diff --git a/lang/zh/gklearn/ged/env/ged_env.py b/lang/zh/gklearn/ged/env/ged_env.py new file mode 100644 index 0000000..60b671b --- /dev/null +++ b/lang/zh/gklearn/ged/env/ged_env.py @@ -0,0 +1,733 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Wed Jun 17 12:02:36 2020 + +@author: ljia +""" +import numpy as np +import networkx as nx +from gklearn.ged.env import Options, OptionsStringMap +from gklearn.ged.env import GEDData + + +class GEDEnv(object): + + + def __init__(self): + self.__initialized = False + self.__new_graph_ids = [] + self.__ged_data = GEDData() + # Variables needed for approximating ged_instance_. + self.__lower_bounds = {} + self.__upper_bounds = {} + self.__runtimes = {} + self.__node_maps = {} + self.__original_to_internal_node_ids = [] + self.__internal_to_original_node_ids = [] + self.__ged_method = None + + + def set_edit_cost(self, edit_cost, edit_cost_constants=[]): + """ + /*! + * @brief Sets the edit costs to one of the predefined edit costs. + * @param[in] edit_costs Select one of the predefined edit costs. + * @param[in] edit_cost_constants Constants passed to the constructor of the edit cost class selected by @p edit_costs. + */ + """ + self.__ged_data._set_edit_cost(edit_cost, edit_cost_constants) + + + def add_graph(self, graph_name='', graph_class=''): + """ + /*! + * @brief Adds a new uninitialized graph to the environment. Call init() after calling this method. + * @param[in] graph_name The name of the added graph. Empty if not specified. + * @param[in] graph_class The class of the added graph. Empty if not specified. + * @return The ID of the newly added graph. + */ + """ + # @todo: graphs are not uninitialized. + self.__initialized = False + graph_id = self.__ged_data._num_graphs_without_shuffled_copies + self.__ged_data._num_graphs_without_shuffled_copies += 1 + self.__new_graph_ids.append(graph_id) + self.__ged_data._graphs.append(nx.Graph()) + self.__ged_data._graph_names.append(graph_name) + self.__ged_data._graph_classes.append(graph_class) + self.__original_to_internal_node_ids.append({}) + self.__internal_to_original_node_ids.append({}) + self.__ged_data._strings_to_internal_node_ids.append({}) + self.__ged_data._internal_node_ids_to_strings.append({}) + return graph_id + + + def clear_graph(self, graph_id): + """ + /*! + * @brief Clears and de-initializes a graph that has previously been added to the environment. Call init() after calling this method. + * @param[in] graph_id ID of graph that has to be cleared. + */ + """ + if graph_id > self.__ged_data.num_graphs_without_shuffled_copies(): + raise Exception('The graph', self.get_graph_name(graph_id), 'has not been added to the environment.') + self.__ged_data._graphs[graph_id].clear() + self.__original_to_internal_node_ids[graph_id].clear() + self.__internal_to_original_node_ids[graph_id].clear() + self.__ged_data._strings_to_internal_node_ids[graph_id].clear() + self.__ged_data._internal_node_ids_to_strings[graph_id].clear() + self.__initialized = False + + + def add_node(self, graph_id, node_id, node_label): + """ + /*! + * @brief Adds a labeled node. + * @param[in] graph_id ID of graph that has been added to the environment. + * @param[in] node_id The user-specific ID of the vertex that has to be added. + * @param[in] node_label The label of the vertex that has to be added. Set to ged::NoLabel() if template parameter @p UserNodeLabel equals ged::NoLabel. + */ + """ + # @todo: check ids. + self.__initialized = False + internal_node_id = nx.number_of_nodes(self.__ged_data._graphs[graph_id]) + self.__ged_data._graphs[graph_id].add_node(internal_node_id, label=node_label) + self.__original_to_internal_node_ids[graph_id][node_id] = internal_node_id + self.__internal_to_original_node_ids[graph_id][internal_node_id] = node_id + self.__ged_data._strings_to_internal_node_ids[graph_id][str(node_id)] = internal_node_id + self.__ged_data._internal_node_ids_to_strings[graph_id][internal_node_id] = str(node_id) + self.