@@ -74,6 +74,8 @@ class DataFetcher(): | |||||
message = 'Invalid Dataset name "' + self._name + '".' | message = 'Invalid Dataset name "' + self._name + '".' | ||||
message += '\nAvailable datasets are as follows: \n\n' | message += '\nAvailable datasets are as follows: \n\n' | ||||
message += '\n'.join(ds for ds in sorted(DATASET_META)) | message += '\n'.join(ds for ds in sorted(DATASET_META)) | ||||
message += '\n\nFollowing special suffices can be added to the name:' | |||||
message += '\n\n' + '\n'.join(['_unlabeled']) | |||||
raise ValueError(message) | raise ValueError(message) | ||||
else: | else: | ||||
self.write_archive_file(self._name) | self.write_archive_file(self._name) | ||||
@@ -127,9 +129,9 @@ class DataFetcher(): | |||||
def write_archive_file(self, ds_name): | def write_archive_file(self, ds_name): | ||||
path = osp.join(self._root, ds_name) | path = osp.join(self._root, ds_name) | ||||
url = DATASET_META[ds_name]['url'] | |||||
# filename_dir = osp.join(path,filename) | # filename_dir = osp.join(path,filename) | ||||
if not osp.exists(path) or self._reload: | if not osp.exists(path) or self._reload: | ||||
url = DATASET_META[ds_name]['url'] | |||||
response = self.download_file(url) | response = self.download_file(url) | ||||
if response is None: | if response is None: | ||||
return False | return False | ||||
@@ -152,7 +154,7 @@ class DataFetcher(): | |||||
with tarfile.open(filename_archive, 'r:gz') as tar: | with tarfile.open(filename_archive, 'r:gz') as tar: | ||||
if self._reload and self._verbose: | if self._reload and self._verbose: | ||||
print(filename + ' Downloaded.') | print(filename + ' Downloaded.') | ||||
subpath = os.path.join(path, tar.getnames()[0]) | |||||
subpath = os.path.join(path, tar.getnames()[0].split('/')[0]) | |||||
if not osp.exists(subpath) or self._reload: | if not osp.exists(subpath) or self._reload: | ||||
tar.extractall(path = path) | tar.extractall(path = path) | ||||
return subpath | return subpath | ||||
@@ -7,24 +7,14 @@ Created on Thu Mar 26 18:48:27 2020 | |||||
""" | """ | ||||
import numpy as np | import numpy as np | ||||
import networkx as nx | import networkx as nx | ||||
from gklearn.utils.graph_files import load_dataset | |||||
import os | import os | ||||
from gklearn.dataset import DATASET_META, DataFetcher, DataLoader | |||||
class Dataset(object): | class Dataset(object): | ||||
def __init__(self, filename=None, filename_targets=None, **kwargs): | |||||
if filename is None: | |||||
self._graphs = None | |||||
self._targets = None | |||||
self._node_labels = None | |||||
self._edge_labels = None | |||||
self._node_attrs = None | |||||
self._edge_attrs = None | |||||
else: | |||||
self.load_dataset(filename, filename_targets=filename_targets, **kwargs) | |||||
def __init__(self, inputs=None, root='datasets', filename_targets=None, targets=None, mode='networkx', clean_labels=True, reload=False, verbose=False, **kwargs): | |||||
self._substructures = None | self._substructures = None | ||||
self._node_label_dim = None | self._node_label_dim = None | ||||
self._edge_label_dim = None | self._edge_label_dim = None | ||||
@@ -49,15 +39,61 @@ class Dataset(object): | |||||
self._node_attr_dim = None | self._node_attr_dim = None | ||||
self._edge_attr_dim = None | self._edge_attr_dim = None | ||||
self._class_number = None | self._class_number = None | ||||
self._ds_name = None | |||||
if inputs is None: | |||||
self._graphs = None | |||||
self._targets = None | |||||
self._node_labels = None | |||||
self._edge_labels = None | |||||
self._node_attrs = None | |||||
self._edge_attrs = None | |||||
# If inputs is a list of graphs. | |||||
elif isinstance(inputs, list): | |||||
node_labels = kwargs.get('node_labels', None) | |||||
node_attrs = kwargs.get('node_attrs', None) | |||||
edge_labels = kwargs.get('edge_labels', None) | |||||
edge_attrs = kwargs.get('edge_attrs', None) | |||||
self.load_graphs(inputs, targets=targets) | |||||
self.set_labels(node_labels=node_labels, node_attrs=node_attrs, edge_labels=edge_labels, edge_attrs=edge_attrs) | |||||
if clean_labels: | |||||
self.clean_labels() | |||||
elif isinstance(inputs, str): | |||||
# If inputs is predefined dataset name. | |||||
if inputs in DATASET_META: | |||||
self.load_predefined_dataset(inputs, root=root, clean_labels=clean_labels, reload=reload, verbose=verbose) | |||||
self._ds_name = inputs | |||||
elif inputs.endswith('_unlabeled'): | |||||
self.load_predefined_dataset(inputs[:len(inputs) - 10], root=root, clean_labels=clean_labels, reload=reload, verbose=verbose) | |||||
self._ds_name = inputs | |||||
# Deal with special suffices. | |||||
self.check_special_suffices() | |||||
# If inputs is a file name. | |||||
elif os.path.isfile(inputs): | |||||
self.load_dataset(inputs, filename_targets=filename_targets, clean_labels=clean_labels, **kwargs) | |||||
# If inputs is a file name. | |||||
else: | |||||
raise ValueError('The "inputs" argument "' + inputs + '" is not a valid dataset name or file name.') | |||||
else: | |||||
raise TypeError('The "inputs" argument cannot be recognized. "Inputs" can be a list of graphs, a predefined dataset name, or a file name of a dataset.') | |||||
def load_dataset(self, filename, filename_targets=None, **kwargs): | |||||
self._graphs, self._targets, label_names = load_dataset(filename, filename_targets=filename_targets, **kwargs) | |||||
def load_dataset(self, filename, filename_targets=None, clean_labels=True, **kwargs): | |||||
self._graphs, self._targets, label_names = DataLoader(filename, filename_targets=filename_targets, **kwargs).data | |||||
self._node_labels = label_names['node_labels'] | self._node_labels = label_names['node_labels'] | ||||
self._node_attrs = label_names['node_attrs'] | self._node_attrs = label_names['node_attrs'] | ||||
self._edge_labels = label_names['edge_labels'] | self._edge_labels = label_names['edge_labels'] | ||||
self._edge_attrs = label_names['edge_attrs'] | self._edge_attrs = label_names['edge_attrs'] | ||||
self.clean_labels() | |||||
if clean_labels: | |||||
self.clean_labels() | |||||
def load_graphs(self, graphs, targets=None): | def load_graphs(self, graphs, targets=None): | ||||
@@ -67,84 +103,33 @@ class Dataset(object): | |||||
# self.set_labels_attrs() # @todo | # self.set_labels_attrs() # @todo | ||||
def load_predefined_dataset(self, ds_name): | |||||
current_path = os.path.dirname(os.path.realpath(__file__)) + '/' | |||||
if ds_name == 'Acyclic': | |||||
ds_file = current_path + '../../datasets/Acyclic/dataset_bps.ds' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'AIDS': | |||||
ds_file = current_path + '../../datasets/AIDS/AIDS_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Alkane': | |||||
ds_file = current_path + '../../datasets/Alkane/dataset.ds' | |||||
fn_targets = current_path + '../../datasets/Alkane/dataset_boiling_point_names.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file, filename_targets=fn_targets) | |||||
elif ds_name == 'COIL-DEL': | |||||
ds_file = current_path + '../../datasets/COIL-DEL/COIL-DEL_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'COIL-RAG': | |||||
ds_file = current_path + '../../datasets/COIL-RAG/COIL-RAG_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'COLORS-3': | |||||
ds_file = current_path + '../../datasets/COLORS-3/COLORS-3_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Cuneiform': | |||||
ds_file = current_path + '../../datasets/Cuneiform/Cuneiform_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'DD': | |||||
ds_file = current_path + '../../datasets/DD/DD_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'ENZYMES': | |||||
ds_file = current_path + '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Fingerprint': | |||||
ds_file = current_path + '../../datasets/Fingerprint/Fingerprint_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'FRANKENSTEIN': | |||||
ds_file = current_path + '../../datasets/FRANKENSTEIN/FRANKENSTEIN_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Letter-high': # node non-symb | |||||
ds_file = current_path + '../../datasets/Letter-high/Letter-high_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Letter-low': # node non-symb | |||||
ds_file = current_path + '../../datasets/Letter-low/Letter-low_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Letter-med': # node non-symb | |||||
ds_file = current_path + '../../datasets/Letter-med/Letter-med_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'MAO': | |||||
ds_file = current_path + '../../datasets/MAO/dataset.ds' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Monoterpenoides': | |||||
ds_file = current_path + '../../datasets/Monoterpenoides/dataset_10+.ds' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'MUTAG': | |||||
ds_file = current_path + '../../datasets/MUTAG/MUTAG_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'NCI1': | |||||
ds_file = current_path + '../../datasets/NCI1/NCI1_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'NCI109': | |||||
ds_file = current_path + '../../datasets/NCI109/NCI109_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'PAH': | |||||
ds_file = current_path + '../../datasets/PAH/dataset.ds' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'SYNTHETIC': | |||||
pass | |||||
elif ds_name == 'SYNTHETICnew': | |||||
ds_file = current_path + '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt' | |||||
self._graphs, self._targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Synthie': | |||||
pass | |||||
def load_predefined_dataset(self, ds_name, root='datasets', clean_labels=True, reload=False, verbose=False): | |||||
path = DataFetcher(name=ds_name, root=root, reload=reload, verbose=verbose).path | |||||
if DATASET_META[ds_name]['database'] == 'tudataset': | |||||
ds_file = os.path.join(path, ds_name + '_A.txt') | |||||
fn_targets = None | |||||
else: | else: | ||||
raise Exception('The dataset name "', ds_name, '" is not pre-defined.') | |||||
load_files = DATASET_META[ds_name]['load_files'] | |||||
if isinstance(load_files[0], str): | |||||
ds_file = os.path.join(path, load_files[0]) | |||||
else: # load_files[0] is a list of files. | |||||
ds_file = [os.path.join(path, fn) for fn in load_files[0]] | |||||
fn_targets = os.path.join(path, load_files[1]) if len(load_files) == 2 else None | |||||
self._graphs, self._targets, label_names = DataLoader(ds_file, filename_targets=fn_targets).data | |||||
self._node_labels = label_names['node_labels'] | self._node_labels = label_names['node_labels'] | ||||
self._node_attrs = label_names['node_attrs'] | self._node_attrs = label_names['node_attrs'] | ||||
self._edge_labels = label_names['edge_labels'] | self._edge_labels = label_names['edge_labels'] | ||||
self._edge_attrs = label_names['edge_attrs'] | self._edge_attrs = label_names['edge_attrs'] | ||||
self.clean_labels() | |||||
if clean_labels: | |||||
self.clean_labels() | |||||
# Deal with specific datasets. | |||||
if ds_name == 'Alkane': | |||||
self.trim_dataset(edge_required=True) | |||||
self.remove_labels(node_labels=['atom_symbol']) | |||||
def set_labels(self, node_labels=[], node_attrs=[], edge_labels=[], edge_attrs=[]): | def set_labels(self, node_labels=[], node_attrs=[], edge_labels=[], edge_attrs=[]): | ||||
@@ -573,6 +558,14 @@ class Dataset(object): | |||||
return dataset | return dataset | ||||
def check_special_suffices(self): | |||||
if self._ds_name.endswith('_unlabeled'): | |||||
self.remove_labels(node_labels=self._node_labels, | |||||
edge_labels=self._edge_labels, | |||||
node_attrs=self._node_attrs, | |||||
edge_attrs=self._edge_attrs) | |||||
def get_all_node_labels(self): | def get_all_node_labels(self): | ||||
node_labels = [] | node_labels = [] | ||||
for g in self._graphs: | for g in self._graphs: | ||||
@@ -38,7 +38,11 @@ class DataLoader(): | |||||
for details. Note here filename is the name of either .txt file in | for details. Note here filename is the name of either .txt file in | ||||
the dataset directory. | the dataset directory. | ||||
""" | """ | ||||
extension = splitext(filename)[1][1:] | |||||
if isinstance(filename, str): | |||||
extension = splitext(filename)[1][1:] | |||||
else: # filename is a list of files. | |||||
extension = splitext(filename[0])[1][1:] | |||||
if extension == "ds": | if extension == "ds": | ||||
self._graphs, self._targets, self._label_names = self.load_from_ds(filename, filename_targets) | self._graphs, self._targets, self._label_names = self.load_from_ds(filename, filename_targets) | ||||
elif extension == "cxl": | elif extension == "cxl": | ||||
@@ -67,13 +71,24 @@ class DataLoader(): | |||||
