,14 +445,14 @@ def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | |||
# del pcurrent[-1] | |||
# if pcurrent != []: | |||
# del pcurrent[-1] | |||
# | |||
# | |||
# # traverse all paths in graph2 and find out those that are not in | |||
# # graph1. Deep-first search is applied. | |||
# | |||
# | |||
# # traverse all paths in graph2 and find out those that are not in | |||
# # graph1. Deep-first search is applied. | |||
# def traverseTrie2(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
# for key, node in root['children'].items(): | |||
# pcurrent.append(key) | |||
# if node['isEndOfWord']: | |||
# if node['isEndOfWord']: | |||
# # print(node['count']) | |||
# kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict) | |||
# if node['children'] != {}: | |||
@@ -461,8 +461,8 @@ def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | |||
# del pcurrent[-1] | |||
# if pcurrent != []: | |||
# del pcurrent[-1] | |||
kernel = [0] | |||
# First, compute shortest path matrices, method borrowed from FCSP. | |||
@@ -483,20 +483,20 @@ def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | |||
if ek_dict: | |||
traverseBothTriee(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict) | |||
else: | |||
traverseBothTrieu(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict) | |||
traverseBothTrieu(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict) | |||
kernel = kernel[0] / (trie1[1] * trie2[1]) # Compute mean average | |||
return kernel | |||
def wrapper_ssp_do_trie(ds_attrs, node_label, edge_label, node_kernels, | |||
def wrapper_ssp_do_trie(ds_attrs, node_label, edge_label, node_kernels, | |||
edge_kernels, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, ssp_do_trie(G_gs[i], G_gs[j], G_spl[i], G_spl[j], ds_attrs, | |||
return i, j, ssp_do_trie(G_gs[i], G_gs[j], G_spl[i], G_spl[j], ds_attrs, | |||
node_label, edge_label, node_kernels, edge_kernels) | |||
def getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs): | |||
# compute shortest path matrices, method borrowed from FCSP. | |||
@@ -528,7 +528,7 @@ def getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs): | |||
# node unlabeled | |||
else: | |||
pass | |||
return vk_dict | |||
@@ -573,17 +573,17 @@ def getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs): | |||
# edge unlabeled | |||
else: | |||
pass | |||
return ek_dict | |||
return ek_dict | |||
# traverse all paths in graph1. Deep-first search is applied. | |||
def traverseBothTriem(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
for key, node in root['children'].items(): | |||
pcurrent.append(key) | |||
if node['isEndOfWord']: | |||
# print(node['count']) | |||
traverseTrie2m(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||
traverseTrie2m(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||
pcurrent=[]) | |||
if node['children'] != {}: | |||
traverseBothTriem(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | |||
@@ -591,14 +591,14 @@ def traverseBothTriem(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
del pcurrent[-1] | |||
if pcurrent != []: | |||
del pcurrent[-1] | |||
# traverse all paths in graph2 and find out those that are not in | |||
# graph1. Deep-first search is applied. | |||
# traverse all paths in graph2 and find out those that are not in | |||
# graph1. Deep-first search is applied. | |||
def traverseTrie2m(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
for key, node in root['children'].items(): | |||
pcurrent.append(key) | |||
if node['isEndOfWord']: | |||
if node['isEndOfWord']: | |||
# print(node['count']) | |||
if len(p1) == len(pcurrent): | |||
kpath = vk_dict[(p1[0], pcurrent[0])] | |||
@@ -616,7 +616,7 @@ def traverseTrie2m(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
del pcurrent[-1] | |||
if pcurrent != []: | |||
del pcurrent[-1] | |||
# traverse all paths in graph1. Deep-first search is applied. | |||
def traverseBothTriev(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
@@ -624,7 +624,7 @@ def traverseBothTriev(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
pcurrent.append(key) | |||
if node['isEndOfWord']: | |||
# print(node['count']) | |||
traverseTrie2v(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||
traverseTrie2v(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||
pcurrent=[]) | |||
if node['children'] != {}: | |||
traverseBothTriev(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | |||
@@ -632,14 +632,14 @@ def traverseBothTriev(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
del pcurrent[-1] | |||
if pcurrent != []: | |||
del pcurrent[-1] | |||
# traverse all paths in graph2 and find out those that are not in | |||
# graph1. Deep-first search is applied. | |||
# traverse all paths in graph2 and find out those that are not in | |||
# graph1. Deep-first search is applied. | |||
def traverseTrie2v(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
for key, node in root['children'].items(): | |||
