2. update README.md. 3. update preimage module, class Dataset. 4. update requirements. 5. add helper function to compute Gram matrix for each class.v0.2.x
@@ -4,7 +4,7 @@ | |||||
[](https://graphkit-learn.readthedocs.io/en/master/?badge=master) | [](https://graphkit-learn.readthedocs.io/en/master/?badge=master) | ||||
[](https://badge.fury.io/py/graphkit-learn) | [](https://badge.fury.io/py/graphkit-learn) | ||||
A python package for graph kernels. | |||||
A python package for graph kernels, graph edit distances and graph pre-image problem. | |||||
## Requirements | ## Requirements | ||||
@@ -348,7 +348,7 @@ class MedianGraphEstimator(object): | |||||
# Print information about current iteration. | # Print information about current iteration. | ||||
if self.__print_to_stdout == 2: | if self.__print_to_stdout == 2: | ||||
progress = tqdm(desc='\rComputing initial node maps', total=len(graph_ids), file=sys.stdout) | |||||
progress = tqdm(desc='Computing initial node maps', total=len(graph_ids), file=sys.stdout) | |||||
# Compute node maps and sum of distances for initial median. | # Compute node maps and sum of distances for initial median. | ||||
self.__sum_of_distances = 0 | self.__sum_of_distances = 0 | ||||
@@ -457,7 +457,7 @@ class MedianGraphEstimator(object): | |||||
self.__itrs[median_pos] += 1 | self.__itrs[median_pos] += 1 | ||||
# Update the best median. | # Update the best median. | ||||
if self.__sum_of_distances < self.__best_init_sum_of_distances: | |||||
if self.__sum_of_distances < best_sum_of_distances: | |||||
best_sum_of_distances = self.__sum_of_distances | best_sum_of_distances = self.__sum_of_distances | ||||
node_maps_from_best_median = self.__node_maps_from_median | node_maps_from_best_median = self.__node_maps_from_median | ||||
best_median = median | best_median = median | ||||
@@ -588,7 +588,7 @@ class MedianGraphEstimator(object): | |||||
# Print information about current iteration. | # Print information about current iteration. | ||||
if self.__print_to_stdout == 2: | if self.__print_to_stdout == 2: | ||||
progress = tqdm(desc='\rComputing medoid', total=len(graph_ids), file=sys.stdout) | |||||
progress = tqdm(desc='Computing medoid', total=len(graph_ids), file=sys.stdout) | |||||
# Compute the medoid. | # Compute the medoid. | ||||
medoid_id = graph_ids[0] | medoid_id = graph_ids[0] | ||||
@@ -718,7 +718,7 @@ class MedianGraphEstimator(object): | |||||
def __update_node_maps(self): | def __update_node_maps(self): | ||||
# Print information about current iteration. | # Print information about current iteration. | ||||
if self.__print_to_stdout == 2: | if self.__print_to_stdout == 2: | ||||
progress = tqdm(desc='\rUpdating node maps', total=len(self.__node_maps_from_median), file=sys.stdout) | |||||
progress = tqdm(desc='Updating node maps', total=len(self.__node_maps_from_median), file=sys.stdout) | |||||
# Update the node maps. | # Update the node maps. | ||||
node_maps_were_modified = False | node_maps_were_modified = False | ||||
@@ -307,7 +307,7 @@ def ged_options_to_string(options): | |||||
opt_str = ' ' | opt_str = ' ' | ||||
for key, val in options.items(): | for key, val in options.items(): | ||||
if key == 'initialization_method': | if key == 'initialization_method': | ||||
opt_str += '--initial_solutions ' + str(val) + ' ' | |||||
opt_str += '--initialization-method ' + str(val) + ' ' | |||||
elif key == 'initialization_options': | elif key == 'initialization_options': | ||||
opt_str += '--initialization-options ' + str(val) + ' ' | opt_str += '--initialization-options ' + str(val) + ' ' | ||||
elif key == 'lower_bound_method': | elif key == 'lower_bound_method': | ||||
@@ -76,11 +76,11 @@ class GraphKernel(object): | |||||
def compute_distance_matrix(self): | def compute_distance_matrix(self): | ||||
dis_mat = np.empty((len(self._graphs), len(self._graphs))) | |||||
if self._gram_matrix is None: | if self._gram_matrix is None: | ||||
raise Exception('Please compute the Gram matrix before computing distance matrix.') | raise Exception('Please compute the Gram matrix before computing distance matrix.') | ||||
for i in range(len(self._graphs)): | |||||
for j in range(i, len(self._graphs)): | |||||
dis_mat = np.empty((len(self._gram_matrix), len(self._gram_matrix))) | |||||
for i in range(len(self._gram_matrix)): | |||||
for j in range(i, len(self._gram_matrix)): | |||||
dis = self._gram_matrix[i, i] + self._gram_matrix[j, j] - 2 * self._gram_matrix[i, j] | dis = self._gram_matrix[i, i] + self._gram_matrix[j, j] - 2 * self._gram_matrix[i, j] | ||||
if dis < 0: | if dis < 0: | ||||
if dis > -1e-10: | if dis > -1e-10: | ||||
@@ -184,18 +184,22 @@ class GraphKernel(object): | |||||
def parallel(self): | def parallel(self): | ||||
return self._parallel | return self._parallel | ||||
@property | @property | ||||
def n_jobs(self): | def n_jobs(self): | ||||
return self._n_jobs | return self._n_jobs | ||||
@property | @property | ||||
def verbose(self): | def verbose(self): | ||||
return self._verbose | return self._verbose | ||||