Note these graph formats are checked automatically by the extensions of | Note these graph formats are checked automatically by the extensions of | ||||
graph files. | graph files. | ||||
""" | |||||
dirname_dataset = dirname(filename) | |||||
""" | |||||
if isinstance(filename, str): | |||||
dirname_dataset = dirname(filename) | |||||
with open(filename) as f: | |||||
content = f.read().splitlines() | |||||
else: # filename is a list of files. | |||||
dirname_dataset = dirname(filename[0]) | |||||
content = [] | |||||
for fn in filename: | |||||
with open(fn) as f: | |||||
content += f.read().splitlines() | |||||
# to remove duplicate file names. | |||||
data = [] | data = [] | ||||
y = [] | y = [] | ||||
label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []} | label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []} | ||||
with open(filename) as fn: | |||||
content = fn.read().splitlines() | |||||
content = [line for line in content if not line.endswith('.ds')] # Alkane | |||||
content = [line for line in content if not line.startswith('#')] # Acyclic | |||||
extension = splitext(content[0].split(' ')[0])[1][1:] | extension = splitext(content[0].split(' ')[0])[1][1:] | ||||
if extension == 'ct': | if extension == 'ct': | ||||
load_file_fun = self.load_ct | load_file_fun = self.load_ct | ||||
@@ -32,7 +32,7 @@ GREYC_META = { | |||||
'domain': 'small molecules', | 'domain': 'small molecules', | ||||
'train_valid_test': [], | 'train_valid_test': [], | ||||
'stereoisomerism': True, | 'stereoisomerism': True, | ||||
'load_files': [], | |||||
'load_files': ['data.ds'], | |||||
}, | }, | ||||
'Acyclic': { | 'Acyclic': { | ||||
'database': 'greyc', | 'database': 'greyc', | ||||
@@ -165,7 +165,7 @@ GREYC_META = { | |||||
'domain': 'small molecules', | 'domain': 'small molecules', | ||||
'train_valid_test': ['trainset_0.ds', None, 'testset_0.ds'], | 'train_valid_test': ['trainset_0.ds', None, 'testset_0.ds'], | ||||
'stereoisomerism': False, | 'stereoisomerism': False, | ||||
'load_files': [], | |||||
'load_files': [['trainset_0.ds', 'testset_0.ds']], | |||||
}, | }, | ||||
'PTC': { | 'PTC': { | ||||
'database': 'greyc', | 'database': 'greyc', | ||||
@@ -654,7 +654,7 @@ TUDataset_META = { | |||||
'node_attr_dim': 0, | 'node_attr_dim': 0, | ||||
'geometry': None, | 'geometry': None, | ||||
'edge_attr_dim': 0, | 'edge_attr_dim': 0, | ||||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/NCI-H23.zip-H23', | |||||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/NCI-H23.zip', | |||||
'domain': 'small molecules', | 'domain': 'small molecules', | ||||
}, | }, | ||||
'NCI-H23H': { | 'NCI-H23H': { | ||||
@@ -670,7 +670,7 @@ TUDataset_META = { | |||||
'node_attr_dim': 0, | 'node_attr_dim': 0, | ||||
'geometry': None, | 'geometry': None, | ||||
'edge_attr_dim': 0, | 'edge_attr_dim': 0, | ||||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/NCI-H23H.zip-H23H', | |||||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/NCI-H23H.zip', | |||||
'domain': 'small molecules', | 'domain': 'small molecules', | ||||
}, | }, | ||||
'OVCAR-8': { | 'OVCAR-8': { | ||||
@@ -686,7 +686,7 @@ TUDataset_META = { | |||||
'node_attr_dim': 0, | 'node_attr_dim': 0, | ||||
'geometry': None, | 'geometry': None, | ||||
'edge_attr_dim': 0, | 'edge_attr_dim': 0, | ||||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/OVCAR-8.zip-8', | |||||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/OVCAR-8.zip', | |||||
'domain': 'small molecules', | 'domain': 'small molecules', | ||||
}, | }, | ||||
'OVCAR-8H': { | 'OVCAR-8H': { | ||||
@@ -702,7 +702,7 @@ TUDataset_META = { | |||||
'node_attr_dim': 0, | 'node_attr_dim': 0, | ||||
'geometry': None, | 'geometry': None, | ||||
'edge_attr_dim': 0, | 'edge_attr_dim': 0, | ||||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/OVCAR-8H.zip-8H', | |||||
'url': 'https://www.chrsmrrs.com/graphkerneldatasets/OVCAR-8H.zip', | |||||
'domain': 'small molecules', | 'domain': 'small molecules', | ||||
}, | }, | ||||
'P388': { | 'P388': { | ||||
@@ -9,10 +9,11 @@ import numpy as np | |||||
import networkx as nx | import networkx as nx | ||||
import multiprocessing | import multiprocessing | ||||
import time | import time | ||||
from gklearn.utils import normalize_gram_matrix | |||||
class GraphKernel(object): | class GraphKernel(object): | ||||
def __init__(self): | def __init__(self): | ||||
self._graphs = None | self._graphs = None | ||||
self._parallel = '' | self._parallel = '' | ||||
@@ -22,14 +23,14 @@ class GraphKernel(object): | |||||
self._run_time = 0 | self._run_time = 0 | ||||
self._gram_matrix = None | self._gram_matrix = None | ||||
self._gram_matrix_unnorm = None | self._gram_matrix_unnorm = None | ||||
def compute(self, *graphs, **kwargs): | def compute(self, *graphs, **kwargs): | ||||
self._parallel = kwargs.get('parallel', 'imap_unordered') | self._parallel = kwargs.get('parallel', 'imap_unordered') | ||||
self._n_jobs = kwargs.get('n_jobs', multiprocessing.cpu_count()) | self._n_jobs = kwargs.get('n_jobs', multiprocessing.cpu_count()) | ||||
self._normalize = kwargs.get('normalize', True) | self._normalize = kwargs.get('normalize', True) | ||||
self._verbose = kwargs.get('verbose', 2) | self._verbose = kwargs.get('verbose', 2) | ||||
if len(graphs) == 1: | if len(graphs) == 1: | ||||
if not isinstance(graphs[0], list): | if not isinstance(graphs[0], list): | ||||
raise Exception('Cannot detect graphs.') | raise Exception('Cannot detect graphs.') | ||||
@@ -40,9 +41,9 @@ class GraphKernel(object): | |||||
self._gram_matrix = self._compute_gram_matrix() | self._gram_matrix = self._compute_gram_matrix() | ||||
self._gram_matrix_unnorm = np.copy(self._gram_matrix) | self._gram_matrix_unnorm = np.copy(self._gram_matrix) | ||||
if self._normalize: | if self._normalize: | ||||
self._gram_matrix = self.normalize_gm(self._gram_matrix) | |||||
self._gram_matrix = normalize_gram_matrix(self._gram_matrix) | |||||
return self._gram_matrix, self._run_time | return self._gram_matrix, self._run_time | ||||
elif len(graphs) == 2: | elif len(graphs) == 2: | ||||
if self.is_graph(graphs[0]) and self.is_graph(graphs[1]): | if self.is_graph(graphs[0]) and self.is_graph(graphs[1]): | ||||
kernel = self._compute_single_kernel(graphs[0].copy(), graphs[1].copy()) | kernel = self._compute_single_kernel(graphs[0].copy(), graphs[1].copy()) | ||||
@@ -59,14 +60,14 @@ class GraphKernel(object): | |||||
return kernel_list, self._run_time | return kernel_list, self._run_time | ||||
else: | else: | ||||
raise Exception('Cannot detect graphs.') | raise Exception('Cannot detect graphs.') | ||||
elif len(graphs) == 0 and self._graphs is None: | elif len(graphs) == 0 and self._graphs is None: | ||||
raise Exception('Please add graphs before computing.') | raise Exception('Please add graphs before computing.') | ||||
else: | else: | ||||
raise Exception('Cannot detect graphs.') | raise Exception('Cannot detect graphs.') | ||||
def normalize_gm(self, gram_matrix): | def normalize_gm(self, gram_matrix): | ||||
import warnings | import warnings | ||||
warnings.warn('gklearn.kernels.graph_kernel.normalize_gm will be deprecated, use gklearn.utils.normalize_gram_matrix instead', DeprecationWarning) | warnings.warn('gklearn.kernels.graph_kernel.normalize_gm will be deprecated, use gklearn.utils.normalize_gram_matrix instead', DeprecationWarning) | ||||
@@ -77,8 +78,8 @@ class GraphKernel(object): | |||||
gram_matrix[i][j] /= np.sqrt(diag[i] * diag[j]) | gram_matrix[i][j] /= np.sqrt(diag[i] * diag[j]) | ||||
gram_matrix[j][i] = gram_matrix[i][j] | gram_matrix[j][i] = gram_matrix[i][j] | ||||
return gram_matrix | return gram_matrix | ||||
def compute_distance_matrix(self): | def compute_distance_matrix(self): | ||||
if self._gram_matrix is None: | if self._gram_matrix is None: | ||||
raise Exception('Please compute the Gram matrix before computing distance matrix.') | raise Exception('Please compute the Gram matrix before computing distance matrix.') | ||||
@@ -97,98 +98,98 @@ class GraphKernel(object): | |||||
dis_min = np.min(np.min(dis_mat[dis_mat != 0])) | dis_min = np.min(np.min(dis_mat[dis_mat != 0])) | ||||
dis_mean = np.mean(np.mean(dis_mat)) | dis_mean = np.mean(np.mean(dis_mat)) | ||||
return dis_mat, dis_max, dis_min, dis_mean | return dis_mat, dis_max, dis_min, dis_mean | ||||
def _compute_gram_matrix(self): | def _compute_gram_matrix(self): | ||||
start_time = time.time() | start_time = time.time() | ||||
if self._parallel == 'imap_unordered': | if self._parallel == 'imap_unordered': | ||||
gram_matrix = self._compute_gm_imap_unordered() | gram_matrix = self._compute_gm_imap_unordered() | ||||
elif self._parallel is None: | elif self._parallel is None: | ||||
gram_matrix = self._compute_gm_series() | gram_matrix = self._compute_gm_series() | ||||
else: | else: | ||||
raise Exception('Parallel mode is not set correctly.') | raise Exception('Parallel mode is not set correctly.') | ||||
self._run_time = time.time() - start_time | self._run_time = time.time() - start_time | ||||
if self._verbose: | if self._verbose: | ||||
print('Gram matrix of size %d built in %s seconds.' | print('Gram matrix of size %d built in %s seconds.' | ||||
% (len(self._graphs), self._run_time)) | % (len(self._graphs), self._run_time)) | ||||
return gram_matrix | return gram_matrix | ||||
def _compute_gm_series(self): | def _compute_gm_series(self): | ||||
pass | pass | ||||
def _compute_gm_imap_unordered(self): | def _compute_gm_imap_unordered(self): | ||||
pass | pass | ||||
def _compute_kernel_list(self, g1, g_list): | def _compute_kernel_list(self, g1, g_list): | ||||
start_time = time.time() | start_time = time.time() | ||||
if self._parallel == 'imap_unordered': | if self._parallel == 'imap_unordered': | ||||
kernel_list = self._compute_kernel_list_imap_unordered(g1, g_list) | kernel_list = self._compute_kernel_list_imap_unordered(g1, g_list) | ||||
elif self._parallel is None: | elif self._parallel is None: | ||||
kernel_list = self._compute_kernel_list_series(g1, g_list) | kernel_list = self._compute_kernel_list_series(g1, g_list) | ||||
else: | else: | ||||
raise Exception('Parallel mode is not set correctly.') | raise Exception('Parallel mode is not set correctly.') | ||||
self._run_time = time.time() - start_time | self._run_time = time.time() - start_time | ||||
if self._verbose: | if self._verbose: | ||||
print('Graph kernel bewteen a graph and a list of %d graphs built in %s seconds.' | print('Graph kernel bewteen a graph and a list of %d graphs built in %s seconds.' | ||||
% (len(g_list), self._run_time)) | % (len(g_list), self._run_time)) | ||||
return kernel_list | return kernel_list | ||||
def _compute_kernel_list_series(self, g1, g_list): | def _compute_kernel_list_series(self, g1, g_list): | ||||
pass | pass | ||||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | def _compute_kernel_list_imap_unordered(self, g1, g_list): | ||||
pass | pass | ||||
def _compute_single_kernel(self, g1, g2): | def _compute_single_kernel(self, g1, g2): | ||||
start_time = time.time() | start_time = time.time() | ||||
kernel = self._compute_single_kernel_series(g1, g2) | kernel = self._compute_single_kernel_series(g1, g2) | ||||
self._run_time = time.time() - start_time | self._run_time = time.time() - start_time | ||||
if self._verbose: | if self._verbose: | ||||
print('Graph kernel bewteen two graphs built in %s seconds.' % (self._run_time)) | print('Graph kernel bewteen two graphs built in %s seconds.' % (self._run_time)) | ||||
return kernel | return kernel | ||||
def _compute_single_kernel_series(self, g1, g2): | def _compute_single_kernel_series(self, g1, g2): | ||||
pass | pass | ||||
def is_graph(self, graph): | def is_graph(self, graph): | ||||
if isinstance(graph, nx.Graph): | if isinstance(graph, nx.Graph): | ||||
return True | return True | ||||
if isinstance(graph, nx.DiGraph): | if isinstance(graph, nx.DiGraph): | ||||
return True | |||||
return True | |||||
if isinstance(graph, nx.MultiGraph): | if isinstance(graph, nx.MultiGraph): | ||||
return True | |||||
return True | |||||
if isinstance(graph, nx.MultiDiGraph): | if isinstance(graph, nx.MultiDiGraph): | ||||
return True | |||||
return True | |||||
return False | return False | ||||
@property | @property | ||||
def graphs(self): | def graphs(self): | ||||
return self._graphs | return self._graphs | ||||
@property | @property | ||||
def parallel(self): | def parallel(self): | ||||
return self._parallel | return self._parallel | ||||
@property | @property | ||||
def n_jobs(self): | def n_jobs(self): | ||||
return self._n_jobs | return self._n_jobs | ||||
@@ -197,30 +198,30 @@ class GraphKernel(object): | |||||