pcurrent.append(key) | |||
if node['isEndOfWord']: | |||
if node['isEndOfWord']: | |||
# print(node['count']) | |||
if len(p1) == len(pcurrent): | |||
kpath = vk_dict[(p1[0], pcurrent[0])] | |||
@@ -655,15 +655,15 @@ def traverseTrie2v(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
del pcurrent[-1] | |||
if pcurrent != []: | |||
del pcurrent[-1] | |||
# traverse all paths in graph1. Deep-first search is applied. | |||
def traverseBothTriee(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
for key, node in root['children'].items(): | |||
pcurrent.append(key) | |||
if node['isEndOfWord']: | |||
# print(node['count']) | |||
traverseTrie2e(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||
traverseTrie2e(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||
pcurrent=[]) | |||
if node['children'] != {}: | |||
traverseBothTriee(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | |||
@@ -671,14 +671,14 @@ def traverseBothTriee(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
del pcurrent[-1] | |||
if pcurrent != []: | |||
del pcurrent[-1] | |||
# traverse all paths in graph2 and find out those that are not in | |||
# graph1. Deep-first search is applied. | |||
# traverse all paths in graph2 and find out those that are not in | |||
# graph1. Deep-first search is applied. | |||
def traverseTrie2e(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
for key, node in root['children'].items(): | |||
pcurrent.append(key) | |||
if node['isEndOfWord']: | |||
if node['isEndOfWord']: | |||
# print(node['count']) | |||
if len(p1) == len(pcurrent): | |||
if len(p1) == 0: | |||
@@ -697,15 +697,15 @@ def traverseTrie2e(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
del pcurrent[-1] | |||
if pcurrent != []: | |||
del pcurrent[-1] | |||
# traverse all paths in graph1. Deep-first search is applied. | |||
def traverseBothTrieu(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
for key, node in root['children'].items(): | |||
pcurrent.append(key) | |||
if node['isEndOfWord']: | |||
# print(node['count']) | |||
traverseTrie2u(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||
traverseTrie2u(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||
pcurrent=[]) | |||
if node['children'] != {}: | |||
traverseBothTrieu(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | |||
@@ -713,14 +713,14 @@ def traverseBothTrieu(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
del pcurrent[-1] | |||
if pcurrent != []: | |||
del pcurrent[-1] | |||
# traverse all paths in graph2 and find out those that are not in | |||
# graph1. Deep-first search is applied. | |||
# traverse all paths in graph2 and find out those that are not in | |||
# graph1. Deep-first search is applied. | |||
def traverseTrie2u(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
for key, node in root['children'].items(): | |||
pcurrent.append(key) | |||
if node['isEndOfWord']: | |||
if node['isEndOfWord']: | |||
# print(node['count']) | |||
if len(p1) == len(pcurrent): | |||
kernel[0] += 1 | |||
@@ -730,8 +730,8 @@ def traverseTrie2u(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
del pcurrent[-1] | |||
if pcurrent != []: | |||
del pcurrent[-1] | |||
#def computePathKernel(p1, p2, vk_dict, ek_dict): | |||
# kernel = 0 | |||
# if vk_dict: | |||
@@ -771,7 +771,7 @@ def traverseTrie2u(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||
# else: | |||
# if len(p1) == len(p2): | |||
# kernel += 1 | |||
# | |||
# | |||
# return kernel | |||
@@ -804,7 +804,7 @@ def get_shortest_paths(G, weight, directed): | |||
# each edge walk is counted twice, starting from both its extreme nodes. | |||
if not directed: | |||
sp += [sptemp[::-1] for sptemp in spltemp] | |||
# add single nodes as length 0 paths. | |||
sp += [[n] for n in G.nodes()] | |||
return sp | |||
@@ -849,7 +849,7 @@ def get_sps_as_trie(G, weight, directed): | |||
# each edge walk is counted twice, starting from both its extreme nodes. | |||
if not directed: | |||
sptrie.insertWord(sp[::-1]) | |||
# add single nodes as length 0 paths. | |||
for n in G.nodes(): | |||
sptrie.insertWord([n]) | |||
@@ -3,13 +3,14 @@ | |||
import pytest | |||
import multiprocessing | |||
import numpy as np | |||
def chooseDataset(ds_name): | |||
"""Choose dataset according to name. | |||
""" | |||
from gklearn.utils import Dataset | |||
dataset = Dataset() | |||
# no node labels (and no edge labels). | |||
@@ -18,6 +19,7 @@ def chooseDataset(ds_name): | |||
dataset.trim_dataset(edge_required=False) | |||
irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} | |||
dataset.remove_labels(**irrelevant_labels) | |||
dataset.cut_graphs(range(1, 10)) | |||
# node symbolic labels. | |||
elif ds_name == 'Acyclic': | |||
dataset.load_predefined_dataset(ds_name) | |||
@@ -46,9 +48,9 @@ def chooseDataset(ds_name): | |||
elif ds_name == 'Cuneiform': | |||
dataset.load_predefined_dataset(ds_name) | |||
dataset.trim_dataset(edge_required=True) | |||
dataset.cut_graphs(range(0, 3)) | |||