__ged_data._node_label_to_id(node_label) + label_id = self.__ged_data._node_label_to_id(node_label) + # @todo: ged_data_.graphs_[graph_id].set_label + + + def add_edge(self, graph_id, nd_from, nd_to, edge_label, ignore_duplicates=True): + """ + /*! + * @brief Adds a labeled edge. + * @param[in] graph_id ID of graph that has been added to the environment. + * @param[in] tail The user-specific ID of the tail of the edge that has to be added. + * @param[in] head The user-specific ID of the head of the edge that has to be added. + * @param[in] edge_label The label of the vertex that has to be added. Set to ged::NoLabel() if template parameter @p UserEdgeLabel equals ged::NoLabel. + * @param[in] ignore_duplicates If @p true, duplicate edges are ignores. Otherwise, an exception is thrown if an existing edge is added to the graph. + */ + """ + # @todo: check everything. + self.__initialized = False + # @todo: check ignore_duplicates. + self.__ged_data._graphs[graph_id].add_edge(self.__original_to_internal_node_ids[graph_id][nd_from], self.__original_to_internal_node_ids[graph_id][nd_to], label=edge_label) + label_id = self.__ged_data._edge_label_to_id(edge_label) + # @todo: ged_data_.graphs_[graph_id].set_label + + + def add_nx_graph(self, g, classe, ignore_duplicates=True) : + """ + Add a Graph (made by networkx) on the environment. Be careful to respect the same format as GXL graphs for labelling nodes and edges. + + :param g: The graph to add (networkx graph) + :param ignore_duplicates: If True, duplicate edges are ignored, otherwise it's raise an error if an existing edge is added. True by default + :type g: networkx.graph + :type ignore_duplicates: bool + :return: The ID of the newly added graphe + :rtype: size_t + + .. note:: The NX graph must respect the GXL structure. Please see how a GXL graph is construct. + + """ + graph_id = self.add_graph(g.name, classe) # check if the graph name already exists. + for node in g.nodes: # @todo: if the keys of labels include int and str at the same time. + self.add_node(graph_id, node, tuple(sorted(g.nodes[node].items(), key=lambda kv: kv[0]))) + for edge in g.edges: + self.add_edge(graph_id, edge[0], edge[1], tuple(sorted(g.edges[(edge[0], edge[1])].items(), key=lambda kv: kv[0])), ignore_duplicates) + return graph_id + + + def load_nx_graph(self, nx_graph, graph_id, graph_name='', graph_class=''): + """ + Loads NetworkX Graph into the GED environment. + + Parameters + ---------- + nx_graph : NetworkX Graph object + The graph that should be loaded. + + graph_id : int or None + The ID of a graph contained the environment (overwrite existing graph) or add new graph if `None`. + + graph_name : string, optional + The name of newly added graph. The default is ''. Has no effect unless `graph_id` equals `None`. + + graph_class : string, optional + The class of newly added graph. The default is ''. Has no effect unless `graph_id` equals `None`. + + Returns + ------- + int + The ID of the newly loaded graph. + """ + if graph_id is None: # @todo: undefined. + graph_id = self.add_graph(graph_name, graph_class) + else: + self.clear_graph(graph_id) + for node in nx_graph.nodes: + self.add_node(graph_id, node, tuple(sorted(nx_graph.nodes[node].items(), key=lambda kv: kv[0]))) + for edge in nx_graph.edges: + self.add_edge(graph_id, edge[0], edge[1], tuple(sorted(nx_graph.edges[(edge[0], edge[1])].items(), key=lambda kv: kv[0]))) + return graph_id + + + def init(self, init_type=Options.InitType.EAGER_WITHOUT_SHUFFLED_COPIES, print_to_stdout=False): + if isinstance(init_type, str): + init_type = OptionsStringMap.InitType[init_type] + + # Throw an exception if no edit costs have been selected. + if self.__ged_data._edit_cost is None: + raise Exception('No edit costs have been selected. Call set_edit_cost() before calling init().') + + # Return if the environment is initialized. + if self.__initialized: + return + + # Set initialization type. + self.