@property | @property | ||||
def verbose(self): | def verbose(self): | ||||
return self._verbose | return self._verbose | ||||
@property | @property | ||||
def normalize(self): | def normalize(self): | ||||
return self._normalize | return self._normalize | ||||
@property | @property | ||||
def run_time(self): | def run_time(self): | ||||
return self._run_time | return self._run_time | ||||
@property | @property | ||||
def gram_matrix(self): | def gram_matrix(self): | ||||
return self._gram_matrix | return self._gram_matrix | ||||
@gram_matrix.setter | @gram_matrix.setter | ||||
def gram_matrix(self, value): | def gram_matrix(self, value): | ||||
self._gram_matrix = value | self._gram_matrix = value | ||||
@property | @property | ||||
def gram_matrix_unnorm(self): | def gram_matrix_unnorm(self): | ||||
return self._gram_matrix_unnorm | |||||
return self._gram_matrix_unnorm | |||||
@gram_matrix_unnorm.setter | @gram_matrix_unnorm.setter | ||||
def gram_matrix_unnorm(self, value): | def gram_matrix_unnorm(self, value): |
@@ -12,7 +12,7 @@ GRAPH_KERNELS = { | |||||
'common walk': '', | 'common walk': '', | ||||
'marginalized': '', | 'marginalized': '', | ||||
'sylvester equation': '', | 'sylvester equation': '', | ||||
'fixed_point': '', | |||||
'fixed point': '', | |||||
'conjugate gradient': '', | 'conjugate gradient': '', | ||||
'spectral decomposition': '', | 'spectral decomposition': '', | ||||
### based on paths. | ### based on paths. | ||||
@@ -5,9 +5,9 @@ Created on Tue Apr 7 15:24:58 2020 | |||||
@author: ljia | @author: ljia | ||||
@references: | |||||
[1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData | |||||
@references: | |||||
[1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData | |||||
Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE. | Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE. | ||||
""" | """ | ||||
@@ -17,33 +17,36 @@ from itertools import product | |||||
from multiprocessing import Pool | from multiprocessing import Pool | ||||
from tqdm import tqdm | from tqdm import tqdm | ||||
import numpy as np | import numpy as np | ||||
import networkx as nx | |||||
from gklearn.utils.parallel import parallel_gm, parallel_me | from gklearn.utils.parallel import parallel_gm, parallel_me | ||||
from gklearn.utils.utils import getSPGraph | from gklearn.utils.utils import getSPGraph | ||||
from gklearn.kernels import GraphKernel | from gklearn.kernels import GraphKernel | ||||
class ShortestPath(GraphKernel): | class ShortestPath(GraphKernel): | ||||
def __init__(self, **kwargs): | def __init__(self, **kwargs): | ||||
GraphKernel.__init__(self) | GraphKernel.__init__(self) | ||||
self._node_labels = kwargs.get('node_labels', []) | self._node_labels = kwargs.get('node_labels', []) | ||||
self._node_attrs = kwargs.get('node_attrs', []) | self._node_attrs = kwargs.get('node_attrs', []) | ||||
self._edge_weight = kwargs.get('edge_weight', None) | self._edge_weight = kwargs.get('edge_weight', None) | ||||
self._node_kernels = kwargs.get('node_kernels', None) | self._node_kernels = kwargs.get('node_kernels', None) | ||||
self._fcsp = kwargs.get('fcsp', True) | |||||
self._ds_infos = kwargs.get('ds_infos', {}) | self._ds_infos = kwargs.get('ds_infos', {}) | ||||
def _compute_gm_series(self): | def _compute_gm_series(self): | ||||
self._all_graphs_have_edges(self._graphs) | |||||
# get shortest path graph of each graph. | # get shortest path graph of each graph. | ||||
if self._verbose >= 2: | if self._verbose >= 2: | ||||
iterator = tqdm(self._graphs, desc='getting sp graphs', file=sys.stdout) | iterator = tqdm(self._graphs, desc='getting sp graphs', file=sys.stdout) | ||||
else: | else: | ||||
iterator = self._graphs | iterator = self._graphs | ||||
self._graphs = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | self._graphs = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | ||||
# compute Gram matrix. | # compute Gram matrix. | ||||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | ||||
from itertools import combinations_with_replacement | from itertools import combinations_with_replacement | ||||
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | ||||
if self._verbose >= 2: | if self._verbose >= 2: | ||||
@@ -54,11 +57,12 @@ class ShortestPath(GraphKernel): | |||||
kernel = self._sp_do(self._graphs[i], self._graphs[j]) | kernel = self._sp_do(self._graphs[i], self._graphs[j]) | ||||
gram_matrix[i][j] = kernel | gram_matrix[i][j] = kernel | ||||
gram_matrix[j][i] = kernel | gram_matrix[j][i] = kernel | ||||
return gram_matrix | return gram_matrix | ||||
def _compute_gm_imap_unordered(self): | def _compute_gm_imap_unordered(self): | ||||
self._all_graphs_have_edges(self._graphs) | |||||
# get shortest path graph of each graph. | # get shortest path graph of each graph. | ||||
pool = Pool(self._n_jobs) | pool = Pool(self._n_jobs) | ||||
get_sp_graphs_fun = self._wrapper_get_sp_graphs | get_sp_graphs_fun = self._wrapper_get_sp_graphs | ||||
@@ -76,21 +80,22 @@ class ShortestPath(GraphKernel): | |||||
self._graphs[i] = g | self._graphs[i] = g | ||||
pool.close() | pool.close() | ||||
pool.join() | pool.join() | ||||
# compute Gram matrix. | # compute Gram matrix. | ||||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | ||||
def init_worker(gs_toshare): | def init_worker(gs_toshare): | ||||
global G_gs | global G_gs | ||||
G_gs = gs_toshare | G_gs = gs_toshare | ||||
do_fun = self._wrapper_sp_do | do_fun = self._wrapper_sp_do | ||||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||||
glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | ||||
return gram_matrix | return gram_matrix | ||||
def _compute_kernel_list_series(self, g1, g_list): | def _compute_kernel_list_series(self, g1, g_list): | ||||
self._all_graphs_have_edges([g1] + g_list) | |||||
# get shortest path graphs of g1 and each graph in g_list. | # get shortest path graphs of g1 and each graph in g_list. | ||||
g1 = getSPGraph(g1, edge_weight=self._edge_weight) | g1 = getSPGraph(g1, edge_weight=self._edge_weight) | ||||
if self._verbose >= 2: | if self._verbose >= 2: | ||||
@@ -98,7 +103,7 @@ class ShortestPath(GraphKernel): | |||||
else: | else: | ||||
iterator = g_list | iterator = g_list | ||||
g_list = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | g_list = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | ||||
# compute kernel list. | # compute kernel list. | ||||
kernel_list = [None] * len(g_list) | kernel_list = [None] * len(g_list) | ||||
if self._verbose >= 2: | if self._verbose >= 2: | ||||
@@ -108,11 +113,12 @@ class ShortestPath(GraphKernel): | |||||
for i in iterator: | for i in iterator: | ||||
kernel = self._sp_do(g1, g_list[i]) | kernel = self._sp_do(g1, g_list[i]) | ||||
kernel_list[i] = kernel | kernel_list[i] = kernel | ||||
return kernel_list | return kernel_list | ||||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | def _compute_kernel_list_imap_unordered(self, g1, g_list): | ||||
self._all_graphs_have_edges([g1] + g_list) | |||||
# get shortest path graphs of g1 and each graph in g_list. | # get shortest path graphs of g1 and each graph in g_list. | ||||
g1 = getSPGraph(g1, edge_weight=self._edge_weight) | g1 = getSPGraph(g1, edge_weight=self._edge_weight) | ||||
pool = Pool(self._n_jobs) | pool = Pool(self._n_jobs) | ||||
@@ -131,49 +137,58 @@ class ShortestPath(GraphKernel): | |||||
g_list[i] = g | g_list[i] = g | ||||
pool.close() | pool.close() | ||||
pool.join() | pool.join() | ||||
# compute Gram matrix. | # compute Gram matrix. | ||||
kernel_list = [None] * len(g_list) | kernel_list = [None] * len(g_list) | ||||
def init_worker(g1_toshare, gl_toshare): | def init_worker(g1_toshare, gl_toshare): | ||||
global G_g1, G_gl | global G_g1, G_gl | ||||
G_g1 = g1_toshare | |||||
G_gl = gl_toshare | |||||
G_g1 = g1_toshare | |||||
G_gl = gl_toshare | |||||
do_fun = self._wrapper_kernel_list_do | do_fun = self._wrapper_kernel_list_do | ||||
def func_assign(result, var_to_assign): | |||||
def func_assign(result, var_to_assign): | |||||
var_to_assign[result[0]] = result[1] | var_to_assign[result[0]] = result[1] | ||||
itr = range(len(g_list)) | itr = range(len(g_list)) | ||||
len_itr = len(g_list) | len_itr = len(g_list) | ||||
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | ||||
init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | ||||
return kernel_list | return kernel_list | ||||
def _wrapper_kernel_list_do(self, itr): | def _wrapper_kernel_list_do(self, itr): | ||||
return itr, self._sp_do(G_g1, G_gl[itr]) | return itr, self._sp_do(G_g1, G_gl[itr]) | ||||
def _compute_single_kernel_series(self, g1, g2): | def _compute_single_kernel_series(self, g1, g2): | ||||
self._all_graphs_have_edges([g1] + [g2]) | |||||
g1 = getSPGraph(g1, edge_weight=self._edge_weight) | g1 = getSPGraph(g1, edge_weight=self._edge_weight) | ||||
g2 = getSPGraph(g2, edge_weight=self._edge_weight) | g2 = getSPGraph(g2, edge_weight=self._edge_weight) | ||||
kernel = self._sp_do(g1, g2) | kernel = self._sp_do(g1, g2) | ||||
return kernel | |||||
return kernel | |||||
def _wrapper_get_sp_graphs(self, itr_item): | def _wrapper_get_sp_graphs(self, itr_item): | ||||
g = itr_item[0] | g = itr_item[0] | ||||
i = itr_item[1] | i = itr_item[1] | ||||
return i, getSPGraph(g, edge_weight=self._edge_weight) | return i, getSPGraph(g, edge_weight=self._edge_weight) | ||||
def _sp_do(self, g1, g2): | def _sp_do(self, g1, g2): | ||||
if self._fcsp: # @todo: it may be put outside the _sp_do(). | |||||
return self._sp_do_fcsp(g1, g2) | |||||
else: | |||||
return self._sp_do_naive(g1, g2) | |||||
def _sp_do_fcsp(self, g1, g2): | |||||
kernel = 0 | kernel = 0 | ||||
# compute shortest path matrices first, method borrowed from FCSP. | # compute shortest path matrices first, method borrowed from FCSP. | ||||
vk_dict = {} # shortest path matrices dict | vk_dict = {} # shortest path matrices dict | ||||
if len(self._node_labels) > 0: | |||||
if len(self._node_labels) > 0: # @todo: it may be put outside the _sp_do(). | |||||
# node symb and non-synb labeled | # node symb and non-synb labeled | ||||
if len(self._node_attrs) > 0: | if len(self._node_attrs) > 0: | ||||
kn = self._node_kernels['mix'] | kn = self._node_kernels['mix'] | ||||
@@ -208,7 +223,7 @@ class ShortestPath(GraphKernel): | |||||
if e1[2]['cost'] == e2[2]['cost']: | if e1[2]['cost'] == e2[2]['cost']: | ||||
kernel += 1 | kernel += 1 | ||||
return kernel | return kernel | ||||
# compute graph kernels | # compute graph kernels | ||||
if self._ds_infos['directed']: | if self._ds_infos['directed']: | ||||
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | ||||
@@ -225,7 +240,7 @@ class ShortestPath(GraphKernel): | |||||
kn1 = nk11 * nk22 | kn1 = nk11 * nk22 | ||||
kn2 = nk12 * nk21 | kn2 = nk12 * nk21 | ||||
kernel += kn1 + kn2 | kernel += kn1 + kn2 | ||||
# # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | ||||
# # compute vertex kernels | # # compute vertex kernels | ||||
# try: | # try: | ||||
@@ -238,7 +253,7 @@ class ShortestPath(GraphKernel): | |||||
# vk_mat[i1][i2] = kn( | # vk_mat[i1][i2] = kn( | ||||
# n1[1][node_label], n2[1][node_label], | # n1[1][node_label], n2[1][node_label], | ||||
# [n1[1]['attributes']], [n2[1]['attributes']]) | # [n1[1]['attributes']], [n2[1]['attributes']]) | ||||
# range1 = range(0, len(edge_w_g[i])) | # range1 = range(0, len(edge_w_g[i])) | ||||
# range2 = range(0, len(edge_w_g[j])) | # range2 = range(0, len(edge_w_g[j])) | ||||
# for i1 in range1: | # for i1 in range1: | ||||
@@ -254,11 +269,74 @@ class ShortestPath(GraphKernel): | |||||
# kn1 = vk_mat[x1][x2] * vk_mat[y1][y2] | # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2] | ||||
# kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | ||||
# kernel += kn1 + kn2 | # kernel += kn1 + kn2 | ||||
return kernel | return kernel | ||||
def _sp_do_naive(self, g1, g2): | |||||
kernel = 0 | |||||
# Define the function to compute kernels between vertices in each condition. | |||||
if len(self._node_labels) > 0: | |||||
# node symb and non-synb labeled | |||||
if len(self._node_attrs) > 0: | |||||
def compute_vk(n1, n2): | |||||
kn = self._node_kernels['mix'] | |||||
n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||||
n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||||
n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||||
n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||||
return kn(n1_labels, n2_labels, n1_attrs, n2_attrs) | |||||
# node symb labeled | |||||
else: | |||||
def compute_vk(n1, n2): | |||||
kn = self._node_kernels['symb'] | |||||
n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||||