return dataset | |||
@@ -57,7 +59,7 @@ def test_list_graph_kernels(): | |||
""" | |||
from gklearn.kernels import GRAPH_KERNELS, list_of_graph_kernels | |||
assert list_of_graph_kernels() == [i for i in GRAPH_KERNELS] | |||
@pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||
@@ -68,10 +70,10 @@ def test_CommonWalk(ds_name, parallel, weight, compute_method): | |||
""" | |||
from gklearn.kernels import CommonWalk | |||
import networkx as nx | |||
dataset = chooseDataset(ds_name) | |||
dataset.load_graphs([g for g in dataset.graphs if nx.number_of_nodes(g) > 1]) | |||
try: | |||
graph_kernel = CommonWalk(node_labels=dataset.node_labels, | |||
edge_labels=dataset.edge_labels, | |||
@@ -87,8 +89,8 @@ def test_CommonWalk(ds_name, parallel, weight, compute_method): | |||
except Exception as exception: | |||
assert False, exception | |||
@pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||
@pytest.mark.parametrize('remove_totters', [False]) #[True, False]) | |||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
@@ -96,9 +98,9 @@ def test_Marginalized(ds_name, parallel, remove_totters): | |||
"""Test marginalized kernel. | |||
""" | |||
from gklearn.kernels import Marginalized | |||
dataset = chooseDataset(ds_name) | |||
try: | |||
graph_kernel = Marginalized(node_labels=dataset.node_labels, | |||
edge_labels=dataset.edge_labels, | |||
@@ -115,15 +117,15 @@ def test_Marginalized(ds_name, parallel, remove_totters): | |||
except Exception as exception: | |||
assert False, exception | |||
@pytest.mark.parametrize('ds_name', ['Acyclic']) | |||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
def test_SylvesterEquation(ds_name, parallel): | |||
"""Test sylvester equation kernel. | |||
""" | |||
from gklearn.kernels import SylvesterEquation | |||
dataset = chooseDataset(ds_name) | |||
try: | |||
@@ -139,11 +141,11 @@ def test_SylvesterEquation(ds_name, parallel): | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
except Exception as exception: | |||
assert False, exception | |||
@pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | |||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
def test_ConjugateGradient(ds_name, parallel): | |||
@@ -152,9 +154,9 @@ def test_ConjugateGradient(ds_name, parallel): | |||
from gklearn.kernels import ConjugateGradient | |||
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
import functools | |||
dataset = chooseDataset(ds_name) | |||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
@@ -177,11 +179,11 @@ def test_ConjugateGradient(ds_name, parallel): | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
except Exception as exception: | |||
assert False, exception | |||
@pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | |||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
def test_FixedPoint(ds_name, parallel): | |||
@@ -190,9 +192,9 @@ def test_FixedPoint(ds_name, parallel): | |||
from gklearn.kernels import FixedPoint | |||
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
import functools | |||
dataset = chooseDataset(ds_name) | |||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
@@ -215,11 +217,11 @@ def test_FixedPoint(ds_name, parallel): | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
except Exception as exception: | |||
assert False, exception | |||
@pytest.mark.parametrize('ds_name', ['Acyclic']) | |||
@pytest.mark.parametrize('sub_kernel', ['exp', 'geo']) | |||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
@@ -227,7 +229,7 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||
"""Test spectral decomposition kernel. | |||
""" | |||
from gklearn.kernels import SpectralDecomposition | |||
dataset = chooseDataset(ds_name) | |||
try: | |||
@@ -244,11 +246,11 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
except Exception as exception: | |||
assert False, exception | |||
# @pytest.mark.parametrize( | |||
# 'compute_method,ds_name,sub_kernel', | |||
# [ | |||
@@ -268,7 +270,7 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||
# from gklearn.kernels import RandomWalk | |||
# from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
# import functools | |||
# | |||
# | |||
# dataset = chooseDataset(ds_name) | |||
# mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
@@ -297,7 +299,7 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||
# except Exception as exception: | |||
# assert False, exception | |||
@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | |||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
def test_ShortestPath(ds_name, parallel): | |||
@@ -306,17 +308,30 @@ def test_ShortestPath(ds_name, parallel): | |||
from gklearn.kernels import ShortestPath | |||
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
import functools | |||
dataset = chooseDataset(ds_name) | |||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
try: | |||
graph_kernel = ShortestPath(node_labels=dataset.node_labels, | |||
node_attrs=dataset.node_attrs, | |||
ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
fcsp=True, | |||
node_kernels=sub_kernels) | |||
gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
gram_matrix1, run_time = graph_kernel.compute(dataset.graphs, | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
graph_kernel = ShortestPath(node_labels=dataset.node_labels, | |||
node_attrs=dataset.node_attrs, | |||
ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
fcsp=False, | |||
node_kernels=sub_kernels) | |||
gram_matrix2, run_time = graph_kernel.compute(dataset.graphs, | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
@@ -326,6 +341,8 @@ def test_ShortestPath(ds_name, parallel): | |||
except Exception as exception: | |||
assert False, exception | |||
assert np.array_equal(gram_matrix1, gram_matrix2) | |||
#@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | |||
@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint', 'Fingerprint_edge', 'Cuneiform']) | |||
@@ -336,29 +353,47 @@ def test_StructuralSP(ds_name, parallel): | |||
from gklearn.kernels import StructuralSP | |||
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
import functools | |||
dataset = chooseDataset(ds_name) | |||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
try: | |||
graph_kernel = StructuralSP(node_labels=dataset.node_labels, | |||
edge_labels=dataset.edge_labels, | |||
edge_labels=dataset.edge_labels, | |||
node_attrs=dataset.node_attrs, | |||
edge_attrs=dataset.edge_attrs, | |||
ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
fcsp=True, | |||
node_kernels=sub_kernels, | |||
edge_kernels=sub_kernels) | |||
gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
gram_matrix1, run_time = graph_kernel.compute(dataset.graphs, | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True, normalize=False) | |||
kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
graph_kernel = StructuralSP(node_labels=dataset.node_labels, | |||
edge_labels=dataset.edge_labels, | |||
node_attrs=dataset.node_attrs, | |||
edge_attrs=dataset.edge_attrs, | |||
ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
fcsp=False, | |||
node_kernels=sub_kernels, | |||
edge_kernels=sub_kernels) | |||
gram_matrix2, run_time = graph_kernel.compute(dataset.graphs, | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True, normalize=False) | |||
kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
except Exception as exception: | |||
assert False, exception | |||
assert np.array_equal(gram_matrix1, gram_matrix2) | |||
@pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
@@ -369,9 +404,9 @@ def test_PathUpToH(ds_name, parallel, k_func, compute_method): | |||
"""Test path kernel up to length $h$. | |||
""" | |||
from gklearn.kernels import PathUpToH | |||
dataset = chooseDataset(ds_name) | |||
try: | |||
graph_kernel = PathUpToH(node_labels=dataset.node_labels, | |||
edge_labels=dataset.edge_labels, | |||
@@ -385,8 +420,8 @@ def test_PathUpToH(ds_name, parallel, k_func, compute_method): | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
except Exception as exception: | |||
assert False, exception | |||
@pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
def test_Treelet(ds_name, parallel): | |||
@@ -395,10 +430,10 @@ def test_Treelet(ds_name, parallel): | |||
from gklearn.kernels import Treelet | |||
from gklearn.utils.kernels import polynomialkernel | |||
import functools | |||
dataset = chooseDataset(ds_name) | |||
pkernel = functools.partial(polynomialkernel, d=2, c=1e5) | |||
pkernel = functools.partial(polynomialkernel, d=2, c=1e5) | |||
try: | |||
graph_kernel = Treelet(node_labels=dataset.node_labels, | |||
edge_labels=dataset.edge_labels, | |||
@@ -412,8 +447,8 @@ def test_Treelet(ds_name, parallel): | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
except Exception as exception: | |||
assert False, exception | |||
@pytest.mark.parametrize('ds_name', ['Acyclic']) | |||
#@pytest.mark.parametrize('base_kernel', ['subtree', 'sp', 'edge']) | |||
# @pytest.mark.parametrize('base_kernel', ['subtree']) | |||
@@ -422,7 +457,7 @@ def test_WLSubtree(ds_name, parallel): | |||
"""Test Weisfeiler-Lehman subtree kernel. | |||
""" | |||
from gklearn.kernels import WLSubtree | |||
dataset = chooseDataset(ds_name) | |||
try: | |||
@@ -438,12 +473,15 @@ def test_WLSubtree(ds_name, parallel): | |||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
except Exception as exception: | |||
assert False, exception | |||
if __name__ == "__main__": | |||
test_list_graph_kernels() | |||
# test_spkernel('Alkane', 'imap_unordered') | |||
# test_ShortestPath('Alkane', 'imap_unordered') | |||
# test_StructuralSP('Fingerprint_edge', 'imap_unordered') | |||
# test_StructuralSP('Alkane', None) | |||
# test_StructuralSP('Cuneiform', None) | |||
# test_WLSubtree('Acyclic', 'imap_unordered') | |||
# test_RandomWalk('Acyclic', 'sylvester', None, 'imap_unordered') | |||
# test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered') | |||