@property | @property | ||||
def normalize(self): | def normalize(self): | ||||
return self._normalize | return self._normalize | ||||
@property | @property | ||||
def run_time(self): | def run_time(self): | ||||
return self._run_time | return self._run_time | ||||
@@ -205,7 +209,15 @@ class GraphKernel(object): | |||||
def gram_matrix(self): | def gram_matrix(self): | ||||
return self._gram_matrix | return self._gram_matrix | ||||
@gram_matrix.setter | |||||
def gram_matrix(self, value): | |||||
self._gram_matrix = value | |||||
@property | @property | ||||
def gram_matrix_unnorm(self): | def gram_matrix_unnorm(self): | ||||
return self._gram_matrix_unnorm | return self._gram_matrix_unnorm | ||||
@gram_matrix_unnorm.setter | |||||
def gram_matrix_unnorm(self, value): | |||||
self._gram_matrix_unnorm = value |
@@ -36,10 +36,9 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
self.__time_limit_in_sec = 0 | self.__time_limit_in_sec = 0 | ||||
self.__max_itrs = 100 | self.__max_itrs = 100 | ||||
self.__max_itrs_without_update = 3 | self.__max_itrs_without_update = 3 | ||||
self.__epsilon_ratio = 0.01 | |||||
self.__epsilon_residual = 0.01 | |||||
self.__epsilon_ec = 0.1 | |||||
# values to compute. | # values to compute. | ||||
self.__edit_cost_constants = [] | |||||
self.__runtime_precompute_gm = None | |||||
self.__runtime_optimize_ec = None | self.__runtime_optimize_ec = None | ||||
self.__runtime_generate_preimage = None | self.__runtime_generate_preimage = None | ||||
self.__runtime_total = None | self.__runtime_total = None | ||||
@@ -54,7 +53,11 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
self.__itrs = 0 | self.__itrs = 0 | ||||
self.__converged = False | self.__converged = False | ||||
self.__num_updates_ecc = 0 | self.__num_updates_ecc = 0 | ||||
# values that can be set or to be computed. | |||||
self.__edit_cost_constants = [] | |||||
self.__gram_matrix_unnorm = None | |||||
self.__runtime_precompute_gm = None | |||||
def set_options(self, **kwargs): | def set_options(self, **kwargs): | ||||
self._kernel_options = kwargs.get('kernel_options', {}) | self._kernel_options = kwargs.get('kernel_options', {}) | ||||
@@ -71,7 +74,10 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
self.__time_limit_in_sec = kwargs.get('time_limit_in_sec', 0) | self.__time_limit_in_sec = kwargs.get('time_limit_in_sec', 0) | ||||
self.__max_itrs = kwargs.get('max_itrs', 100) | self.__max_itrs = kwargs.get('max_itrs', 100) | ||||
self.__max_itrs_without_update = kwargs.get('max_itrs_without_update', 3) | self.__max_itrs_without_update = kwargs.get('max_itrs_without_update', 3) | ||||
self.__epsilon_ratio = kwargs.get('epsilon_ratio', 0.01) | |||||
self.__epsilon_residual = kwargs.get('epsilon_residual', 0.01) | |||||
self.__epsilon_ec = kwargs.get('epsilon_ec', 0.1) | |||||
self.__gram_matrix_unnorm = kwargs.get('gram_matrix_unnorm', None) | |||||
self.__runtime_precompute_gm = kwargs.get('runtime_precompute_gm', None) | |||||
def run(self): | def run(self): | ||||
@@ -81,9 +87,18 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
start = time.time() | start = time.time() | ||||
# 1. precompute gram matrix. | # 1. precompute gram matrix. | ||||
gram_matrix, run_time = self.__graph_kernel.compute(self._dataset.graphs, **self._kernel_options) | |||||
end_precompute_gm = time.time() | |||||
self.__runtime_precompute_gm = end_precompute_gm - start | |||||
if self.__gram_matrix_unnorm is None: | |||||
gram_matrix, run_time = self._graph_kernel.compute(self._dataset.graphs, **self._kernel_options) | |||||
self.__gram_matrix_unnorm = self._graph_kernel.gram_matrix_unnorm | |||||
end_precompute_gm = time.time() | |||||
self.__runtime_precompute_gm = end_precompute_gm - start | |||||
else: | |||||
if self.__runtime_precompute_gm is None: | |||||
raise Exception('Parameter "runtime_precompute_gm" must be given when using pre-computed Gram matrix.') | |||||
self._graph_kernel.gram_matrix_unnorm = self.__gram_matrix_unnorm | |||||
self._graph_kernel.gram_matrix = self._graph_kernel.normalize_gm(np.copy(self.__gram_matrix_unnorm)) | |||||
end_precompute_gm = time.time() | |||||
start -= self.__runtime_precompute_gm | |||||
# 2. optimize edit cost constants. | # 2. optimize edit cost constants. | ||||
self.__optimize_edit_cost_constants() | self.__optimize_edit_cost_constants() | ||||
@@ -134,6 +149,7 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
print('Total number of updating edit costs:', self.__num_updates_ecc) | print('Total number of updating edit costs:', self.__num_updates_ecc) | ||||
print('Is optimization of edit costs converged:', self.__converged) | print('Is optimization of edit costs converged:', self.__converged) | ||||
print('================================================================================') | print('================================================================================') | ||||
print() | |||||
# collect return values. | # collect return values. | ||||
# return (sod_sm, sod_gm), \ | # return (sod_sm, sod_gm), \ | ||||
@@ -222,7 +238,7 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