n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||||
return kn(n1_labels, n2_labels) | |||||
else: | |||||
# node non-synb labeled | |||||
if len(self._node_attrs) > 0: | |||||
def compute_vk(n1, n2): | |||||
kn = self._node_kernels['nsymb'] | |||||
n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||||
n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||||
return kn(n1_attrs, n2_attrs) | |||||
# node unlabeled | |||||
else: | |||||
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||||
if e1[2]['cost'] == e2[2]['cost']: | |||||
kernel += 1 | |||||
return kernel | |||||
# compute graph kernels | |||||
if self._ds_infos['directed']: | |||||
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||||
if e1[2]['cost'] == e2[2]['cost']: | |||||
nk11, nk22 = compute_vk(e1[0], e2[0]), compute_vk(e1[1], e2[1]) | |||||
kn1 = nk11 * nk22 | |||||
kernel += kn1 | |||||
else: | |||||
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||||
if e1[2]['cost'] == e2[2]['cost']: | |||||
# each edge walk is counted twice, starting from both its extreme nodes. | |||||
nk11, nk12, nk21, nk22 = compute_vk(e1[0], e2[0]), compute_vk( | |||||
e1[0], e2[1]), compute_vk(e1[1], e2[0]), compute_vk(e1[1], e2[1]) | |||||
kn1 = nk11 * nk22 | |||||
kn2 = nk12 * nk21 | |||||
kernel += kn1 + kn2 | |||||
return kernel | |||||
def _wrapper_sp_do(self, itr): | def _wrapper_sp_do(self, itr): | ||||
i = itr[0] | i = itr[0] | ||||
j = itr[1] | j = itr[1] | ||||
return i, j, self._sp_do(G_gs[i], G_gs[j]) | |||||
return i, j, self._sp_do(G_gs[i], G_gs[j]) | |||||
def _all_graphs_have_edges(self, graphs): | |||||
for G in graphs: | |||||
if nx.number_of_edges(G) == 0: | |||||
raise ValueError('Not all graphs have edges!!!') |
@@ -5,9 +5,9 @@ Created on Mon Mar 30 11:59:57 2020 | |||||
@author: ljia | @author: ljia | ||||
@references: | |||||
@references: | |||||
[1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For | |||||
[1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For | |||||
Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360). | Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360). | ||||
""" | """ | ||||
import sys | import sys | ||||
@@ -23,7 +23,7 @@ from gklearn.kernels import GraphKernel | |||||
class StructuralSP(GraphKernel): | class StructuralSP(GraphKernel): | ||||
def __init__(self, **kwargs): | def __init__(self, **kwargs): | ||||
GraphKernel.__init__(self) | GraphKernel.__init__(self) | ||||
self._node_labels = kwargs.get('node_labels', []) | self._node_labels = kwargs.get('node_labels', []) | ||||
@@ -34,6 +34,7 @@ class StructuralSP(GraphKernel): | |||||
self._node_kernels = kwargs.get('node_kernels', None) | self._node_kernels = kwargs.get('node_kernels', None) | ||||
self._edge_kernels = kwargs.get('edge_kernels', None) | self._edge_kernels = kwargs.get('edge_kernels', None) | ||||
self._compute_method = kwargs.get('compute_method', 'naive') | self._compute_method = kwargs.get('compute_method', 'naive') | ||||
self._fcsp = kwargs.get('fcsp', True) | |||||
self._ds_infos = kwargs.get('ds_infos', {}) | self._ds_infos = kwargs.get('ds_infos', {}) | ||||
@@ -50,10 +51,10 @@ class StructuralSP(GraphKernel): | |||||
else: | else: | ||||
for g in iterator: | for g in iterator: | ||||
splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])) | splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])) | ||||
# compute Gram matrix. | # compute Gram matrix. | ||||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | ||||
from itertools import combinations_with_replacement | from itertools import combinations_with_replacement | ||||
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | ||||
if self._verbose >= 2: | if self._verbose >= 2: | ||||
@@ -72,10 +73,10 @@ class StructuralSP(GraphKernel): | |||||
# print("error here ") | # print("error here ") | ||||
gram_matrix[i][j] = kernel | gram_matrix[i][j] = kernel | ||||
gram_matrix[j][i] = kernel | gram_matrix[j][i] = kernel | ||||
return gram_matrix | return gram_matrix | ||||
def _compute_gm_imap_unordered(self): | def _compute_gm_imap_unordered(self): | ||||
# get shortest paths of each graph in the graphs. | # get shortest paths of each graph in the graphs. | ||||
splist = [None] * len(self._graphs) | splist = [None] * len(self._graphs) | ||||
@@ -87,9 +88,9 @@ class StructuralSP(GraphKernel): | |||||
chunksize = 100 | chunksize = 100 | ||||
# get shortest path graphs of self._graphs | # get shortest path graphs of self._graphs | ||||
if self._compute_method == 'trie': | if self._compute_method == 'trie': | ||||
get_sps_fun = self._wrapper_get_sps_trie | |||||
get_sps_fun = self._wrapper_get_sps_trie | |||||
else: | else: | ||||
get_sps_fun = self._wrapper_get_sps_naive | |||||
get_sps_fun = self._wrapper_get_sps_naive | |||||
if self.verbose >= 2: | if self.verbose >= 2: | ||||
iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize), | iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize), | ||||
desc='getting shortest paths', file=sys.stdout) | desc='getting shortest paths', file=sys.stdout) | ||||
@@ -99,24 +100,24 @@ class StructuralSP(GraphKernel): | |||||
splist[i] = sp | splist[i] = sp | ||||
pool.close() | pool.close() | ||||
pool.join() | pool.join() | ||||
# compute Gram matrix. | # compute Gram matrix. | ||||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | ||||
def init_worker(spl_toshare, gs_toshare): | def init_worker(spl_toshare, gs_toshare): | ||||
global G_spl, G_gs | global G_spl, G_gs | ||||
G_spl = spl_toshare | G_spl = spl_toshare | ||||
G_gs = gs_toshare | |||||
if self._compute_method == 'trie': | |||||
G_gs = gs_toshare | |||||
if self._compute_method == 'trie': | |||||
do_fun = self._wrapper_ssp_do_trie | do_fun = self._wrapper_ssp_do_trie | ||||
else: | |||||
do_fun = self._wrapper_ssp_do_naive | |||||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||||
else: | |||||
do_fun = self._wrapper_ssp_do_naive | |||||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||||
glbv=(splist, self._graphs), n_jobs=self._n_jobs, verbose=self._verbose) | glbv=(splist, self._graphs), n_jobs=self._n_jobs, verbose=self._verbose) | ||||
return gram_matrix | return gram_matrix | ||||
def _compute_kernel_list_series(self, g1, g_list): | def _compute_kernel_list_series(self, g1, g_list): | ||||
# get shortest paths of g1 and each graph in g_list. | # get shortest paths of g1 and each graph in g_list. | ||||
sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | ||||
@@ -131,7 +132,7 @@ class StructuralSP(GraphKernel): | |||||
else: | else: | ||||
for g in iterator: | for g in iterator: | ||||
splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])) | splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])) | ||||
# compute kernel list. | # compute kernel list. | ||||
kernel_list = [None] * len(g_list) | kernel_list = [None] * len(g_list) | ||||
if self._verbose >= 2: | if self._verbose >= 2: | ||||
@@ -146,10 +147,10 @@ class StructuralSP(GraphKernel): | |||||
for i in iterator: | for i in iterator: | ||||
kernel = self._ssp_do_naive(g1, g_list[i], sp1, splist[i]) | kernel = self._ssp_do_naive(g1, g_list[i], sp1, splist[i]) | ||||
kernel_list[i] = kernel | kernel_list[i] = kernel | ||||
return kernel_list | return kernel_list | ||||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | def _compute_kernel_list_imap_unordered(self, g1, g_list): | ||||
# get shortest paths of g1 and each graph in g_list. | # get shortest paths of g1 and each graph in g_list. | ||||
sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | ||||
@@ -162,9 +163,9 @@ class StructuralSP(GraphKernel): | |||||
chunksize = 100 | chunksize = 100 | ||||
# get shortest path graphs of g_list | # get shortest path graphs of g_list | ||||
if self._compute_method == 'trie': | if self._compute_method == 'trie': | ||||
get_sps_fun = self._wrapper_get_sps_trie | |||||
get_sps_fun = self._wrapper_get_sps_trie | |||||
else: | else: | ||||
get_sps_fun = self._wrapper_get_sps_naive | |||||
get_sps_fun = self._wrapper_get_sps_naive | |||||
if self.verbose >= 2: | if self.verbose >= 2: | ||||
iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize), | iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize), | ||||
desc='getting shortest paths', file=sys.stdout) | desc='getting shortest paths', file=sys.stdout) | ||||
@@ -174,7 +175,7 @@ class StructuralSP(GraphKernel): | |||||
splist[i] = sp | splist[i] = sp | ||||
pool.close() | pool.close() | ||||
pool.join() | pool.join() | ||||
# compute Gram matrix. | # compute Gram matrix. | ||||
kernel_list = [None] * len(g_list) | kernel_list = [None] * len(g_list) | ||||
@@ -182,27 +183,27 @@ class StructuralSP(GraphKernel): | |||||
global G_sp1, G_spl, G_g1, G_gl | global G_sp1, G_spl, G_g1, G_gl | ||||
G_sp1 = sp1_toshare | G_sp1 = sp1_toshare | ||||
G_spl = spl_toshare | G_spl = spl_toshare | ||||
G_g1 = g1_toshare | |||||
G_gl = gl_toshare | |||||
if self._compute_method == 'trie': | |||||
G_g1 = g1_toshare | |||||
G_gl = gl_toshare | |||||
if self._compute_method == 'trie': | |||||
do_fun = self._wrapper_ssp_do_trie | do_fun = self._wrapper_ssp_do_trie | ||||
else: | |||||
else: | |||||
do_fun = self._wrapper_kernel_list_do | do_fun = self._wrapper_kernel_list_do | ||||
def func_assign(result, var_to_assign): | |||||
def func_assign(result, var_to_assign): | |||||
var_to_assign[result[0]] = result[1] | var_to_assign[result[0]] = result[1] | ||||
itr = range(len(g_list)) | itr = range(len(g_list)) | ||||
len_itr = len(g_list) | len_itr = len(g_list) | ||||
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | ||||
init_worker=init_worker, glbv=(sp1, splist, g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | init_worker=init_worker, glbv=(sp1, splist, g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | ||||
return kernel_list | return kernel_list | ||||
def _wrapper_kernel_list_do(self, itr): | def _wrapper_kernel_list_do(self, itr): | ||||
return itr, self._ssp_do_naive(G_g1, G_gl[itr], G_sp1, G_spl[itr]) | return itr, self._ssp_do_naive(G_g1, G_gl[itr], G_sp1, G_spl[itr]) | ||||
def _compute_single_kernel_series(self, g1, g2): | def _compute_single_kernel_series(self, g1, g2): | ||||
sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | ||||
sp2 = get_shortest_paths(g2, self._edge_weight, self._ds_infos['directed']) | sp2 = get_shortest_paths(g2, self._edge_weight, self._ds_infos['directed']) | ||||
@@ -210,26 +211,33 @@ class StructuralSP(GraphKernel): | |||||
kernel = self._ssp_do_trie(g1, g2, sp1, sp2) | kernel = self._ssp_do_trie(g1, g2, sp1, sp2) | ||||
else: | else: | ||||
kernel = self._ssp_do_naive(g1, g2, sp1, sp2) | kernel = self._ssp_do_naive(g1, g2, sp1, sp2) | ||||
return kernel | |||||
return kernel | |||||
def _wrapper_get_sps_naive(self, itr_item): | def _wrapper_get_sps_naive(self, itr_item): | ||||
g = itr_item[0] | g = itr_item[0] | ||||
i = itr_item[1] | i = itr_item[1] | ||||
return i, get_shortest_paths(g, self._edge_weight, self._ds_infos['directed']) | return i, get_shortest_paths(g, self._edge_weight, self._ds_infos['directed']) | ||||
def _ssp_do_naive(self, g1, g2, spl1, spl2): | def _ssp_do_naive(self, g1, g2, spl1, spl2): | ||||
if self._fcsp: # @todo: it may be put outside the _sp_do(). | |||||
return self._sp_do_naive_fcsp(g1, g2, spl1, spl2) | |||||
else: | |||||
return self._sp_do_naive_naive(g1, g2, spl1, spl2) | |||||
def _sp_do_naive_fcsp(self, g1, g2, spl1, spl2): | |||||
kernel = 0 | kernel = 0 | ||||
# First, compute shortest path matrices, method borrowed from FCSP. | # First, compute shortest path matrices, method borrowed from FCSP. | ||||
vk_dict = self._get_all_node_kernels(g1, g2) | vk_dict = self._get_all_node_kernels(g1, g2) | ||||
# Then, compute kernels between all pairs of edges, which is an idea of | # Then, compute kernels between all pairs of edges, which is an idea of | ||||
# extension of FCSP. It suits sparse graphs, which is the most case we | # extension of FCSP. It suits sparse graphs, which is the most case we | ||||
# went though. For dense graphs, this would be slow. | # went though. For dense graphs, this would be slow. | ||||
ek_dict = self._get_all_edge_kernels(g1, g2) | ek_dict = self._get_all_edge_kernels(g1, g2) | ||||
# compute graph kernels | # compute graph kernels | ||||
if vk_dict: | if vk_dict: | ||||
if ek_dict: | if ek_dict: | ||||
@@ -244,6 +252,7 @@ class StructuralSP(GraphKernel): | |||||
if not kpath: | if not kpath: | ||||
break | break | ||||
kernel += kpath # add up kernels of all paths | kernel += kpath # add up kernels of all paths | ||||
# print(kernel, ',', p1, ',', p2) | |||||
else: | else: | ||||
for p1, p2 in product(spl1, spl2): | for p1, p2 in product(spl1, spl2): | ||||
