Browse Source

Add SpectralDecomposition class.

v0.2.x
jajupmochi 4 years ago
parent
commit
570492cf46
2 changed files with 284 additions and 0 deletions
  1. +1
    -0
      gklearn/kernels/__init__.py
  2. +283
    -0
      gklearn/kernels/spectral_decomposition.py

+ 1
- 0
gklearn/kernels/__init__.py View File

@@ -12,6 +12,7 @@ from gklearn.kernels.common_walk import CommonWalk
from gklearn.kernels.marginalized import Marginalized
from gklearn.kernels.random_walk import RandomWalk
from gklearn.kernels.sylvester_equation import SylvesterEquation
from gklearn.kernels.spectral_decomposition import SpectralDecomposition
from gklearn.kernels.shortest_path import ShortestPath
from gklearn.kernels.structural_sp import StructuralSP
from gklearn.kernels.path_up_to_h import PathUpToH


+ 283
- 0
gklearn/kernels/spectral_decomposition.py View File

@@ -0,0 +1,283 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 20 16:12:45 2020

@author: ljia

@references:

[1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010.
"""

import sys
from tqdm import tqdm
import numpy as np
import networkx as nx
from scipy.sparse import kron
from gklearn.utils.parallel import parallel_gm, parallel_me
from gklearn.kernels import RandomWalk


class SpectralDecomposition(RandomWalk):
def __init__(self, **kwargs):
RandomWalk.__init__(self, **kwargs)
self._sub_kernel = kwargs.get('sub_kernel', None)

def _compute_gm_series(self):
self._check_edge_weight(self._graphs)
self._check_graphs(self._graphs)
if self._verbose >= 2:
import warnings
warnings.warn('All labels are ignored. Only works for undirected graphs.')
# compute Gram matrix.
gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
if self._q == None:
# precompute the spectral decomposition of each graph.
P_list = []
D_list = []
if self._verbose >= 2:
iterator = tqdm(self._graphs, desc='spectral decompose', file=sys.stdout)
else:
iterator = self._graphs
for G in iterator:
# don't normalize adjacency matrices if q is a uniform vector. Note
# A actually is the transpose of the adjacency matrix.
A = nx.adjacency_matrix(G, self._edge_weight).todense().transpose()
ew, ev = np.linalg.eig(A)
D_list.append(ew)
P_list.append(ev)
# P_inv_list = [p.T for p in P_list] # @todo: also works for directed graphs?

if self._p == None: # p is uniform distribution as default.
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in self._graphs]
# q_T_list = [q.T for q in q_list]

from itertools import combinations_with_replacement
itr = combinations_with_replacement(range(0, len(self._graphs)), 2)
if self._verbose >= 2:
iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout)
else:
iterator = itr
for i, j in iterator:
kernel = self.__kernel_do(q_T_list[i], q_T_list[j], P_list[i], P_list[j], D_list[i], D_list[j], self._weight, self._sub_kernel)
gram_matrix[i][j] = kernel
gram_matrix[j][i] = kernel
else: # @todo
pass
else: # @todo
pass
return gram_matrix
def _compute_gm_imap_unordered(self):
self._check_edge_weight(self._graphs)
self._check_graphs(self._graphs)
if self._verbose >= 2:
import warnings
warnings.warn('All labels are ignored. Only works for undirected graphs.')
# compute Gram matrix.
gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
if self._q == None:
# precompute the spectral decomposition of each graph.
P_list = []
D_list = []
if self._verbose >= 2:
iterator = tqdm(self._graphs, desc='spectral decompose', file=sys.stdout)
else:
iterator = self._graphs
for G in iterator:
# don't normalize adjacency matrices if q is a uniform vector. Note
# A actually is the transpose of the adjacency matrix.
A = nx.adjacency_matrix(G, self._edge_weight).todense().transpose()
ew, ev = np.linalg.eig(A)
D_list.append(ew)
P_list.append(ev) # @todo: parallel?

if self._p == None: # p is uniform distribution as default.
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in self._graphs] # @todo: parallel?
def init_worker(q_T_list_toshare, P_list_toshare, D_list_toshare):
global G_q_T_list, G_P_list, G_D_list
G_q_T_list = q_T_list_toshare
G_P_list = P_list_toshare
G_D_list = D_list_toshare
do_fun = self._wrapper_kernel_do
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker,
glbv=(q_T_list, P_list, D_list), n_jobs=self._n_jobs, verbose=self._verbose)

else: # @todo
pass
else: # @todo
pass
return gram_matrix
def _compute_kernel_list_series(self, g1, g_list):
self._check_edge_weight(g_list + [g1])
self._check_graphs(g_list + [g1])
if self._verbose >= 2:
import warnings
warnings.warn('All labels are ignored. Only works for undirected graphs.')
# compute kernel list.
kernel_list = [None] * len(g_list)
if self._q == None:
# precompute the spectral decomposition of each graph.
A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose()
D1, P1 = np.linalg.eig(A1)
P_list = []
D_list = []
if self._verbose >= 2:
iterator = tqdm(range(len(g_list)), desc='spectral decompose', file=sys.stdout)
else:
iterator = range(len(g_list))
for G in iterator:
# don't normalize adjacency matrices if q is a uniform vector. Note
# A actually is the transpose of the adjacency matrix.
A = nx.adjacency_matrix(G, self._edge_weight).todense().transpose()
ew, ev = np.linalg.eig(A)
D_list.append(ew)
P_list.append(ev)