__ged_data._init_type = init_type + + # @todo: Construct shuffled graph copies if necessary. + + # Re-initialize adjacency matrices (also previously initialized graphs must be re-initialized because of possible re-allocation). + # @todo: setup_adjacency_matrix, don't know if neccessary. + self.__ged_data._max_num_nodes = np.max([nx.number_of_nodes(g) for g in self.__ged_data._graphs]) + self.__ged_data._max_num_edges = np.max([nx.number_of_edges(g) for g in self.__ged_data._graphs]) + + # Initialize cost matrices if necessary. + if self.__ged_data._eager_init(): + pass # @todo: init_cost_matrices_: 1. Update node cost matrix if new node labels have been added to the environment; 2. Update edge cost matrix if new edge labels have been added to the environment. + + # Mark environment as initialized. + self.__initialized = True + self.__new_graph_ids.clear() + + + def is_initialized(self): + """ + /*! + * @brief Check if the environment is initialized. + * @return True if the environment is initialized. + */ + """ + return self.__initialized + + + def get_init_type(self): + """ + /*! + * @brief Returns the initialization type of the last initialization. + * @return Initialization type. + */ + """ + return self.__ged_data._init_type + + + def set_label_costs(self, node_label_costs=None, edge_label_costs=None): + """Set the costs between labels. + """ + if node_label_costs is not None: + self.__ged_data._node_label_costs = node_label_costs + if edge_label_costs is not None: + self.__ged_data._edge_label_costs = edge_label_costs + + + def set_method(self, method, options=''): + """ + /*! + * @brief Sets the GEDMethod to be used by run_method(). + * @param[in] method Select the method that is to be used. + * @param[in] options An options string of the form @"[--@ @] [...]@" passed to the selected method. + */ + """ + del self.__ged_method + + if isinstance(method, str): + method = OptionsStringMap.GEDMethod[method] + + if method == Options.GEDMethod.BRANCH: + self.__ged_method = Branch(self.__ged_data) + elif method == Options.GEDMethod.BRANCH_FAST: + self.__ged_method = BranchFast(self.__ged_data) + elif method == Options.GEDMethod.BRANCH_FAST: + self.__ged_method = BranchFast(self.__ged_data) + elif method == Options.GEDMethod.BRANCH_TIGHT: + self.__ged_method = BranchTight(self.__ged_data) + elif method == Options.GEDMethod.BRANCH_UNIFORM: + self.__ged_method = BranchUniform(self.__ged_data) + elif method == Options.GEDMethod.BRANCH_COMPACT: + self.__ged_method = BranchCompact(self.__ged_data) + elif method == Options.GEDMethod.PARTITION: + self.__ged_method = Partition(self.__ged_data) + elif method == Options.GEDMethod.HYBRID: + self.__ged_method = Hybrid(self.__ged_data) + elif method == Options.GEDMethod.RING: + self.__ged_method = Ring(self.__ged_data) + elif method == Options.GEDMethod.ANCHOR_AWARE_GED: + self.__ged_method = AnchorAwareGED(self.__ged_data) + elif method == Options.GEDMethod.WALKS: + self.__ged_method = Walks(self.__ged_data) + elif method == Options.GEDMethod.IPFP: + self.__ged_method = IPFP(self.__ged_data) + elif method == Options.GEDMethod.BIPARTITE: + from gklearn.ged.methods import Bipartite + self.__ged_method = Bipartite(self.__ged_data) + elif method == Options.GEDMethod.SUBGRAPH: + self.__ged_method = Subgraph(self.__ged_data) + elif method == Options.GEDMethod.NODE: + self.__ged_method = Node(self.__ged_data) + elif method == Options.GEDMethod.RING_ML: + self.__ged_method = RingML(self.__ged_data) + elif method == Options.GEDMethod.BIPARTITE_ML: + self.__ged_method = BipartiteML(self.__ged_data) + elif method == Options.GEDMethod.REFINE: + self.__ged_method = Refine(self.__ged_data) + elif method == Options.GEDMethod.BP_BEAM: + self.__ged_method = BPBeam(self.__ged_data) + elif method == Options.GEDMethod.SIMULATED_ANNEALING: + self.__ged_method = SimulatedAnnealing(self.__ged_data) + elif method == Options.GEDMethod.HED: + self.__ged_method = HED(self.__ged_data) + elif method == Options.GEDMethod.STAR: + self.