if len(p1) == len(p2): | if len(p1) == len(p2): | ||||
@@ -279,7 +288,7 @@ class StructuralSP(GraphKernel): | |||||
print(g1.nodes(data=True)) | print(g1.nodes(data=True)) | ||||
print(g1.edges(data=True)) | print(g1.edges(data=True)) | ||||
raise Exception | raise Exception | ||||
# # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | ||||
# # compute vertex kernel matrix | # # compute vertex kernel matrix | ||||
# try: | # try: | ||||
@@ -292,7 +301,7 @@ class StructuralSP(GraphKernel): | |||||
# vk_mat[i1][i2] = kn( | # vk_mat[i1][i2] = kn( | ||||
# n1[1][node_label], n2[1][node_label], | # n1[1][node_label], n2[1][node_label], | ||||
# [n1[1]['attributes']], [n2[1]['attributes']]) | # [n1[1]['attributes']], [n2[1]['attributes']]) | ||||
# range1 = range(0, len(edge_w_g[i])) | # range1 = range(0, len(edge_w_g[i])) | ||||
# range2 = range(0, len(edge_w_g[j])) | # range2 = range(0, len(edge_w_g[j])) | ||||
# for i1 in range1: | # for i1 in range1: | ||||
@@ -309,18 +318,137 @@ class StructuralSP(GraphKernel): | |||||
# kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | ||||
# Kmatrix += kn1 + kn2 | # Kmatrix += kn1 + kn2 | ||||
return kernel | return kernel | ||||
def _sp_do_naive_naive(self, g1, g2, spl1, spl2): | |||||
kernel = 0 | |||||
# Define the function to compute kernels between vertices in each condition. | |||||
if len(self._node_labels) > 0: | |||||
# node symb and non-synb labeled | |||||
if len(self._node_attrs) > 0: | |||||
def compute_vk(n1, n2): | |||||
kn = self._node_kernels['mix'] | |||||
n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||||
n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||||
n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||||
n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||||
return kn(n1_labels, n2_labels, n1_attrs, n2_attrs) | |||||
# node symb labeled | |||||
else: | |||||
def compute_vk(n1, n2): | |||||
kn = self._node_kernels['symb'] | |||||
n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels] | |||||
n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels] | |||||
return kn(n1_labels, n2_labels) | |||||
else: | |||||
# node non-synb labeled | |||||
if len(self._node_attrs) > 0: | |||||
def compute_vk(n1, n2): | |||||
kn = self._node_kernels['nsymb'] | |||||
n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs] | |||||
n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs] | |||||
return kn(n1_attrs, n2_attrs) | |||||
# # node unlabeled | |||||
# else: | |||||
# for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||||
# if e1[2]['cost'] == e2[2]['cost']: | |||||
# kernel += 1 | |||||
# return kernel | |||||
# Define the function to compute kernels between edges in each condition. | |||||
if len(self._edge_labels) > 0: | |||||
# edge symb and non-synb labeled | |||||
if len(self._edge_attrs) > 0: | |||||
def compute_ek(e1, e2): | |||||
ke = self._edge_kernels['mix'] | |||||
e1_labels = [g1.edges[e1][el] for el in self._edge_labels] | |||||
e2_labels = [g2.edges[e2][el] for el in self._edge_labels] | |||||
e1_attrs = [g1.edges[e1][ea] for ea in self._edge_attrs] | |||||
e2_attrs = [g2.edges[e2][ea] for ea in self._edge_attrs] | |||||
return ke(e1_labels, e2_labels, e1_attrs, e2_attrs) | |||||
# edge symb labeled | |||||
else: | |||||
def compute_ek(e1, e2): | |||||
ke = self._edge_kernels['symb'] | |||||
e1_labels = [g1.edges[e1][el] for el in self._edge_labels] | |||||
e2_labels = [g2.edges[e2][el] for el in self._edge_labels] | |||||
return ke(e1_labels, e2_labels) | |||||
else: | |||||
# edge non-synb labeled | |||||
if len(self._edge_attrs) > 0: | |||||
def compute_ek(e1, e2): | |||||
ke = self._edge_kernels['nsymb'] | |||||
e1_attrs = [g1.edges[e1][ea] for ea in self._edge_attrs] | |||||
e2_attrs = [g2.edges[e2][ea] for ea in self._edge_attrs] | |||||
return ke(e1_attrs, e2_attrs) | |||||
# compute graph kernels | |||||
if len(self._node_labels) > 0 or len(self._node_attrs) > 0: | |||||
if len(self._edge_labels) > 0 or len(self._edge_attrs) > 0: | |||||
for p1, p2 in product(spl1, spl2): | |||||
if len(p1) == len(p2): | |||||
kpath = compute_vk(p1[0], p2[0]) | |||||
if kpath: | |||||
for idx in range(1, len(p1)): | |||||
kpath *= compute_vk(p1[idx], p2[idx]) * \ | |||||
compute_ek((p1[idx-1], p1[idx]), | |||||
(p2[idx-1], p2[idx])) | |||||
if not kpath: | |||||
break | |||||
kernel += kpath # add up kernels of all paths | |||||
# print(kernel, ',', p1, ',', p2) | |||||
else: | |||||
for p1, p2 in product(spl1, spl2): | |||||
if len(p1) == len(p2): | |||||
kpath = compute_vk(p1[0], p2[0]) | |||||
if kpath: | |||||
for idx in range(1, len(p1)): | |||||
kpath *= compute_vk(p1[idx], p2[idx]) | |||||
if not kpath: | |||||
break | |||||
kernel += kpath # add up kernels of all paths | |||||
else: | |||||
if len(self._edge_labels) > 0 or len(self._edge_attrs) > 0: | |||||
for p1, p2 in product(spl1, spl2): | |||||
if len(p1) == len(p2): | |||||
if len(p1) == 0: | |||||
kernel += 1 | |||||
else: | |||||
kpath = 1 | |||||
for idx in range(0, len(p1) - 1): | |||||
kpath *= compute_ek((p1[idx], p1[idx+1]), | |||||
(p2[idx], p2[idx+1])) | |||||
if not kpath: | |||||
break | |||||
kernel += kpath # add up kernels of all paths | |||||
else: | |||||
for p1, p2 in product(spl1, spl2): | |||||
if len(p1) == len(p2): | |||||
kernel += 1 | |||||
try: | |||||
kernel = kernel / (len(spl1) * len(spl2)) # Compute mean average | |||||
except ZeroDivisionError: | |||||
print(spl1, spl2) | |||||
print(g1.nodes(data=True)) | |||||
print(g1.edges(data=True)) | |||||
raise Exception | |||||
return kernel | |||||
def _wrapper_ssp_do_naive(self, itr): | def _wrapper_ssp_do_naive(self, itr): | ||||
i = itr[0] | i = itr[0] | ||||
j = itr[1] | j = itr[1] | ||||
return i, j, self._ssp_do_naive(G_gs[i], G_gs[j], G_spl[i], G_spl[j]) | return i, j, self._ssp_do_naive(G_gs[i], G_gs[j], G_spl[i], G_spl[j]) | ||||
def _get_all_node_kernels(self, g1, g2): | def _get_all_node_kernels(self, g1, g2): | ||||
return compute_vertex_kernels(g1, g2, self._node_kernels, node_labels=self._node_labels, node_attrs=self._node_attrs) | return compute_vertex_kernels(g1, g2, self._node_kernels, node_labels=self._node_labels, node_attrs=self._node_attrs) | ||||
def _get_all_edge_kernels(self, g1, g2): | def _get_all_edge_kernels(self, g1, g2): | ||||
# compute kernels between all pairs of edges, which is an idea of | # compute kernels between all pairs of edges, which is an idea of | ||||
# extension of FCSP. It suits sparse graphs, which is the most case we | # extension of FCSP. It suits sparse graphs, which is the most case we | ||||
@@ -368,5 +496,5 @@ class StructuralSP(GraphKernel): | |||||
# edge unlabeled | # edge unlabeled | ||||
else: | else: | ||||
pass | pass | ||||
return ek_dict | |||||
return ek_dict |
@@ -5,9 +5,9 @@ Created on Thu Sep 27 10:56:23 2018 | |||||
@author: linlin | @author: linlin | ||||
@references: | |||||
@references: | |||||
[1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For | |||||
[1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For | |||||
Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360). | Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360). | ||||
""" | """ | ||||
@@ -43,7 +43,7 @@ def structuralspkernel(*args, | |||||
---------- | ---------- | ||||
Gn : List of NetworkX graph | Gn : List of NetworkX graph | ||||
List of graphs between which the kernels are computed. | List of graphs between which the kernels are computed. | ||||
G1, G2 : NetworkX graphs | G1, G2 : NetworkX graphs | ||||
Two graphs between which the kernel is computed. | Two graphs between which the kernel is computed. | ||||
@@ -51,25 +51,25 @@ def structuralspkernel(*args, | |||||
Node attribute used as label. The default node label is atom. | Node attribute used as label. The default node label is atom. | ||||
edge_weight : string | edge_weight : string | ||||
Edge attribute name corresponding to the edge weight. Applied for the | |||||
Edge attribute name corresponding to the edge weight. Applied for the | |||||
computation of the shortest paths. | computation of the shortest paths. | ||||
edge_label : string | edge_label : string | ||||
Edge attribute used as label. The default edge label is bond_type. | Edge attribute used as label. The default edge label is bond_type. | ||||
node_kernels : dict | node_kernels : dict | ||||
A dictionary of kernel functions for nodes, including 3 items: 'symb' | |||||
for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix' | |||||
for both labels. The first 2 functions take two node labels as | |||||
A dictionary of kernel functions for nodes, including 3 items: 'symb' | |||||
for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix' | |||||
for both labels. The first 2 functions take two node labels as | |||||
parameters, and the 'mix' function takes 4 parameters, a symbolic and a | parameters, and the 'mix' function takes 4 parameters, a symbolic and a | ||||
non-symbolic label for each the two nodes. Each label is in form of 2-D | non-symbolic label for each the two nodes. Each label is in form of 2-D | ||||
dimension array (n_samples, n_features). Each function returns a number | dimension array (n_samples, n_features). Each function returns a number | ||||
as the kernel value. Ignored when nodes are unlabeled. | as the kernel value. Ignored when nodes are unlabeled. | ||||
edge_kernels : dict | edge_kernels : dict | ||||
A dictionary of kernel functions for edges, including 3 items: 'symb' | |||||
for symbolic edge labels, 'nsymb' for non-symbolic edge labels, 'mix' | |||||
for both labels. The first 2 functions take two edge labels as | |||||
A dictionary of kernel functions for edges, including 3 items: 'symb' | |||||
for symbolic edge labels, 'nsymb' for non-symbolic edge labels, 'mix' | |||||
for both labels. The first 2 functions take two edge labels as | |||||
parameters, and the 'mix' function takes 4 parameters, a symbolic and a | parameters, and the 'mix' function takes 4 parameters, a symbolic and a | ||||
non-symbolic label for each the two edges. Each label is in form of 2-D | non-symbolic label for each the two edges. Each label is in form of 2-D | ||||
dimension array (n_samples, n_features). Each function returns a number | dimension array (n_samples, n_features). Each function returns a number | ||||
@@ -89,7 +89,7 @@ def structuralspkernel(*args, | |||||
Return | Return | ||||
------ | ------ | ||||
Kmatrix : Numpy matrix | Kmatrix : Numpy matrix | ||||
Kernel matrix, each element of which is the mean average structural | |||||
Kernel matrix, each element of which is the mean average structural | |||||
shortest path kernel between 2 praphs. | shortest path kernel between 2 praphs. | ||||
""" | """ | ||||
# pre-process | # pre-process | ||||
@@ -135,9 +135,9 @@ def structuralspkernel(*args, | |||||
chunksize = 100 | chunksize = 100 | ||||
# get shortest path graphs of Gn | # get shortest path graphs of Gn | ||||
if compute_method == 'trie': | if compute_method == 'trie': | ||||
getsp_partial = partial(wrapper_getSP_trie, weight, ds_attrs['is_directed']) | |||||
getsp_partial = partial(wrapper_getSP_trie, weight, ds_attrs['is_directed']) | |||||
else: | else: | ||||
getsp_partial = partial(wrapper_getSP_naive, weight, ds_attrs['is_directed']) | |||||
getsp_partial = partial(wrapper_getSP_naive, weight, ds_attrs['is_directed']) | |||||
if verbose: | if verbose: | ||||
iterator = tqdm(pool.imap_unordered(getsp_partial, itr, chunksize), | iterator = tqdm(pool.imap_unordered(getsp_partial, itr, chunksize), | ||||
desc='getting shortest paths', file=sys.stdout) | desc='getting shortest paths', file=sys.stdout) | ||||
@@ -161,17 +161,17 @@ def structuralspkernel(*args, | |||||
else: | else: | ||||
for g in iterator: | for g in iterator: | ||||
splist.append(get_shortest_paths(g, weight, ds_attrs['is_directed'])) | splist.append(get_shortest_paths(g, weight, ds_attrs['is_directed'])) | ||||
# ss = 0 | # ss = 0 | ||||
# ss += sys.getsizeof(splist) | # ss += sys.getsizeof(splist) | ||||
# for spss in splist: | # for spss in splist: | ||||
# ss += sys.getsizeof(spss) | # ss += sys.getsizeof(spss) | ||||
# for spp in spss: | # for spp in spss: | ||||
# ss += sys.getsizeof(spp) | # ss += sys.getsizeof(spp) | ||||
# time.sleep(20) | # time.sleep(20) | ||||
# # ---- only for the Fast Computation of Shortest Path Kernel (FCSP) | # # ---- only for the Fast Computation of Shortest Path Kernel (FCSP) | ||||
@@ -194,21 +194,21 @@ def structuralspkernel(*args, | |||||
Kmatrix = np.zeros((len(Gn), len(Gn))) | Kmatrix = np.zeros((len(Gn), len(Gn))) | ||||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||||