def __optimize_ecc_by_kernel_distances(self): | def __optimize_ecc_by_kernel_distances(self): | ||||
# compute distances in feature space. | # compute distances in feature space. | ||||
dis_k_mat, _, _, _ = self.__graph_kernel.compute_distance_matrix() | |||||
dis_k_mat, _, _, _ = self._graph_kernel.compute_distance_matrix() | |||||
dis_k_vec = [] | dis_k_vec = [] | ||||
for i in range(len(dis_k_mat)): | for i in range(len(dis_k_mat)): | ||||
# for j in range(i, len(dis_k_mat)): | # for j in range(i, len(dis_k_mat)): | ||||
@@ -256,7 +272,7 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
timer = Timer(self.__time_limit_in_sec) | timer = Timer(self.__time_limit_in_sec) | ||||
while not self.__termination_criterion_met(self.__converged, timer, self.__itrs, itrs_without_update): | while not self.__termination_criterion_met(self.__converged, timer, self.__itrs, itrs_without_update): | ||||
if self._verbose >= 2: | if self._verbose >= 2: | ||||
print('\niteration', self.__itrs) | |||||
print('\niteration', self.__itrs + 1) | |||||
time0 = time.time() | time0 = time.time() | ||||
# "fit" geds to distances in feature space by tuning edit costs using theLeast Squares Method. | # "fit" geds to distances in feature space by tuning edit costs using theLeast Squares Method. | ||||
# np.savez('results/xp_fit_method/fit_data_debug' + str(self.__itrs) + '.gm', | # np.savez('results/xp_fit_method/fit_data_debug' + str(self.__itrs) + '.gm', | ||||
@@ -286,21 +302,21 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
# check convergency. | # check convergency. | ||||
ec_changed = False | ec_changed = False | ||||
for i, cost in enumerate(self.__edit_cost_constants): | for i, cost in enumerate(self.__edit_cost_constants): | ||||
# if cost == 0: | |||||
# if edit_cost_list[-2][i] > self.__epsilon_ratio: | |||||
# ec_changed = True | |||||
# break | |||||
# elif abs(cost - edit_cost_list[-2][i]) / cost > self.__epsilon_ratio: | |||||
# ec_changed = True | |||||
# break | |||||
if abs(cost - edit_cost_list[-2][i]) > self.__epsilon_ratio: | |||||
if cost == 0: | |||||
if edit_cost_list[-2][i] > self.__epsilon_ec: | |||||
ec_changed = True | |||||
break | |||||
elif abs(cost - edit_cost_list[-2][i]) / cost > self.__epsilon_ec: | |||||
ec_changed = True | ec_changed = True | ||||
break | break | ||||
# if abs(cost - edit_cost_list[-2][i]) > self.__epsilon_ec: | |||||
# ec_changed = True | |||||
# break | |||||
residual_changed = False | residual_changed = False | ||||
if residual_list[-1] == 0: | if residual_list[-1] == 0: | ||||
if residual_list[-2] > self.__epsilon_ratio: | |||||
if residual_list[-2] > self.__epsilon_residual: | |||||
residual_changed = True | residual_changed = True | ||||
elif abs(residual_list[-1] - residual_list[-2]) / residual_list[-1] > self.__epsilon_ratio: | |||||
elif abs(residual_list[-1] - residual_list[-2]) / residual_list[-1] > self.__epsilon_residual: | |||||
residual_changed = True | residual_changed = True | ||||
self.__converged = not (ec_changed or residual_changed) | self.__converged = not (ec_changed or residual_changed) | ||||
if self.__converged: | if self.__converged: | ||||
@@ -313,14 +329,14 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
if self._verbose >= 2: | if self._verbose >= 2: | ||||
print() | print() | ||||
print('-------------------------------------------------------------------------') | print('-------------------------------------------------------------------------') | ||||
print('States of iteration', str(self.__itrs)) | |||||
print('States of iteration', self.__itrs + 1) | |||||
print('-------------------------------------------------------------------------') | print('-------------------------------------------------------------------------') | ||||
# print('Time spend:', self.__runtime_optimize_ec) | # print('Time spend:', self.__runtime_optimize_ec) | ||||
print('Total number of iterations for optimizing:', self.__itrs) | |||||
print('Total number of iterations for optimizing:', self.__itrs + 1) | |||||
print('Total number of updating edit costs:', self.__num_updates_ecc) | print('Total number of updating edit costs:', self.__num_updates_ecc) | ||||
print('Is optimization of edit costs converged:', self.__converged) | |||||
print('Does edit cost changed:', ec_changed) | |||||
print('Does residual changed:', residual_changed) | |||||
print('Was optimization of edit costs converged:', self.__converged) | |||||
print('Did edit costs change:', ec_changed) | |||||
print('Did residual change:', residual_changed) | |||||
print('Iterations without update:', itrs_without_update) | print('Iterations without update:', itrs_without_update) | ||||
print('Current edit cost constants:', self.__edit_cost_constants) | print('Current edit cost constants:', self.__edit_cost_constants) | ||||
print('Residual list:', residual_list) | print('Residual list:', residual_list) | ||||
@@ -634,11 +650,11 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