if self._p == None: # p is uniform distribution as default.
q_T1 = 1 / nx.number_of_nodes(g1)
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in g_list]
if self._verbose >= 2:
iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout)
else:
iterator = range(len(g_list))
for i in iterator:
kernel = self.__kernel_do(q_T1, q_T_list[i], P1, P_list[i], D1, D_list[i], self._weight, self._sub_kernel)
kernel_list[i] = kernel
else: # @todo
pass
else: # @todo
pass
return kernel_list
def _compute_kernel_list_imap_unordered(self, g1, g_list):
self._check_edge_weight(g_list + [g1])
self._check_graphs(g_list + [g1])
if self._verbose >= 2:
import warnings
warnings.warn('All labels are ignored. Only works for undirected graphs.')
# compute kernel list.
kernel_list = [None] * len(g_list)
if self._q == None:
# precompute the spectral decomposition of each graph.
A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose()
D1, P1 = np.linalg.eig(A1)
P_list = []
D_list = []
if self._verbose >= 2:
iterator = tqdm(range(len(g_list)), desc='spectral decompose', file=sys.stdout)
else:
iterator = range(len(g_list))
for G in iterator:
# don't normalize adjacency matrices if q is a uniform vector. Note
# A actually is the transpose of the adjacency matrix.
A = nx.adjacency_matrix(G, self._edge_weight).todense().transpose()
ew, ev = np.linalg.eig(A)
D_list.append(ew)
P_list.append(ev) # @todo: parallel?

if self._p == None: # p is uniform distribution as default.
q_T1 = 1 / nx.number_of_nodes(g1)
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in g_list] # @todo: parallel?
def init_worker(q_T1_toshare, P1_toshare, D1_toshare, q_T_list_toshare, P_list_toshare, D_list_toshare):
global G_q_T1, G_P1, G_D1, G_q_T_list, G_P_list, G_D_list
G_q_T1 = q_T1_toshare
G_P1 = P1_toshare
G_D1 = D1_toshare
G_q_T_list = q_T_list_toshare
G_P_list = P_list_toshare
G_D_list = D_list_toshare

do_fun = self._wrapper_kernel_list_do
def func_assign(result, var_to_assign):
var_to_assign[result[0]] = result[1]
itr = range(len(g_list))
len_itr = len(g_list)
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr,
init_worker=init_worker, glbv=(q_T1, P1, D1, q_T_list, P_list, D_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose)
else: # @todo
pass
else: # @todo
pass
return kernel_list


def _wrapper_kernel_list_do(self, itr):
return itr, self._kernel_do(G_q_T1, G_q_T_list[itr], G_P1, G_P_list[itr], G_D1, G_D_list[itr], self._weight, self._sub_kernel)
def _compute_single_kernel_series(self, g1, g2):
self._check_edge_weight([g1] + [g2])
self._check_graphs([g1] + [g2])
if self._verbose >= 2:
import warnings
warnings.warn('All labels are ignored. Only works for undirected graphs.')
if self._q == None:
# precompute the spectral decomposition of each graph.
A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose()
D1, P1 = np.linalg.eig(A1)
A2 = nx.adjacency_matrix(g2, self._edge_weight).todense().transpose()
D2, P2 = np.linalg.eig(A2)

if self._p == None: # p is uniform distribution as default.
q_T1 = 1 / nx.number_of_nodes(g1)
q_T2 = 1 / nx.number_of_nodes(g2)
kernel = self.__kernel_do(q_T1, q_T2, P1, P2, D1, D2, self._weight, self._sub_kernel)
else: # @todo
pass
else: # @todo
pass
return kernel
def __kernel_do(self, q_T1, q_T2, P1, P2, D1, D2, weight, sub_kernel):
# use uniform distribution if there is no prior knowledge.
kl = kron(np.dot(q_T1, P1), np.dot(q_T2, P2)).todense()
# @todo: this is not needed when p = q (kr = kl.T) for undirected graphs.
# kr = kron(np.dot(P_inv_list[i], q_list[i]), np.dot(P_inv_list[j], q_list[j])).todense()
if sub_kernel == 'exp':
D_diag = np.array([d1 * d2 for d1 in D1 for d2 in D2])
kmiddle = np.diag(np.exp(weight * D_diag))
elif sub_kernel == 'geo':
D_diag = np.array([d1 * d2 for d1 in D1 for d2 in D2])
kmiddle = np.diag(weight * D_diag)
kmiddle = np.identity(len(kmiddle)) - weight * kmiddle
kmiddle = np.linalg.inv(kmiddle)
return np.dot(np.dot(kl, kmiddle), kl.T)[0, 0]

def _wrapper_kernel_do(self, itr):
i = itr[0]
j = itr[1]
return i, j, self.__kernel_do(G_q_T_list[i], G_q_T_list[j], G_P_list[i], G_P_list[j], G_D_list[i], G_D_list[j], self._weight, self._sub_kernel)

Loading…
Cancel
Save