if parallel == 'imap_unordered': | if parallel == 'imap_unordered': | ||||
def init_worker(spl_toshare, gs_toshare): | def init_worker(spl_toshare, gs_toshare): | ||||
global G_spl, G_gs | global G_spl, G_gs | ||||
G_spl = spl_toshare | G_spl = spl_toshare | ||||
G_gs = gs_toshare | |||||
if compute_method == 'trie': | |||||
do_partial = partial(wrapper_ssp_do_trie, ds_attrs, node_label, edge_label, | |||||
node_kernels, edge_kernels) | |||||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||||
glbv=(splist, Gn), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) | |||||
else: | |||||
do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||||
node_kernels, edge_kernels) | |||||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||||
G_gs = gs_toshare | |||||
if compute_method == 'trie': | |||||
do_partial = partial(wrapper_ssp_do_trie, ds_attrs, node_label, edge_label, | |||||
node_kernels, edge_kernels) | |||||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||||
glbv=(splist, Gn), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) | |||||
else: | |||||
do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||||
node_kernels, edge_kernels) | |||||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||||
glbv=(splist, Gn), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) | glbv=(splist, Gn), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose) | ||||
# ---- direct running, normally use single CPU core. ---- | # ---- direct running, normally use single CPU core. ---- | ||||
elif parallel is None: | elif parallel is None: | ||||
@@ -232,10 +232,10 @@ def structuralspkernel(*args, | |||||
# print("error here ") | # print("error here ") | ||||
Kmatrix[i][j] = kernel | Kmatrix[i][j] = kernel | ||||
Kmatrix[j][i] = kernel | Kmatrix[j][i] = kernel | ||||
# # ---- use pool.map to parallel. ---- | # # ---- use pool.map to parallel. ---- | ||||
# pool = Pool(n_jobs) | # pool = Pool(n_jobs) | ||||
# do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||||
# do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||||
# node_kernels, edge_kernels) | # node_kernels, edge_kernels) | ||||
# itr = zip(combinations_with_replacement(Gn, 2), | # itr = zip(combinations_with_replacement(Gn, 2), | ||||
# combinations_with_replacement(splist, 2), | # combinations_with_replacement(splist, 2), | ||||
@@ -249,7 +249,7 @@ def structuralspkernel(*args, | |||||
# pool.join() | # pool.join() | ||||
# # ---- use pool.imap_unordered to parallel and track progress. ---- | # # ---- use pool.imap_unordered to parallel and track progress. ---- | ||||
# do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||||
# do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||||
# node_kernels, edge_kernels) | # node_kernels, edge_kernels) | ||||
# itr = zip(combinations_with_replacement(Gn, 2), | # itr = zip(combinations_with_replacement(Gn, 2), | ||||
# combinations_with_replacement(splist, 2), | # combinations_with_replacement(splist, 2), | ||||
@@ -282,7 +282,7 @@ def structuralspkernel(*args, | |||||
def structuralspkernel_do(g1, g2, spl1, spl2, ds_attrs, node_label, edge_label, | def structuralspkernel_do(g1, g2, spl1, spl2, ds_attrs, node_label, edge_label, | ||||
node_kernels, edge_kernels): | node_kernels, edge_kernels): | ||||
kernel = 0 | kernel = 0 | ||||
# First, compute shortest path matrices, method borrowed from FCSP. | # First, compute shortest path matrices, method borrowed from FCSP. | ||||
@@ -373,25 +373,25 @@ def structuralspkernel_do(g1, g2, spl1, spl2, ds_attrs, node_label, edge_label, | |||||
return kernel | return kernel | ||||
def wrapper_ssp_do(ds_attrs, node_label, edge_label, node_kernels, | |||||
def wrapper_ssp_do(ds_attrs, node_label, edge_label, node_kernels, | |||||
edge_kernels, itr): | edge_kernels, itr): | ||||
i = itr[0] | i = itr[0] | ||||
j = itr[1] | j = itr[1] | ||||
return i, j, structuralspkernel_do(G_gs[i], G_gs[j], G_spl[i], G_spl[j], | |||||
ds_attrs, node_label, edge_label, | |||||
return i, j, structuralspkernel_do(G_gs[i], G_gs[j], G_spl[i], G_spl[j], | |||||
ds_attrs, node_label, edge_label, | |||||
node_kernels, edge_kernels) | node_kernels, edge_kernels) | ||||
def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | ||||
node_kernels, edge_kernels): | node_kernels, edge_kernels): | ||||
# # traverse all paths in graph1. Deep-first search is applied. | # # traverse all paths in graph1. Deep-first search is applied. | ||||
# def traverseBothTrie(root, trie2, kernel, pcurrent=[]): | # def traverseBothTrie(root, trie2, kernel, pcurrent=[]): | ||||
# for key, node in root['children'].items(): | # for key, node in root['children'].items(): | ||||
# pcurrent.append(key) | # pcurrent.append(key) | ||||
# if node['isEndOfWord']: | # if node['isEndOfWord']: | ||||
# # print(node['count']) | # # print(node['count']) | ||||
# traverseTrie2(trie2.root, pcurrent, kernel, | |||||
# traverseTrie2(trie2.root, pcurrent, kernel, | |||||
# pcurrent=[]) | # pcurrent=[]) | ||||
# if node['children'] != {}: | # if node['children'] != {}: | ||||
# traverseBothTrie(node, trie2, kernel, pcurrent) | # traverseBothTrie(node, trie2, kernel, pcurrent) | ||||
@@ -399,14 +399,14 @@ def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | |||||
# del pcurrent[-1] | # del pcurrent[-1] | ||||
# if pcurrent != []: | # if pcurrent != []: | ||||
# del pcurrent[-1] | # del pcurrent[-1] | ||||
# | |||||
# | |||||
# # traverse all paths in graph2 and find out those that are not in | |||||
# # graph1. Deep-first search is applied. | |||||
# | |||||
# | |||||
# # traverse all paths in graph2 and find out those that are not in | |||||
# # graph1. Deep-first search is applied. | |||||
# def traverseTrie2(root, p1, kernel, pcurrent=[]): | # def traverseTrie2(root, p1, kernel, pcurrent=[]): | ||||
# for key, node in root['children'].items(): | # for key, node in root['children'].items(): | ||||
# pcurrent.append(key) | # pcurrent.append(key) | ||||
# if node['isEndOfWord']: | |||||
# if node['isEndOfWord']: | |||||
# # print(node['count']) | # # print(node['count']) | ||||
# kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict) | # kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict) | ||||
# if node['children'] != {}: | # if node['children'] != {}: | ||||
@@ -415,8 +415,8 @@ def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | |||||
# del pcurrent[-1] | # del pcurrent[-1] | ||||
# if pcurrent != []: | # if pcurrent != []: | ||||
# del pcurrent[-1] | # del pcurrent[-1] | ||||
# | |||||
# | |||||
# | |||||
# | |||||
# kernel = [0] | # kernel = [0] | ||||
# | # | ||||
# # First, compute shortest path matrices, method borrowed from FCSP. | # # First, compute shortest path matrices, method borrowed from FCSP. | ||||
@@ -437,7 +437,7 @@ def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | |||||
# pcurrent.append(key) | # pcurrent.append(key) | ||||
# if node['isEndOfWord']: | # if node['isEndOfWord']: | ||||
# # print(node['count']) | # # print(node['count']) | ||||
# traverseTrie2(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||||
# traverseTrie2(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||||
# pcurrent=[]) | # pcurrent=[]) | ||||
# if node['children'] != {}: | # if node['children'] != {}: | ||||
# traverseBothTrie(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | # traverseBothTrie(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | ||||
@@ -445,14 +445,14 @@ def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | |||||
# del pcurrent[-1] | # del pcurrent[-1] | ||||
# if pcurrent != []: | # if pcurrent != []: | ||||
# del pcurrent[-1] | # del pcurrent[-1] | ||||
# | |||||
# | |||||
# # traverse all paths in graph2 and find out those that are not in | |||||
# # graph1. Deep-first search is applied. | |||||
# | |||||
# | |||||
# # traverse all paths in graph2 and find out those that are not in | |||||
# # graph1. Deep-first search is applied. | |||||
# def traverseTrie2(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | # def traverseTrie2(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | ||||
# for key, node in root['children'].items(): | # for key, node in root['children'].items(): | ||||
# pcurrent.append(key) | # pcurrent.append(key) | ||||
# if node['isEndOfWord']: | |||||
# if node['isEndOfWord']: | |||||
# # print(node['count']) | # # print(node['count']) | ||||
# kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict) | # kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict) | ||||
# if node['children'] != {}: | # if node['children'] != {}: | ||||
@@ -461,8 +461,8 @@ def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | |||||
# del pcurrent[-1] | # del pcurrent[-1] | ||||
# if pcurrent != []: | # if pcurrent != []: | ||||
# del pcurrent[-1] | # del pcurrent[-1] | ||||
kernel = [0] | kernel = [0] | ||||
# First, compute shortest path matrices, method borrowed from FCSP. | # First, compute shortest path matrices, method borrowed from FCSP. | ||||
@@ -483,20 +483,20 @@ def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label, | |||||
if ek_dict: | if ek_dict: | ||||
traverseBothTriee(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict) | traverseBothTriee(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict) | ||||
else: | else: | ||||
traverseBothTrieu(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict) | |||||
traverseBothTrieu(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict) | |||||
kernel = kernel[0] / (trie1[1] * trie2[1]) # Compute mean average | kernel = kernel[0] / (trie1[1] * trie2[1]) # Compute mean average | ||||
return kernel | return kernel | ||||
def wrapper_ssp_do_trie(ds_attrs, node_label, edge_label, node_kernels, | |||||
def wrapper_ssp_do_trie(ds_attrs, node_label, edge_label, node_kernels, | |||||
edge_kernels, itr): | edge_kernels, itr): | ||||
i = itr[0] | i = itr[0] | ||||
j = itr[1] | j = itr[1] | ||||
return i, j, ssp_do_trie(G_gs[i], G_gs[j], G_spl[i], G_spl[j], ds_attrs, | |||||
return i, j, ssp_do_trie(G_gs[i], G_gs[j], G_spl[i], G_spl[j], ds_attrs, | |||||
node_label, edge_label, node_kernels, edge_kernels) | node_label, edge_label, node_kernels, edge_kernels) | ||||
def getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs): | def getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs): | ||||
# compute shortest path matrices, method borrowed from FCSP. | # compute shortest path matrices, method borrowed from FCSP. | ||||
@@ -528,7 +528,7 @@ def getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs): | |||||
# node unlabeled | # node unlabeled | ||||
else: | else: | ||||
pass | pass | ||||
return vk_dict | return vk_dict | ||||
@@ -573,17 +573,17 @@ def getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs): | |||||
# edge unlabeled | # edge unlabeled | ||||
else: | else: | ||||
pass | pass | ||||
return ek_dict | |||||
return ek_dict | |||||
# traverse all paths in graph1. Deep-first search is applied. | # traverse all paths in graph1. Deep-first search is applied. | ||||
def traverseBothTriem(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | def traverseBothTriem(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | ||||
for key, node in root['children'].items(): | for key, node in root['children'].items(): | ||||
pcurrent.append(key) | pcurrent.append(key) | ||||
if node['isEndOfWord']: | if node['isEndOfWord']: | ||||
# print(node['count']) | # print(node['count']) | ||||
traverseTrie2m(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||||
traverseTrie2m(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||||
pcurrent=[]) | pcurrent=[]) | ||||
if node['children'] != {}: | if node['children'] != {}: | ||||
traverseBothTriem(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | traverseBothTriem(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | ||||
@@ -591,14 +591,14 @@ def traverseBothTriem(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | |||||
del pcurrent[-1] | del pcurrent[-1] | ||||
if pcurrent != []: | if pcurrent != []: | ||||
del pcurrent[-1] | del pcurrent[-1] | ||||
# traverse all paths in graph2 and find out those that are not in | |||||
# graph1. Deep-first search is applied. | |||||
# traverse all paths in graph2 and find out those that are not in | |||||
# graph1. Deep-first search is applied. | |||||
def traverseTrie2m(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | def traverseTrie2m(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | ||||
for key, node in root['children'].items(): | for key, node in root['children'].items(): | ||||
pcurrent.append(key) | pcurrent.append(key) | ||||