def __compute_distances_to_true_median(self): | def __compute_distances_to_true_median(self): | ||||
# compute distance in kernel space for set median. | # compute distance in kernel space for set median. | ||||
kernels_to_sm, _ = self.__graph_kernel.compute(self.__set_median, self._dataset.graphs, **self._kernel_options) | |||||
kernel_sm, _ = self.__graph_kernel.compute(self.__set_median, self.__set_median, **self._kernel_options) | |||||
kernels_to_sm = [kernels_to_sm[i] / np.sqrt(self.__graph_kernel.gram_matrix_unnorm[i, i] * kernel_sm) for i in range(len(kernels_to_sm))] # normalize | |||||
kernels_to_sm, _ = self._graph_kernel.compute(self.__set_median, self._dataset.graphs, **self._kernel_options) | |||||
kernel_sm, _ = self._graph_kernel.compute(self.__set_median, self.__set_median, **self._kernel_options) | |||||
kernels_to_sm = [kernels_to_sm[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_sm) for i in range(len(kernels_to_sm))] # normalize | |||||
# @todo: not correct kernel value | # @todo: not correct kernel value | ||||
gram_with_sm = np.concatenate((np.array([kernels_to_sm]), np.copy(self.__graph_kernel.gram_matrix)), axis=0) | |||||
gram_with_sm = np.concatenate((np.array([kernels_to_sm]), np.copy(self._graph_kernel.gram_matrix)), axis=0) | |||||
gram_with_sm = np.concatenate((np.array([[1] + kernels_to_sm]).T, gram_with_sm), axis=1) | gram_with_sm = np.concatenate((np.array([[1] + kernels_to_sm]).T, gram_with_sm), axis=1) | ||||
self.__k_dis_set_median = compute_k_dis(0, range(1, 1+len(self._dataset.graphs)), | self.__k_dis_set_median = compute_k_dis(0, range(1, 1+len(self._dataset.graphs)), | ||||
[1 / len(self._dataset.graphs)] * len(self._dataset.graphs), | [1 / len(self._dataset.graphs)] * len(self._dataset.graphs), | ||||
@@ -649,10 +665,10 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
# print(set_median.edges(data=True)) | # print(set_median.edges(data=True)) | ||||
# compute distance in kernel space for generalized median. | # compute distance in kernel space for generalized median. | ||||
kernels_to_gm, _ = self.__graph_kernel.compute(self.__gen_median, self._dataset.graphs, **self._kernel_options) | |||||
kernel_gm, _ = self.__graph_kernel.compute(self.__gen_median, self.__gen_median, **self._kernel_options) | |||||
kernels_to_gm = [kernels_to_gm[i] / np.sqrt(self.__graph_kernel.gram_matrix_unnorm[i, i] * kernel_gm) for i in range(len(kernels_to_gm))] # normalize | |||||
gram_with_gm = np.concatenate((np.array([kernels_to_gm]), np.copy(self.__graph_kernel.gram_matrix)), axis=0) | |||||
kernels_to_gm, _ = self._graph_kernel.compute(self.__gen_median, self._dataset.graphs, **self._kernel_options) | |||||
kernel_gm, _ = self._graph_kernel.compute(self.__gen_median, self.__gen_median, **self._kernel_options) | |||||
kernels_to_gm = [kernels_to_gm[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_gm) for i in range(len(kernels_to_gm))] # normalize | |||||
gram_with_gm = np.concatenate((np.array([kernels_to_gm]), np.copy(self._graph_kernel.gram_matrix)), axis=0) | |||||
gram_with_gm = np.concatenate((np.array([[1] + kernels_to_gm]).T, gram_with_gm), axis=1) | gram_with_gm = np.concatenate((np.array([[1] + kernels_to_gm]).T, gram_with_gm), axis=1) | ||||
self.__k_dis_gen_median = compute_k_dis(0, range(1, 1+len(self._dataset.graphs)), | self.__k_dis_gen_median = compute_k_dis(0, range(1, 1+len(self._dataset.graphs)), | ||||
[1 / len(self._dataset.graphs)] * len(self._dataset.graphs), | [1 / len(self._dataset.graphs)] * len(self._dataset.graphs), | ||||
@@ -679,12 +695,12 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
def __set_graph_kernel_by_name(self): | def __set_graph_kernel_by_name(self): | ||||
if self.kernel_options['name'] == 'structuralspkernel': | if self.kernel_options['name'] == 'structuralspkernel': | ||||
from gklearn.kernels import StructuralSP | from gklearn.kernels import StructuralSP | ||||
self.__graph_kernel = StructuralSP(node_labels=self.dataset.node_labels, | |||||
edge_labels=self.dataset.edge_labels, | |||||
node_attrs=self.dataset.node_attrs, | |||||
edge_attrs=self.dataset.edge_attrs, | |||||
ds_infos=self.dataset.get_dataset_infos(keys=['directed']), | |||||
**self.kernel_options) | |||||
self._graph_kernel = StructuralSP(node_labels=self._dataset.node_labels, | |||||
edge_labels=self._dataset.edge_labels, | |||||
node_attrs=self._dataset.node_attrs, | |||||
edge_attrs=self._dataset.edge_attrs, | |||||
ds_infos=self._dataset.get_dataset_infos(keys=['directed']), | |||||
**self._kernel_options) | |||||
# def __clean_graph(self, G, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]): | # def __clean_graph(self, G, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]): | ||||
@@ -692,7 +708,7 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
""" | """ | ||||
Cleans node and edge labels and attributes of the given graph. | Cleans node and edge labels and attributes of the given graph. | ||||
""" | """ | ||||
G_new = nx.Graph() | |||||
G_new = nx.Graph(**G.graph) | |||||