__ged_method = STAR(self.__ged_data) + # #ifdef GUROBI + elif method == Options.GEDMethod.F1: + self.__ged_method = F1(self.__ged_data) + elif method == Options.GEDMethod.F2: + self.__ged_method = F2(self.__ged_data) + elif method == Options.GEDMethod.COMPACT_MIP: + self.__ged_method = CompactMIP(self.__ged_data) + elif method == Options.GEDMethod.BLP_NO_EDGE_LABELS: + self.__ged_method = BLPNoEdgeLabels(self.__ged_data) + + self.__ged_method.set_options(options) + + + def run_method(self, g_id, h_id): + """ + /*! + * @brief Runs the GED method specified by call to set_method() between the graphs with IDs @p g_id and @p h_id. + * @param[in] g_id ID of an input graph that has been added to the environment. + * @param[in] h_id ID of an input graph that has been added to the environment. + */ + """ + if g_id >= self.__ged_data.num_graphs(): + raise Exception('The graph with ID', str(g_id), 'has not been added to the environment.') + if h_id >= self.__ged_data.num_graphs(): + raise Exception('The graph with ID', str(h_id), 'has not been added to the environment.') + if not self.__initialized: + raise Exception('The environment is uninitialized. Call init() after adding all graphs to the environment.') + if self.__ged_method is None: + raise Exception('No method has been set. Call set_method() before calling run().') + + # Call selected GEDMethod and store results. + if self.__ged_data.shuffled_graph_copies_available() and (g_id == h_id): + self.__ged_method.run(g_id, self.__ged_data.id_shuffled_graph_copy(h_id)) # @todo: why shuffle? + else: + self.__ged_method.run(g_id, h_id) + self.__lower_bounds[(g_id, h_id)] = self.__ged_method.get_lower_bound() + self.__upper_bounds[(g_id, h_id)] = self.__ged_method.get_upper_bound() + self.__runtimes[(g_id, h_id)] = self.__ged_method.get_runtime() + self.__node_maps[(g_id, h_id)] = self.__ged_method.get_node_map() + + + def init_method(self): + """Initializes the method specified by call to set_method(). + """ + if not self.__initialized: + raise Exception('The environment is uninitialized. Call init() before calling init_method().') + if self.__ged_method is None: + raise Exception('No method has been set. Call set_method() before calling init_method().') + self.__ged_method.init() + + + def get_num_node_labels(self): + """ + /*! + * @brief Returns the number of node labels. + * @return Number of pairwise different node labels contained in the environment. + * @note If @p 1 is returned, the nodes are unlabeled. + */ + """ + return len(self.__ged_data._node_labels) + + + def get_all_node_labels(self): + """ + /*! + * @brief Returns the list of all node labels. + * @return List of pairwise different node labels contained in the environment. + * @note If @p 1 is returned, the nodes are unlabeled. + */ + """ + return self.__ged_data._node_labels + + + def get_node_label(self, label_id, to_dict=True): + """ + /*! + * @brief Returns node label. + * @param[in] label_id ID of node label that should be returned. Must be between 1 and num_node_labels(). + * @return Node label for selected label ID. + */ + """ + if label_id < 1 or label_id > self.get_num_node_labels(): + raise Exception('The environment does not contain a node label with ID', str(label_id), '.') + if to_dict: + return dict(self.__ged_data._node_labels[label_id - 1]) + return self.__ged_data._node_labels[label_id - 1] + + + def get_num_edge_labels(self): + """ + /*! + * @brief Returns the number of edge labels. + * @return Number of pairwise different edge labels contained in the environment. + * @note If @p 1 is returned, the edges are unlabeled. + */ + """ + return len(self.__ged_data._edge_labels) + + + def get_all_edge_labels(self): + """ + /*! + * @brief Returns the list of all edge labels. + * @return List of pairwise different edge labels contained in the environment. + * @note If @p 1 is returned, the edges are unlabeled. + */ + """ + return self.