Browse Source

New translations run_rwalk_symonly.py (Chinese Simplified)

l10n_v0.2.x
linlin 4 years ago
parent
commit
53e3367cf8
1 changed files with 70 additions and 0 deletions
  1. +70
    -0
      lang/zh/notebooks/else/run_rwalk_symonly.py

+ 70
- 0
lang/zh/notebooks/else/run_rwalk_symonly.py View File

@@ -0,0 +1,70 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Dec 23 16:56:44 2018

@author: ljia
"""

import functools
from libs import *
import multiprocessing

from gklearn.kernels.rwalk_sym import randomwalkkernel
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct

import numpy as np


dslist = [
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
# node nsymb
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
# node symb/nsymb
]
estimator = randomwalkkernel
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},
{'alpha': np.logspace(-10, 10, num=41, base=10)}]

for ds in dslist:
print()
print(ds['name'])
for compute_method in ['conjugate', 'fp']:
if compute_method == 'sylvester':
param_grid_precomputed = {'compute_method': ['sylvester'],
# 'weight': np.linspace(0.01, 0.10, 10)}
'weight': np.logspace(-1, -10, num=10, base=10)}
elif compute_method == 'conjugate':
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
param_grid_precomputed = {'compute_method': ['conjugate'],
'node_kernels':
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}],
'edge_kernels':
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}],
'weight': np.logspace(-1, -10, num=10, base=10)}
elif compute_method == 'fp':
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
param_grid_precomputed = {'compute_method': ['fp'],
'node_kernels':
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}],
'edge_kernels':
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}],
'weight': np.logspace(-3, -10, num=8, base=10)}
elif compute_method == 'spectral':
param_grid_precomputed = {'compute_method': ['spectral'],
'weight': np.logspace(-1, -10, num=10, base=10),
'sub_kernel': ['geo', 'exp']}
model_selection_for_precomputed_kernel(
ds['dataset'],
estimator,
param_grid_precomputed,
(param_grid[1] if ('task' in ds and ds['task']
== 'regression') else param_grid[0]),
(ds['task'] if 'task' in ds else 'classification'),
NUM_TRIALS=30,
datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
ds_name=ds['name'],
n_jobs=multiprocessing.cpu_count(),
read_gm_from_file=False)
print()

Loading…
Cancel
Save