for nd, attrs in G.nodes(data=True): | for nd, attrs in G.nodes(data=True): | ||||
G_new.add_node(str(nd)) # @todo: should we keep this as str()? | G_new.add_node(str(nd)) # @todo: should we keep this as str()? | ||||
for l_name in self._dataset.node_labels: | for l_name in self._dataset.node_labels: | ||||
@@ -760,4 +776,13 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
@property | @property | ||||
def best_from_dataset(self): | def best_from_dataset(self): | ||||
return self.__best_from_dataset | |||||
return self.__best_from_dataset | |||||
@property | |||||
def gram_matrix_unnorm(self): | |||||
return self.__gram_matrix_unnorm | |||||
@gram_matrix_unnorm.setter | |||||
def gram_matrix_unnorm(self, value): | |||||
self.__gram_matrix_unnorm = value |
@@ -5,7 +5,7 @@ Created on Thu Mar 26 18:26:36 2020 | |||||
@author: ljia | @author: ljia | ||||
""" | """ | ||||
from gklearn.utils import Dataset | |||||
# from gklearn.utils import Dataset | |||||
class PreimageGenerator(object): | class PreimageGenerator(object): | ||||
@@ -32,6 +32,11 @@ class PreimageGenerator(object): | |||||
@kernel_options.setter | @kernel_options.setter | ||||
def kernel_options(self, value): | def kernel_options(self, value): | ||||
self._kernel_options = value | self._kernel_options = value | ||||
@property | |||||
def graph_kernel(self): | |||||
return self._graph_kernel | |||||
@property | @property | ||||
@@ -41,3 +46,4 @@ class PreimageGenerator(object): | |||||
@verbose.setter | @verbose.setter | ||||
def verbose(self, value): | def verbose(self, value): | ||||
self._verbose = value | self._verbose = value | ||||
@@ -21,21 +21,23 @@ from gklearn.kernels.treeletKernel import treeletkernel | |||||
from gklearn.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel | from gklearn.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel | ||||
from gklearn.utils import Dataset | from gklearn.utils import Dataset | ||||
import csv | import csv | ||||
import matplotlib.pyplot as plt | |||||
import networkx as nx | import networkx as nx | ||||
def generate_median_preimage_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=True, save_medians=True, plot_medians=True, dir_save='', ): | |||||
def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=True, save_medians=True, plot_medians=True, load_gm='auto', dir_save='', irrelevant_labels=None): | |||||
import os.path | |||||
from gklearn.preimage import MedianPreimageGenerator | from gklearn.preimage import MedianPreimageGenerator | ||||
from gklearn.utils import split_dataset_by_target | from gklearn.utils import split_dataset_by_target | ||||
from gklearn.utils.graphfiles import saveGXL | from gklearn.utils.graphfiles import saveGXL | ||||
# 1. get dataset. | # 1. get dataset. | ||||
print('getting dataset...') | |||||
print('1. getting dataset...') | |||||
dataset_all = Dataset() | dataset_all = Dataset() | ||||
dataset_all.load_predefined_dataset(ds_name) | dataset_all.load_predefined_dataset(ds_name) | ||||
if not irrelevant_labels is None: | |||||
dataset_all.remove_labels(**irrelevant_labels) | |||||
# dataset_all.cut_graphs(range(0, 100)) | |||||
datasets = split_dataset_by_target(dataset_all) | datasets = split_dataset_by_target(dataset_all) | ||||
# dataset.cut_graphs(range(0, 10)) | |||||
if save_results: | if save_results: | ||||
# create result files. | # create result files. | ||||
@@ -47,7 +49,6 @@ def generate_median_preimage_by_class(ds_name, mpg_options, kernel_options, ged_ | |||||
dis_k_sm_list = [] | dis_k_sm_list = [] | ||||
dis_k_gm_list = [] | dis_k_gm_list = [] | ||||
dis_k_gi_min_list = [] | dis_k_gi_min_list = [] | ||||
time_precompute_gm_list = [] | |||||
time_optimize_ec_list = [] | time_optimize_ec_list = [] | ||||
time_generate_list = [] | time_generate_list = [] | ||||
time_total_list = [] | time_total_list = [] | ||||
@@ -58,6 +59,26 @@ def generate_median_preimage_by_class(ds_name, mpg_options, kernel_options, ged_ | |||||
nb_dis_k_sm2gm = [0, 0, 0] | nb_dis_k_sm2gm = [0, 0, 0] | ||||
nb_dis_k_gi2sm = [0, 0, 0] | nb_dis_k_gi2sm = [0, 0, 0] | ||||
nb_dis_k_gi2gm = [0, 0, 0] | nb_dis_k_gi2gm = [0, 0, 0] | ||||
dis_k_max_list = [] | |||||
dis_k_min_list = [] | |||||
dis_k_mean_list = [] | |||||
if load_gm == 'auto': | |||||
gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz' | |||||
gmfile_exist = os.path.isfile(os.path.abspath(gm_fname)) | |||||
if gmfile_exist: | |||||
gmfile = np.load(gm_fname) | |||||
gram_matrix_unnorm_list = gmfile['gram_matrix_unnorm_list'] | |||||
time_precompute_gm_list = gmfile['run_time_list'].tolist() | |||||
else: | |||||
gram_matrix_unnorm_list = [] | |||||
time_precompute_gm_list = [] | |||||
elif not load_gm: | |||||
gram_matrix_unnorm_list = [] | |||||
time_precompute_gm_list = [] | |||||
else: | |||||
gmfile = np.load() | |||||
gram_matrix_unnorm_list = gmfile['gram_matrix_unnorm_list'] | |||||
time_precompute_gm_list = gmfile['run_time_list'] | |||||