if node['isEndOfWord']: | |||||
if node['isEndOfWord']: | |||||
# print(node['count']) | # print(node['count']) | ||||
if len(p1) == len(pcurrent): | if len(p1) == len(pcurrent): | ||||
kpath = vk_dict[(p1[0], pcurrent[0])] | kpath = vk_dict[(p1[0], pcurrent[0])] | ||||
@@ -616,7 +616,7 @@ def traverseTrie2m(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||||
del pcurrent[-1] | del pcurrent[-1] | ||||
if pcurrent != []: | if pcurrent != []: | ||||
del pcurrent[-1] | del pcurrent[-1] | ||||
# traverse all paths in graph1. Deep-first search is applied. | # traverse all paths in graph1. Deep-first search is applied. | ||||
def traverseBothTriev(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | def traverseBothTriev(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | ||||
@@ -624,7 +624,7 @@ def traverseBothTriev(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | |||||
pcurrent.append(key) | pcurrent.append(key) | ||||
if node['isEndOfWord']: | if node['isEndOfWord']: | ||||
# print(node['count']) | # print(node['count']) | ||||
traverseTrie2v(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||||
traverseTrie2v(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||||
pcurrent=[]) | pcurrent=[]) | ||||
if node['children'] != {}: | if node['children'] != {}: | ||||
traverseBothTriev(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | traverseBothTriev(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | ||||
@@ -632,14 +632,14 @@ def traverseBothTriev(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | |||||
del pcurrent[-1] | del pcurrent[-1] | ||||
if pcurrent != []: | if pcurrent != []: | ||||
del pcurrent[-1] | del pcurrent[-1] | ||||
# traverse all paths in graph2 and find out those that are not in | |||||
# graph1. Deep-first search is applied. | |||||
# traverse all paths in graph2 and find out those that are not in | |||||
# graph1. Deep-first search is applied. | |||||
def traverseTrie2v(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | def traverseTrie2v(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | ||||
for key, node in root['children'].items(): | for key, node in root['children'].items(): | ||||
pcurrent.append(key) | pcurrent.append(key) | ||||
if node['isEndOfWord']: | |||||
if node['isEndOfWord']: | |||||
# print(node['count']) | # print(node['count']) | ||||
if len(p1) == len(pcurrent): | if len(p1) == len(pcurrent): | ||||
kpath = vk_dict[(p1[0], pcurrent[0])] | kpath = vk_dict[(p1[0], pcurrent[0])] | ||||
@@ -655,15 +655,15 @@ def traverseTrie2v(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||||
del pcurrent[-1] | del pcurrent[-1] | ||||
if pcurrent != []: | if pcurrent != []: | ||||
del pcurrent[-1] | del pcurrent[-1] | ||||
# traverse all paths in graph1. Deep-first search is applied. | # traverse all paths in graph1. Deep-first search is applied. | ||||
def traverseBothTriee(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | def traverseBothTriee(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | ||||
for key, node in root['children'].items(): | for key, node in root['children'].items(): | ||||
pcurrent.append(key) | pcurrent.append(key) | ||||
if node['isEndOfWord']: | if node['isEndOfWord']: | ||||
# print(node['count']) | # print(node['count']) | ||||
traverseTrie2e(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||||
traverseTrie2e(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||||
pcurrent=[]) | pcurrent=[]) | ||||
if node['children'] != {}: | if node['children'] != {}: | ||||
traverseBothTriee(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | traverseBothTriee(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | ||||
@@ -671,14 +671,14 @@ def traverseBothTriee(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | |||||
del pcurrent[-1] | del pcurrent[-1] | ||||
if pcurrent != []: | if pcurrent != []: | ||||
del pcurrent[-1] | del pcurrent[-1] | ||||
# traverse all paths in graph2 and find out those that are not in | |||||
# graph1. Deep-first search is applied. | |||||
# traverse all paths in graph2 and find out those that are not in | |||||
# graph1. Deep-first search is applied. | |||||
def traverseTrie2e(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | def traverseTrie2e(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | ||||
for key, node in root['children'].items(): | for key, node in root['children'].items(): | ||||
pcurrent.append(key) | pcurrent.append(key) | ||||
if node['isEndOfWord']: | |||||
if node['isEndOfWord']: | |||||
# print(node['count']) | # print(node['count']) | ||||
if len(p1) == len(pcurrent): | if len(p1) == len(pcurrent): | ||||
if len(p1) == 0: | if len(p1) == 0: | ||||
@@ -697,15 +697,15 @@ def traverseTrie2e(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||||
del pcurrent[-1] | del pcurrent[-1] | ||||
if pcurrent != []: | if pcurrent != []: | ||||
del pcurrent[-1] | del pcurrent[-1] | ||||
# traverse all paths in graph1. Deep-first search is applied. | # traverse all paths in graph1. Deep-first search is applied. | ||||
def traverseBothTrieu(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | def traverseBothTrieu(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | ||||
for key, node in root['children'].items(): | for key, node in root['children'].items(): | ||||
pcurrent.append(key) | pcurrent.append(key) | ||||
if node['isEndOfWord']: | if node['isEndOfWord']: | ||||
# print(node['count']) | # print(node['count']) | ||||
traverseTrie2u(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||||
traverseTrie2u(trie2.root, pcurrent, kernel, vk_dict, ek_dict, | |||||
pcurrent=[]) | pcurrent=[]) | ||||
if node['children'] != {}: | if node['children'] != {}: | ||||
traverseBothTrieu(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | traverseBothTrieu(node, trie2, kernel, vk_dict, ek_dict, pcurrent) | ||||
@@ -713,14 +713,14 @@ def traverseBothTrieu(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]): | |||||
del pcurrent[-1] | del pcurrent[-1] | ||||
if pcurrent != []: | if pcurrent != []: | ||||
del pcurrent[-1] | del pcurrent[-1] | ||||
# traverse all paths in graph2 and find out those that are not in | |||||
# graph1. Deep-first search is applied. | |||||
# traverse all paths in graph2 and find out those that are not in | |||||
# graph1. Deep-first search is applied. | |||||
def traverseTrie2u(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | def traverseTrie2u(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | ||||
for key, node in root['children'].items(): | for key, node in root['children'].items(): | ||||
pcurrent.append(key) | pcurrent.append(key) | ||||
if node['isEndOfWord']: | |||||
if node['isEndOfWord']: | |||||
# print(node['count']) | # print(node['count']) | ||||
if len(p1) == len(pcurrent): | if len(p1) == len(pcurrent): | ||||
kernel[0] += 1 | kernel[0] += 1 | ||||
@@ -730,8 +730,8 @@ def traverseTrie2u(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||||
del pcurrent[-1] | del pcurrent[-1] | ||||
if pcurrent != []: | if pcurrent != []: | ||||
del pcurrent[-1] | del pcurrent[-1] | ||||
#def computePathKernel(p1, p2, vk_dict, ek_dict): | #def computePathKernel(p1, p2, vk_dict, ek_dict): | ||||
# kernel = 0 | # kernel = 0 | ||||
# if vk_dict: | # if vk_dict: | ||||
@@ -771,7 +771,7 @@ def traverseTrie2u(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]): | |||||
# else: | # else: | ||||
# if len(p1) == len(p2): | # if len(p1) == len(p2): | ||||
# kernel += 1 | # kernel += 1 | ||||
# | |||||
# | |||||
# return kernel | # return kernel | ||||
@@ -804,7 +804,7 @@ def get_shortest_paths(G, weight, directed): | |||||
# each edge walk is counted twice, starting from both its extreme nodes. | # each edge walk is counted twice, starting from both its extreme nodes. | ||||
if not directed: | if not directed: | ||||
sp += [sptemp[::-1] for sptemp in spltemp] | sp += [sptemp[::-1] for sptemp in spltemp] | ||||
# add single nodes as length 0 paths. | # add single nodes as length 0 paths. | ||||
sp += [[n] for n in G.nodes()] | sp += [[n] for n in G.nodes()] | ||||
return sp | return sp | ||||
@@ -849,7 +849,7 @@ def get_sps_as_trie(G, weight, directed): | |||||
# each edge walk is counted twice, starting from both its extreme nodes. | # each edge walk is counted twice, starting from both its extreme nodes. | ||||
if not directed: | if not directed: | ||||
sptrie.insertWord(sp[::-1]) | sptrie.insertWord(sp[::-1]) | ||||
# add single nodes as length 0 paths. | # add single nodes as length 0 paths. | ||||
for n in G.nodes(): | for n in G.nodes(): | ||||
sptrie.insertWord([n]) | sptrie.insertWord([n]) | ||||
@@ -3,13 +3,14 @@ | |||||
import pytest | import pytest | ||||
import multiprocessing | import multiprocessing | ||||
import numpy as np | |||||
def chooseDataset(ds_name): | def chooseDataset(ds_name): | ||||
"""Choose dataset according to name. | """Choose dataset according to name. | ||||
""" | """ | ||||
from gklearn.utils import Dataset | from gklearn.utils import Dataset | ||||
dataset = Dataset() | dataset = Dataset() | ||||
# no node labels (and no edge labels). | # no node labels (and no edge labels). | ||||
@@ -18,6 +19,7 @@ def chooseDataset(ds_name): | |||||
dataset.trim_dataset(edge_required=False) | dataset.trim_dataset(edge_required=False) | ||||
irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} | irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} | ||||
dataset.remove_labels(**irrelevant_labels) | dataset.remove_labels(**irrelevant_labels) | ||||
dataset.cut_graphs(range(1, 10)) | |||||
# node symbolic labels. | # node symbolic labels. | ||||
elif ds_name == 'Acyclic': | elif ds_name == 'Acyclic': | ||||
dataset.load_predefined_dataset(ds_name) | dataset.load_predefined_dataset(ds_name) | ||||
@@ -46,9 +48,9 @@ def chooseDataset(ds_name): | |||||
elif ds_name == 'Cuneiform': | elif ds_name == 'Cuneiform': | ||||
dataset.load_predefined_dataset(ds_name) | dataset.load_predefined_dataset(ds_name) | ||||
dataset.trim_dataset(edge_required=True) | dataset.trim_dataset(edge_required=True) | ||||
dataset.cut_graphs(range(0, 3)) | dataset.cut_graphs(range(0, 3)) | ||||
return dataset | return dataset | ||||
@@ -57,7 +59,7 @@ def test_list_graph_kernels(): | |||||
""" | """ | ||||
from gklearn.kernels import GRAPH_KERNELS, list_of_graph_kernels | from gklearn.kernels import GRAPH_KERNELS, list_of_graph_kernels | ||||
assert list_of_graph_kernels() == [i for i in GRAPH_KERNELS] | assert list_of_graph_kernels() == [i for i in GRAPH_KERNELS] | ||||
@pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | ||||
@@ -68,10 +70,10 @@ def test_CommonWalk(ds_name, parallel, weight, compute_method): | |||||
""" | """ | ||||
from gklearn.kernels import CommonWalk | from gklearn.kernels import CommonWalk | ||||
import networkx as nx | import networkx as nx | ||||
dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
dataset.load_graphs([g for g in dataset.graphs if nx.number_of_nodes(g) > 1]) | dataset.load_graphs([g for g in dataset.graphs if nx.number_of_nodes(g) > 1]) | ||||
try: | try: | ||||
graph_kernel = CommonWalk(node_labels=dataset.node_labels, | graph_kernel = CommonWalk(node_labels=dataset.node_labels, | ||||
edge_labels=dataset.edge_labels, | edge_labels=dataset.edge_labels, | ||||
@@ -87,8 +89,8 @@ def test_CommonWalk(ds_name, parallel, weight, compute_method): | |||||
except Exception as exception: | except Exception as exception: | ||||
assert False, exception | assert False, exception | ||||
@pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | ||||
@pytest.mark.parametrize('remove_totters', [False]) #[True, False]) | @pytest.mark.parametrize('remove_totters', [False]) #[True, False]) | ||||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
@@ -96,9 +98,9 @@ def test_Marginalized(ds_name, parallel, remove_totters): | |||||
"""Test marginalized kernel. | """Test marginalized kernel. | ||||
""" | """ | ||||
from gklearn.kernels import Marginalized | from gklearn.kernels import Marginalized | ||||
dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
try: | try: | ||||
graph_kernel = Marginalized(node_labels=dataset.node_labels, | graph_kernel = Marginalized(node_labels=dataset.node_labels, | ||||
edge_labels=dataset.edge_labels, | edge_labels=dataset.edge_labels, | ||||
@@ -115,15 +117,15 @@ def test_Marginalized(ds_name, parallel, remove_totters): | |||||
except Exception as exception: | except Exception as exception: | ||||
assert False, exception | assert False, exception | ||||
@pytest.mark.parametrize('ds_name', ['Acyclic']) | @pytest.mark.parametrize('ds_name', ['Acyclic']) | ||||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