__ged_data._edge_labels + + + def get_edge_label(self, label_id, to_dict=True): + """ + /*! + * @brief Returns edge label. + * @param[in] label_id ID of edge label that should be returned. Must be between 1 and num_node_labels(). + * @return Edge label for selected label ID. + */ + """ + if label_id < 1 or label_id > self.get_num_edge_labels(): + raise Exception('The environment does not contain an edge label with ID', str(label_id), '.') + if to_dict: + return dict(self.__ged_data._edge_labels[label_id - 1]) + return self.__ged_data._edge_labels[label_id - 1] + + + def get_upper_bound(self, g_id, h_id): + """ + /*! + * @brief Returns upper bound for edit distance between the input graphs. + * @param[in] g_id ID of an input graph that has been added to the environment. + * @param[in] h_id ID of an input graph that has been added to the environment. + * @return Upper bound computed by the last call to run_method() with arguments @p g_id and @p h_id. + */ + """ + if (g_id, h_id) not in self.__upper_bounds: + raise Exception('Call run(' + str(g_id) + ',' + str(h_id) + ') before calling get_upper_bound(' + str(g_id) + ',' + str(h_id) + ').') + return self.__upper_bounds[(g_id, h_id)] + + + def get_lower_bound(self, g_id, h_id): + """ + /*! + * @brief Returns lower bound for edit distance between the input graphs. + * @param[in] g_id ID of an input graph that has been added to the environment. + * @param[in] h_id ID of an input graph that has been added to the environment. + * @return Lower bound computed by the last call to run_method() with arguments @p g_id and @p h_id. + */ + """ + if (g_id, h_id) not in self.__lower_bounds: + raise Exception('Call run(' + str(g_id) + ',' + str(h_id) + ') before calling get_lower_bound(' + str(g_id) + ',' + str(h_id) + ').') + return self.__lower_bounds[(g_id, h_id)] + + + def get_runtime(self, g_id, h_id): + """ + /*! + * @brief Returns runtime. + * @param[in] g_id ID of an input graph that has been added to the environment. + * @param[in] h_id ID of an input graph that has been added to the environment. + * @return Runtime of last call to run_method() with arguments @p g_id and @p h_id. + */ + """ + if (g_id, h_id) not in self.__runtimes: + raise Exception('Call run(' + str(g_id) + ',' + str(h_id) + ') before calling get_runtime(' + str(g_id) + ',' + str(h_id) + ').') + return self.__runtimes[(g_id, h_id)] + + + def get_init_time(self): + """ + /*! + * @brief Returns initialization time. + * @return Runtime of the last call to init_method(). + */ + """ + return self.__ged_method.get_init_time() + + + def get_node_map(self, g_id, h_id): + """ + /*! + * @brief Returns node map between the input graphs. + * @param[in] g_id ID of an input graph that has been added to the environment. + * @param[in] h_id ID of an input graph that has been added to the environment. + * @return Node map computed by the last call to run_method() with arguments @p g_id and @p h_id. + */ + """ + if (g_id, h_id) not in self.__node_maps: + raise Exception('Call run(' + str(g_id) + ',' + str(h_id) + ') before calling get_node_map(' + str(g_id) + ',' + str(h_id) + ').') + return self.__node_maps[(g_id, h_id)] + + + def get_forward_map(self, g_id, h_id) : + """ + Returns the forward map (or the half of the adjacence matrix) between nodes of the two indicated graphs. + + :param g: The Id of the first compared graph + :param h: The Id of the second compared graph + :type g: size_t + :type h: size_t + :return: The forward map to the adjacence matrix between nodes of the two graphs + :rtype: list[npy_uint32] + + .. seealso:: run_method(), get_upper_bound(), get_lower_bound(), get_backward_map(), get_runtime(), quasimetric_cost(), get_node_map(), get_assignment_matrix() + .. warning:: run_method() between the same two graph must be called before this function. + .. note:: I don't know how to connect the two map to reconstruct the adjacence matrix. Please come back when I know how it's work ! + """ + return