# repeats_better_sod_sm2gm = [] | # repeats_better_sod_sm2gm = [] | ||||
# repeats_better_dis_k_sm2gm = [] | # repeats_better_dis_k_sm2gm = [] | ||||
# repeats_better_dis_k_gi2sm = [] | # repeats_better_dis_k_gi2sm = [] | ||||
@@ -65,16 +86,23 @@ def generate_median_preimage_by_class(ds_name, mpg_options, kernel_options, ged_ | |||||
print('start generating preimage for each class of target...') | print('start generating preimage for each class of target...') | ||||
for dataset in datasets: | |||||
print('\ntarget =', dataset.targets[0], '\n') | |||||
num_graphs = len(dataset.graphs) | |||||
for idx, dataset in enumerate(datasets): | |||||
target = dataset.targets[0] | |||||
print('\ntarget =', target, '\n') | |||||
# if target != 1: | |||||
# continue | |||||
num_graphs = len(dataset.graphs) | |||||
if num_graphs < 2: | if num_graphs < 2: | ||||
print('\nnumber of graphs = ', num_graphs, ', skip.\n') | print('\nnumber of graphs = ', num_graphs, ', skip.\n') | ||||
continue | continue | ||||
# 2. set parameters. | # 2. set parameters. | ||||
print('1. initializing mpg and setting parameters...') | |||||
print('2. initializing mpg and setting parameters...') | |||||
if load_gm: | |||||
if gmfile_exist: | |||||
mpg_options['gram_matrix_unnorm'] = gram_matrix_unnorm_list[idx] | |||||
mpg_options['runtime_precompute_gm'] = time_precompute_gm_list[idx] | |||||
mpg = MedianPreimageGenerator() | mpg = MedianPreimageGenerator() | ||||
mpg.dataset = dataset | mpg.dataset = dataset | ||||
mpg.set_options(**mpg_options.copy()) | mpg.set_options(**mpg_options.copy()) | ||||
@@ -83,10 +111,19 @@ def generate_median_preimage_by_class(ds_name, mpg_options, kernel_options, ged_ | |||||
mpg.mge_options = mge_options.copy() | mpg.mge_options = mge_options.copy() | ||||
# 3. compute median preimage. | # 3. compute median preimage. | ||||
print('2. computing median preimage...') | |||||
print('3. computing median preimage...') | |||||
mpg.run() | mpg.run() | ||||
results = mpg.get_results() | results = mpg.get_results() | ||||
# 4. compute pairwise kernel distances. | |||||
print('4. computing pairwise kernel distances...') | |||||
_, dis_k_max, dis_k_min, dis_k_mean = mpg.graph_kernel.compute_distance_matrix() | |||||
dis_k_max_list.append(dis_k_max) | |||||
dis_k_min_list.append(dis_k_min) | |||||
dis_k_mean_list.append(dis_k_mean) | |||||
# 5. save results (and median graphs). | |||||
print('5. saving results (and median graphs)...') | |||||
# write result detail. | # write result detail. | ||||
if save_results: | if save_results: | ||||
print('writing results to files...') | print('writing results to files...') | ||||
@@ -99,7 +136,7 @@ def generate_median_preimage_by_class(ds_name, mpg_options, kernel_options, ged_ | |||||
csv.writer(f_detail).writerow([ds_name, kernel_options['name'], | csv.writer(f_detail).writerow([ds_name, kernel_options['name'], | ||||
ged_options['edit_cost'], ged_options['method'], | ged_options['edit_cost'], ged_options['method'], | ||||
ged_options['attr_distance'], mpg_options['fit_method'], | ged_options['attr_distance'], mpg_options['fit_method'], | ||||
num_graphs, dataset.targets[0], 1, | |||||
num_graphs, target, 1, | |||||
results['sod_set_median'], results['sod_gen_median'], | results['sod_set_median'], results['sod_gen_median'], | ||||
results['k_dis_set_median'], results['k_dis_gen_median'], | results['k_dis_set_median'], results['k_dis_gen_median'], | ||||
results['k_dis_dataset'], sod_sm2gm, dis_k_sm2gm, | results['k_dis_dataset'], sod_sm2gm, dis_k_sm2gm, | ||||
@@ -161,7 +198,7 @@ def generate_median_preimage_by_class(ds_name, mpg_options, kernel_options, ged_ | |||||
csv.writer(f_summary).writerow([ds_name, kernel_options['name'], | csv.writer(f_summary).writerow([ds_name, kernel_options['name'], | ||||
ged_options['edit_cost'], ged_options['method'], | ged_options['edit_cost'], ged_options['method'], | ||||
ged_options['attr_distance'], mpg_options['fit_method'], | ged_options['attr_distance'], mpg_options['fit_method'], | ||||
num_graphs, dataset.targets[0], | |||||
num_graphs, target, | |||||
results['sod_set_median'], results['sod_gen_median'], | results['sod_set_median'], results['sod_gen_median'], | ||||
results['k_dis_set_median'], results['k_dis_gen_median'], | results['k_dis_set_median'], results['k_dis_gen_median'], | ||||
results['k_dis_dataset'], sod_sm2gm, dis_k_sm2gm, | results['k_dis_dataset'], sod_sm2gm, dis_k_sm2gm, | ||||
@@ -175,17 +212,18 @@ def generate_median_preimage_by_class(ds_name, mpg_options, kernel_options, ged_ | |||||
# save median graphs. | # save median graphs. | ||||
if save_medians: | if save_medians: | ||||
fn_pre_sm = dir_save + 'medians/set_median.' + mpg_options['fit_method'] + '.k' + str(num_graphs) + '.y' + str(dataset.targets[0]) + '.repeat' + str(1) | |||||
print('Saving median graphs to files...') | |||||
fn_pre_sm = dir_save + 'medians/set_median.' + mpg_options['fit_method'] + '.nbg' + str(num_graphs) + '.y' + str(target) + '.repeat' + str(1) | |||||
saveGXL(mpg.set_median, fn_pre_sm + '.gxl', method='default', | saveGXL(mpg.set_median, fn_pre_sm + '.gxl', method='default', | ||||
