|
|
@@ -0,0 +1,70 @@ |
|
|
|
#!/usr/bin/env python3 |
|
|
|
# -*- coding: utf-8 -*- |
|
|
|
""" |
|
|
|
Created on Sun Dec 23 16:56:44 2018 |
|
|
|
|
|
|
|
@author: ljia |
|
|
|
""" |
|
|
|
|
|
|
|
import functools |
|
|
|
from libs import * |
|
|
|
import multiprocessing |
|
|
|
|
|
|
|
from gklearn.kernels.rwalk_sym import randomwalkkernel |
|
|
|
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
dslist = [ |
|
|
|
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, |
|
|
|
# node nsymb |
|
|
|
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, |
|
|
|
# node symb/nsymb |
|
|
|
] |
|
|
|
estimator = randomwalkkernel |
|
|
|
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, |
|
|
|
{'alpha': np.logspace(-10, 10, num=41, base=10)}] |
|
|
|
|
|
|
|
for ds in dslist: |
|
|
|
print() |
|
|
|
print(ds['name']) |
|
|
|
for compute_method in ['conjugate', 'fp']: |
|
|
|
if compute_method == 'sylvester': |
|
|
|
param_grid_precomputed = {'compute_method': ['sylvester'], |
|
|
|
# 'weight': np.linspace(0.01, 0.10, 10)} |
|
|
|
'weight': np.logspace(-1, -10, num=10, base=10)} |
|
|
|
elif compute_method == 'conjugate': |
|
|
|
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) |
|
|
|
param_grid_precomputed = {'compute_method': ['conjugate'], |
|
|
|
'node_kernels': |
|
|
|
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], |
|
|
|
'edge_kernels': |
|
|
|
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], |
|
|
|
'weight': np.logspace(-1, -10, num=10, base=10)} |
|
|
|
elif compute_method == 'fp': |
|
|
|
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) |
|
|
|
param_grid_precomputed = {'compute_method': ['fp'], |
|
|
|
'node_kernels': |
|
|
|
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], |
|
|
|
'edge_kernels': |
|
|
|
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], |
|
|
|
'weight': np.logspace(-3, -10, num=8, base=10)} |
|
|
|
elif compute_method == 'spectral': |
|
|
|
param_grid_precomputed = {'compute_method': ['spectral'], |
|
|
|
'weight': np.logspace(-1, -10, num=10, base=10), |
|
|
|
'sub_kernel': ['geo', 'exp']} |
|
|
|
model_selection_for_precomputed_kernel( |
|
|
|
ds['dataset'], |
|
|
|
estimator, |
|
|
|
param_grid_precomputed, |
|
|
|
(param_grid[1] if ('task' in ds and ds['task'] |
|
|
|
== 'regression') else param_grid[0]), |
|
|
|
(ds['task'] if 'task' in ds else 'classification'), |
|
|
|
NUM_TRIALS=30, |
|
|
|
datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), |
|
|
|
extra_params=(ds['extra_params'] if 'extra_params' in ds else None), |
|
|
|
ds_name=ds['name'], |
|
|
|
n_jobs=multiprocessing.cpu_count(), |
|
|
|
read_gm_from_file=False) |
|
|
|
print() |