self.get_node_map(g_id, h_id).forward_map + + + def get_backward_map(self, g_id, h_id) : + """ + Returns the backward map (or the half of the adjacence matrix) between nodes of the two indicated graphs. + + :param g: The Id of the first compared graph + :param h: The Id of the second compared graph + :type g: size_t + :type h: size_t + :return: The backward map to the adjacence matrix between nodes of the two graphs + :rtype: list[npy_uint32] + + .. seealso:: run_method(), get_upper_bound(), get_lower_bound(), get_forward_map(), get_runtime(), quasimetric_cost(), get_node_map(), get_assignment_matrix() + .. warning:: run_method() between the same two graph must be called before this function. + .. note:: I don't know how to connect the two map to reconstruct the adjacence matrix. Please come back when I know how it's work ! + """ + return self.get_node_map(g_id, h_id).backward_map + + + def compute_induced_cost(self, g_id, h_id, node_map): + """ + /*! + * @brief Computes the edit cost between two graphs induced by a node map. + * @param[in] g_id ID of input graph. + * @param[in] h_id ID of input graph. + * @param[in,out] node_map Node map whose induced edit cost is to be computed. + */ + """ + self.__ged_data.compute_induced_cost(self.__ged_data._graphs[g_id], self.__ged_data._graphs[h_id], node_map) + + + def get_nx_graph(self, graph_id): + """ + * @brief Returns NetworkX.Graph() representation. + * @param[in] graph_id ID of the selected graph. + """ + graph = nx.Graph() # @todo: add graph attributes. + graph.graph['id'] = graph_id + + nb_nodes = self.get_graph_num_nodes(graph_id) + original_node_ids = self.get_original_node_ids(graph_id) + node_labels = self.get_graph_node_labels(graph_id, to_dict=True) + graph.graph['original_node_ids'] = original_node_ids + + for node_id in range(0, nb_nodes): + graph.add_node(node_id, **node_labels[node_id]) + + edges = self.get_graph_edges(graph_id, to_dict=True) + for (head, tail), labels in edges.items(): + graph.add_edge(head, tail, **labels) + + return graph + + + def get_graph_node_labels(self, graph_id, to_dict=True): + """ + Searchs and returns all the labels of nodes on a graph, selected by its ID. + + :param graph_id: The ID of the wanted graph + :type graph_id: size_t + :return: The list of nodes' labels on the selected graph + :rtype: list[dict{string : string}] + + .. seealso:: get_graph_internal_id(), get_graph_num_nodes(), get_graph_num_edges(), get_original_node_ids(), get_graph_edges(), get_graph_adjacence_matrix() + .. note:: These functions allow to collect all the graph's informations. + """ + graph = self.__ged_data.graph(graph_id) + node_labels = [] + for n in graph.nodes(): + node_labels.append(graph.nodes[n]['label']) + if to_dict: + return [dict(i) for i in node_labels] + return node_labels + + + def get_graph_edges(self, graph_id, to_dict=True): + """ + Searchs and returns all the edges on a graph, selected by its ID. + + :param graph_id: The ID of the wanted graph + :type graph_id: size_t + :return: The list of edges on the selected graph + :rtype: dict{tuple(size_t, size_t) : dict{string : string}} + + .. seealso::get_graph_internal_id(), get_graph_num_nodes(), get_graph_num_edges(), get_original_node_ids(), get_graph_node_labels(), get_graph_adjacence_matrix() + .. note:: These functions allow to collect all the graph's informations. + """ + graph = self.__ged_data.graph(graph_id) + if to_dict: + edges = {} + for n1, n2, attr in graph.edges(data=True): + edges[(n1, n2)] = dict(attr['label']) + return edges + return {(n1, n2): attr['label'] for n1, n2, attr in graph.edges(data=True)} + + + + def get_graph_name(self, graph_id): + """ + /*! + * @brief Returns the graph name. + * @param[in] graph_id ID of an input graph that has been added to the environment. + * @return Name of the input graph. + */ + """ + return self.