node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||||
node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||||
node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs) | node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs) | ||||
fn_pre_gm = dir_save + 'medians/gen_median.' + mpg_options['fit_method'] + '.k' + str(num_graphs) + '.y' + str(dataset.targets[0]) + '.repeat' + str(1) | |||||
fn_pre_gm = dir_save + 'medians/gen_median.' + mpg_options['fit_method'] + '.nbg' + str(num_graphs) + '.y' + str(target) + '.repeat' + str(1) | |||||
saveGXL(mpg.gen_median, fn_pre_gm + '.gxl', method='default', | saveGXL(mpg.gen_median, fn_pre_gm + '.gxl', method='default', | ||||
node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||||
node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||||
node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs) | node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs) | ||||
fn_best_dataset = dir_save + 'medians/g_best_dataset.' + mpg_options['fit_method'] + '.k' + str(num_graphs) + '.y' + str(dataset.targets[0]) + '.repeat' + str(1) | |||||
fn_best_dataset = dir_save + 'medians/g_best_dataset.' + mpg_options['fit_method'] + '.nbg' + str(num_graphs) + '.y' + str(target) + '.repeat' + str(1) | |||||
saveGXL(mpg.best_from_dataset, fn_best_dataset + '.gxl', method='default', | saveGXL(mpg.best_from_dataset, fn_best_dataset + '.gxl', method='default', | ||||
node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||||
node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||||
node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs) | node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs) | ||||
# plot median graphs. | # plot median graphs. | ||||
@@ -194,7 +232,9 @@ def generate_median_preimage_by_class(ds_name, mpg_options, kernel_options, ged_ | |||||
draw_Letter_graph(mpg.set_median, fn_pre_sm) | draw_Letter_graph(mpg.set_median, fn_pre_sm) | ||||
draw_Letter_graph(mpg.gen_median, fn_pre_gm) | draw_Letter_graph(mpg.gen_median, fn_pre_gm) | ||||
draw_Letter_graph(mpg.best_from_dataset, fn_best_dataset) | draw_Letter_graph(mpg.best_from_dataset, fn_best_dataset) | ||||
if (load_gm == 'auto' and not gmfile_exist) or not load_gm: | |||||
gram_matrix_unnorm_list.append(mpg.gram_matrix_unnorm) | |||||
# write result summary for each letter. | # write result summary for each letter. | ||||
if save_results: | if save_results: | ||||
@@ -227,6 +267,18 @@ def generate_median_preimage_by_class(ds_name, mpg_options, kernel_options, ged_ | |||||
num_converged, num_updates_ecc_mean]) | num_converged, num_updates_ecc_mean]) | ||||
f_summary.close() | f_summary.close() | ||||
# save total pairwise kernel distances. | |||||
dis_k_max = np.max(dis_k_max_list) | |||||
dis_k_min = np.min(dis_k_min_list) | |||||
dis_k_mean = np.mean(dis_k_mean_list) | |||||
print('The maximum pairwise distance in kernel space:', dis_k_max) | |||||
print('The minimum pairwise distance in kernel space:', dis_k_min) | |||||
print('The average pairwise distance in kernel space:', dis_k_mean) | |||||
# write Gram matrices to file. | |||||
if (load_gm == 'auto' and not gmfile_exist) or not load_gm: | |||||
np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm_list=gram_matrix_unnorm_list, run_time_list=time_precompute_gm_list) | |||||
print('\ncomplete.') | print('\ncomplete.') | ||||
@@ -235,7 +287,7 @@ def __init_output_file(ds_name, gkernel, fit_method, dir_output): | |||||
fn_output_detail = 'results_detail.' + ds_name + '.' + gkernel + '.csv' | fn_output_detail = 'results_detail.' + ds_name + '.' + gkernel + '.csv' | ||||
f_detail = open(dir_output + fn_output_detail, 'a') | f_detail = open(dir_output + fn_output_detail, 'a') | ||||
csv.writer(f_detail).writerow(['dataset', 'graph kernel', 'edit cost', | csv.writer(f_detail).writerow(['dataset', 'graph kernel', 'edit cost', | ||||
'GED method', 'attr distance', 'fit method', 'k', | |||||
'GED method', 'attr distance', 'fit method', 'num graphs', | |||||
'target', 'repeat', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', | 'target', 'repeat', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', | ||||
'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', | 'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', | ||||
'dis_k gi -> GM', 'edit cost constants', 'time precompute gm', | 'dis_k gi -> GM', 'edit cost constants', 'time precompute gm', | ||||
@@ -247,7 +299,7 @@ def __init_output_file(ds_name, gkernel, fit_method, dir_output): | |||||
fn_output_summary = 'results_summary.' + ds_name + '.' + gkernel + '.csv' | fn_output_summary = 'results_summary.' + ds_name + '.' + gkernel + '.csv' | ||||
f_summary = open(dir_output + fn_output_summary, 'a') | f_summary = open(dir_output + fn_output_summary, 'a') | ||||
csv.writer(f_summary).writerow(['dataset', 'graph kernel', 'edit cost', | csv.writer(f_summary).writerow(['dataset', 'graph kernel', 'edit cost', | ||||
'GED method', 'attr distance', 'fit method', 'k', | |||||