def test_SylvesterEquation(ds_name, parallel): | def test_SylvesterEquation(ds_name, parallel): | ||||
"""Test sylvester equation kernel. | """Test sylvester equation kernel. | ||||
""" | """ | ||||
from gklearn.kernels import SylvesterEquation | from gklearn.kernels import SylvesterEquation | ||||
dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
try: | try: | ||||
@@ -139,11 +141,11 @@ def test_SylvesterEquation(ds_name, parallel): | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | ||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
except Exception as exception: | except Exception as exception: | ||||
assert False, exception | assert False, exception | ||||
@pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | @pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | ||||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
def test_ConjugateGradient(ds_name, parallel): | def test_ConjugateGradient(ds_name, parallel): | ||||
@@ -152,9 +154,9 @@ def test_ConjugateGradient(ds_name, parallel): | |||||
from gklearn.kernels import ConjugateGradient | from gklearn.kernels import ConjugateGradient | ||||
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | ||||
import functools | import functools | ||||
dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | ||||
sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | ||||
@@ -177,11 +179,11 @@ def test_ConjugateGradient(ds_name, parallel): | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | ||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
except Exception as exception: | except Exception as exception: | ||||
assert False, exception | assert False, exception | ||||
@pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | @pytest.mark.parametrize('ds_name', ['Acyclic', 'AIDS']) | ||||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
def test_FixedPoint(ds_name, parallel): | def test_FixedPoint(ds_name, parallel): | ||||
@@ -190,9 +192,9 @@ def test_FixedPoint(ds_name, parallel): | |||||
from gklearn.kernels import FixedPoint | from gklearn.kernels import FixedPoint | ||||
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | ||||
import functools | import functools | ||||
dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | ||||
sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | ||||
@@ -215,11 +217,11 @@ def test_FixedPoint(ds_name, parallel): | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | ||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
except Exception as exception: | except Exception as exception: | ||||
assert False, exception | assert False, exception | ||||
@pytest.mark.parametrize('ds_name', ['Acyclic']) | @pytest.mark.parametrize('ds_name', ['Acyclic']) | ||||
@pytest.mark.parametrize('sub_kernel', ['exp', 'geo']) | @pytest.mark.parametrize('sub_kernel', ['exp', 'geo']) | ||||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
@@ -227,7 +229,7 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||||
"""Test spectral decomposition kernel. | """Test spectral decomposition kernel. | ||||
""" | """ | ||||
from gklearn.kernels import SpectralDecomposition | from gklearn.kernels import SpectralDecomposition | ||||
dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
try: | try: | ||||
@@ -244,11 +246,11 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | ||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
except Exception as exception: | except Exception as exception: | ||||
assert False, exception | assert False, exception | ||||
# @pytest.mark.parametrize( | # @pytest.mark.parametrize( | ||||
# 'compute_method,ds_name,sub_kernel', | # 'compute_method,ds_name,sub_kernel', | ||||
# [ | # [ | ||||
@@ -268,7 +270,7 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||||
# from gklearn.kernels import RandomWalk | # from gklearn.kernels import RandomWalk | ||||
# from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | # from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | ||||
# import functools | # import functools | ||||
# | |||||
# | |||||
# dataset = chooseDataset(ds_name) | # dataset = chooseDataset(ds_name) | ||||
# mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | # mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | ||||
@@ -297,7 +299,7 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||||
# except Exception as exception: | # except Exception as exception: | ||||
# assert False, exception | # assert False, exception | ||||
@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | ||||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
def test_ShortestPath(ds_name, parallel): | def test_ShortestPath(ds_name, parallel): | ||||
@@ -306,17 +308,30 @@ def test_ShortestPath(ds_name, parallel): | |||||
from gklearn.kernels import ShortestPath | from gklearn.kernels import ShortestPath | ||||
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | ||||
import functools | import functools | ||||
dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | ||||
sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | ||||
try: | try: | ||||
graph_kernel = ShortestPath(node_labels=dataset.node_labels, | graph_kernel = ShortestPath(node_labels=dataset.node_labels, | ||||
node_attrs=dataset.node_attrs, | node_attrs=dataset.node_attrs, | ||||
ds_infos=dataset.get_dataset_infos(keys=['directed']), | ds_infos=dataset.get_dataset_infos(keys=['directed']), | ||||
fcsp=True, | |||||
node_kernels=sub_kernels) | node_kernels=sub_kernels) | ||||
gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
gram_matrix1, run_time = graph_kernel.compute(dataset.graphs, | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
graph_kernel = ShortestPath(node_labels=dataset.node_labels, | |||||
node_attrs=dataset.node_attrs, | |||||
ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
fcsp=False, | |||||
node_kernels=sub_kernels) | |||||
gram_matrix2, run_time = graph_kernel.compute(dataset.graphs, | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | ||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
@@ -326,6 +341,8 @@ def test_ShortestPath(ds_name, parallel): | |||||
except Exception as exception: | except Exception as exception: | ||||
assert False, exception | assert False, exception | ||||
assert np.array_equal(gram_matrix1, gram_matrix2) | |||||
#@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | #@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | ||||
@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint', 'Fingerprint_edge', 'Cuneiform']) | @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint', 'Fingerprint_edge', 'Cuneiform']) | ||||
@@ -336,29 +353,47 @@ def test_StructuralSP(ds_name, parallel): | |||||
from gklearn.kernels import StructuralSP | from gklearn.kernels import StructuralSP | ||||
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | ||||
import functools | import functools | ||||
dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | ||||
sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | ||||
try: | try: | ||||
graph_kernel = StructuralSP(node_labels=dataset.node_labels, | graph_kernel = StructuralSP(node_labels=dataset.node_labels, | ||||
edge_labels=dataset.edge_labels, | |||||
edge_labels=dataset.edge_labels, | |||||
node_attrs=dataset.node_attrs, | node_attrs=dataset.node_attrs, | ||||
edge_attrs=dataset.edge_attrs, | edge_attrs=dataset.edge_attrs, | ||||
ds_infos=dataset.get_dataset_infos(keys=['directed']), | ds_infos=dataset.get_dataset_infos(keys=['directed']), | ||||
fcsp=True, | |||||
node_kernels=sub_kernels, | node_kernels=sub_kernels, | ||||
edge_kernels=sub_kernels) | edge_kernels=sub_kernels) | ||||
gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
gram_matrix1, run_time = graph_kernel.compute(dataset.graphs, | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True, normalize=False) | |||||
kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | ||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | ||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
graph_kernel = StructuralSP(node_labels=dataset.node_labels, | |||||
edge_labels=dataset.edge_labels, | |||||
node_attrs=dataset.node_attrs, | |||||
edge_attrs=dataset.edge_attrs, | |||||
ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
fcsp=False, | |||||
node_kernels=sub_kernels, | |||||
edge_kernels=sub_kernels) | |||||
gram_matrix2, run_time = graph_kernel.compute(dataset.graphs, | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True, normalize=False) | |||||
kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
except Exception as exception: | except Exception as exception: | ||||
assert False, exception | assert False, exception | ||||
assert np.array_equal(gram_matrix1, gram_matrix2) | |||||
@pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | ||||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
@@ -369,9 +404,9 @@ def test_PathUpToH(ds_name, parallel, k_func, compute_method): | |||||
"""Test path kernel up to length $h$. | """Test path kernel up to length $h$. | ||||
""" | """ | ||||
from gklearn.kernels import PathUpToH | from gklearn.kernels import PathUpToH | ||||
dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
try: | try: | ||||
graph_kernel = PathUpToH(node_labels=dataset.node_labels, | graph_kernel = PathUpToH(node_labels=dataset.node_labels, | ||||
edge_labels=dataset.edge_labels, | edge_labels=dataset.edge_labels, | ||||
@@ -385,8 +420,8 @@ def test_PathUpToH(ds_name, parallel, k_func, compute_method): | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
except Exception as exception: | except Exception as exception: | ||||
assert False, exception | assert False, exception | ||||
@pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | ||||
@pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
def test_Treelet(ds_name, parallel): | def test_Treelet(ds_name, parallel): | ||||
@@ -395,10 +430,10 @@ def test_Treelet(ds_name, parallel): | |||||
from gklearn.kernels import Treelet | from gklearn.kernels import Treelet | ||||
from gklearn.utils.kernels import polynomialkernel | from gklearn.utils.kernels import polynomialkernel | ||||
import functools | import functools | ||||
dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
pkernel = functools.partial(polynomialkernel, d=2, c=1e5) | |||||
pkernel = functools.partial(polynomialkernel, d=2, c=1e5) | |||||
try: | try: | ||||
graph_kernel = Treelet(node_labels=dataset.node_labels, | graph_kernel = Treelet(node_labels=dataset.node_labels, | ||||
edge_labels=dataset.edge_labels, | edge_labels=dataset.edge_labels, | ||||
@@ -412,8 +447,8 @@ def test_Treelet(ds_name, parallel): | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
except Exception as exception: | except Exception as exception: | ||||
assert False, exception | assert False, exception | ||||
@pytest.mark.parametrize('ds_name', ['Acyclic']) | @pytest.mark.parametrize('ds_name', ['Acyclic']) | ||||
#@pytest.mark.parametrize('base_kernel', ['subtree', 'sp', 'edge']) | #@pytest.mark.parametrize('base_kernel', ['subtree', 'sp', 'edge']) | ||||
# @pytest.mark.parametrize('base_kernel', ['subtree']) | # @pytest.mark.parametrize('base_kernel', ['subtree']) | ||||
@@ -422,7 +457,7 @@ def test_WLSubtree(ds_name, parallel): | |||||
"""Test Weisfeiler-Lehman subtree kernel. | """Test Weisfeiler-Lehman subtree kernel. | ||||
""" | """ | ||||
from gklearn.kernels import WLSubtree | from gklearn.kernels import WLSubtree | ||||
dataset = chooseDataset(ds_name) | dataset = chooseDataset(ds_name) | ||||
try: | try: | ||||
@@ -438,12 +473,15 @@ def test_WLSubtree(ds_name, parallel): | |||||
parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | ||||
except Exception as exception: | except Exception as exception: | ||||
assert False, exception | assert False, exception | ||||
if __name__ == "__main__": | if __name__ == "__main__": | ||||
test_list_graph_kernels() | test_list_graph_kernels() | ||||
# test_spkernel('Alkane', 'imap_unordered') | # test_spkernel('Alkane', 'imap_unordered') | ||||
# test_ShortestPath('Alkane', 'imap_unordered') | |||||
# test_StructuralSP('Fingerprint_edge', 'imap_unordered') | # test_StructuralSP('Fingerprint_edge', 'imap_unordered') | ||||
# test_StructuralSP('Alkane', None) | |||||
# test_StructuralSP('Cuneiform', None) | |||||
# test_WLSubtree('Acyclic', 'imap_unordered') | # test_WLSubtree('Acyclic', 'imap_unordered') | ||||
# test_RandomWalk('Acyclic', 'sylvester', None, 'imap_unordered') | # test_RandomWalk('Acyclic', 'sylvester', None, 'imap_unordered') | ||||
# test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered') | # test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered') | ||||