__ged_data._graph_names[graph_id] + + + def get_graph_num_nodes(self, graph_id): + """ + /*! + * @brief Returns the number of nodes. + * @param[in] graph_id ID of an input graph that has been added to the environment. + * @return Number of nodes in the graph. + */ + """ + return nx.number_of_nodes(self.__ged_data.graph(graph_id)) + + + def get_original_node_ids(self, graph_id): + """ + Searchs and returns all th Ids of nodes on a graph, selected by its ID. + + :param graph_id: The ID of the wanted graph + :type graph_id: size_t + :return: The list of IDs's nodes on the selected graph + :rtype: list[string] + + .. seealso::get_graph_internal_id(), get_graph_num_nodes(), get_graph_num_edges(), get_graph_node_labels(), get_graph_edges(), get_graph_adjacence_matrix() + .. note:: These functions allow to collect all the graph's informations. + """ + return [i for i in self.__internal_to_original_node_ids[graph_id].values()] + + + def get_node_cost(self, node_label_1, node_label_2): + return self.__ged_data.node_cost(node_label_1, node_label_2) + + + def get_node_rel_cost(self, node_label_1, node_label_2): + """ + /*! + * @brief Returns node relabeling cost. + * @param[in] node_label_1 First node label. + * @param[in] node_label_2 Second node label. + * @return Node relabeling cost for the given node labels. + */ + """ + if isinstance(node_label_1, dict): + node_label_1 = tuple(sorted(node_label_1.items(), key=lambda kv: kv[0])) + if isinstance(node_label_2, dict): + node_label_2 = tuple(sorted(node_label_2.items(), key=lambda kv: kv[0])) + return self.__ged_data._edit_cost.node_rel_cost_fun(node_label_1, node_label_2) # @todo: may need to use node_cost() instead (or change node_cost() and modify ged_method for pre-defined cost matrices.) + + + def get_node_del_cost(self, node_label): + """ + /*! + * @brief Returns node deletion cost. + * @param[in] node_label Node label. + * @return Cost of deleting node with given label. + */ + """ + if isinstance(node_label, dict): + node_label = tuple(sorted(node_label.items(), key=lambda kv: kv[0])) + return self.__ged_data._edit_cost.node_del_cost_fun(node_label) + + + def get_node_ins_cost(self, node_label): + """ + /*! + * @brief Returns node insertion cost. + * @param[in] node_label Node label. + * @return Cost of inserting node with given label. + */ + """ + if isinstance(node_label, dict): + node_label = tuple(sorted(node_label.items(), key=lambda kv: kv[0])) + return self.__ged_data._edit_cost.node_ins_cost_fun(node_label) + + + def get_edge_cost(self, edge_label_1, edge_label_2): + return self.__ged_data.edge_cost(edge_label_1, edge_label_2) + + + def get_edge_rel_cost(self, edge_label_1, edge_label_2): + """ + /*! + * @brief Returns edge relabeling cost. + * @param[in] edge_label_1 First edge label. + * @param[in] edge_label_2 Second edge label. + * @return Edge relabeling cost for the given edge labels. + */ + """ + if isinstance(edge_label_1, dict): + edge_label_1 = tuple(sorted(edge_label_1.items(), key=lambda kv: kv[0])) + if isinstance(edge_label_2, dict): + edge_label_2 = tuple(sorted(edge_label_2.items(), key=lambda kv: kv[0])) + return self.__ged_data._edit_cost.edge_rel_cost_fun(edge_label_1, edge_label_2) + + + def get_edge_del_cost(self, edge_label): + """ + /*! + * @brief Returns edge deletion cost. + * @param[in] edge_label Edge label. + * @return Cost of deleting edge with given label. + */ + """ + if isinstance(edge_label, dict): + edge_label = tuple(sorted(edge_label.items(), key=lambda kv: kv[0])) + return self.__ged_data._edit_cost.edge_del_cost_fun(edge_label) + + + def get_edge_ins_cost(self, edge_label): + """ + /*! + * @brief Returns edge insertion cost. + * @param[in] edge_label Edge label. + * @return Cost of inserting edge with given label. + */ + """ + if isinstance(edge_label, dict): + edge_label = tuple(sorted(edge_label.items(), key=lambda kv: kv[0])) + return self.__ged_data._edit_cost.edge_ins_cost_fun(edge_label) + + + def get_all_graph_ids(self): + return [i for i in range(0, self.__ged_data._num_graphs_without_shuffled_copies)] \ No newline at end of file