'GED method', 'attr distance', 'fit method', 'num graphs', | |||||
'target', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', | 'target', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', | ||||
'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', | 'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', | ||||
'dis_k gi -> GM', 'time precompute gm', 'time optimize ec', | 'dis_k gi -> GM', 'time precompute gm', 'time optimize ec', | ||||
@@ -263,24 +315,28 @@ def __init_output_file(ds_name, gkernel, fit_method, dir_output): | |||||
def get_relations(sign): | def get_relations(sign): | ||||
if sign == -1: | |||||
return 'better' | |||||
elif sign == 0: | |||||
return 'same' | |||||
elif sign == 1: | |||||
return 'worse' | |||||
if sign == -1: | |||||
return 'better' | |||||
elif sign == 0: | |||||
return 'same' | |||||
elif sign == 1: | |||||
return 'worse' | |||||
#Dessin median courrant | #Dessin median courrant | ||||
def draw_Letter_graph(graph, file_prefix): | def draw_Letter_graph(graph, file_prefix): | ||||
plt.figure() | |||||
pos = {} | |||||
for n in graph.nodes: | |||||
pos[n] = np.array([float(graph.node[n]['x']),float(graph.node[n]['y'])]) | |||||
nx.draw_networkx(graph, pos) | |||||
plt.savefig(file_prefix + '.eps', format='eps', dpi=300) | |||||
# plt.show() | |||||
plt.clf() | |||||
import matplotlib | |||||
matplotlib.use('agg') | |||||
import matplotlib.pyplot as plt | |||||
plt.figure() | |||||
pos = {} | |||||
for n in graph.nodes: | |||||
pos[n] = np.array([float(graph.nodes[n]['x']),float(graph.nodes[n]['y'])]) | |||||
nx.draw_networkx(graph, pos) | |||||
plt.savefig(file_prefix + '.eps', format='eps', dpi=300) | |||||
# plt.show() | |||||
plt.clf() | |||||
plt.close() | |||||
def remove_edges(Gn): | def remove_edges(Gn): | ||||
@@ -288,6 +344,7 @@ def remove_edges(Gn): | |||||
for _, _, attrs in G.edges(data=True): | for _, _, attrs in G.edges(data=True): | ||||
attrs.clear() | attrs.clear() | ||||
def dis_gstar(idx_g, idx_gi, alpha, Kmatrix, term3=0, withterm3=True): | def dis_gstar(idx_g, idx_gi, alpha, Kmatrix, term3=0, withterm3=True): | ||||
term1 = Kmatrix[idx_g, idx_g] | term1 = Kmatrix[idx_g, idx_g] | ||||
term2 = 0 | term2 = 0 | ||||
@@ -17,3 +17,5 @@ __date__ = "November 2017" | |||||
# from utils import utils | # from utils import utils | ||||
from gklearn.utils.dataset import Dataset, split_dataset_by_target | from gklearn.utils.dataset import Dataset, split_dataset_by_target | ||||
from gklearn.utils.timer import Timer | from gklearn.utils.timer import Timer | ||||
from gklearn.utils.utils import get_graph_kernel_by_name | |||||
from gklearn.utils.utils import compute_gram_matrices_by_class |
@@ -56,9 +56,10 @@ class Dataset(object): | |||||
def load_graphs(self, graphs, targets=None): | def load_graphs(self, graphs, targets=None): | ||||
# this has to be followed by set_labels(). | |||||
self.__graphs = graphs | self.__graphs = graphs | ||||
self.__targets = targets | self.__targets = targets | ||||
self.set_labels_attrs() | |||||
# self.set_labels_attrs() | |||||
def load_predefined_dataset(self, ds_name): | def load_predefined_dataset(self, ds_name): | ||||
@@ -94,6 +95,13 @@ class Dataset(object): | |||||
self.set_labels_attrs() | self.set_labels_attrs() | ||||
def set_labels(self, node_labels=[], node_attrs=[], edge_labels=[], edge_attrs=[]): | |||||
self.__node_labels = node_labels | |||||
self.__node_attrs = node_attrs | |||||
self.__edge_labels = edge_labels | |||||
self.__edge_attrs = edge_attrs | |||||
def set_labels_attrs(self, node_labels=None, node_attrs=None, edge_labels=None, edge_attrs=None): | def set_labels_attrs(self, node_labels=None, node_attrs=None, edge_labels=None, edge_attrs=None): | ||||
# @todo: remove labels which have only one possible values. | # @todo: remove labels which have only one possible values. | ||||
@@ -371,9 +379,34 @@ class Dataset(object): | |||||
print(OrderedDict(sorted(infos.items(), key=lambda i: keys.index(i[0])))) | print(OrderedDict(sorted(infos.items(), key=lambda i: keys.index(i[0])))) | ||||
def remove_labels(self, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]): | |||||
for g in self.__graphs: | |||||
for nd in g.nodes(): | |||||
for nl in node_labels: | |||||
del g.nodes[nd][nl] | |||||
for na in node_attrs: | |||||
del g.nodes[nd][na] | |||||
for ed in g.edges(): | |||||
for el in edge_labels: | |||||
del g.edges[ed][el] | |||||
for ea in edge_attrs: | |||||
del g.edges[ed][ea] | |||||
if len(node_labels) > 0: | |||||
self.__node_labels = [nl for nl in self.__node_labels if nl not in node_labels] | |||||
if len(edge_labels) > 0: | |||||
self.__edge_labels = [el for el in self.__edge_labels if el not in edge_labels] | |||||
if len(node_attrs) > 0: | |||||
self.__node_attrs = [na for na in self.__node_attrs if na not in node_attrs] | |||||
if len(edge_attrs) > 0: | |||||
self.__edge_attrs = [ea for ea in self.__edge_attrs if ea not in edge_attrs] | |||||
def cut_graphs(self, range_): | def cut_graphs(self, range_): | ||||
self.__graphs = [self.__graphs[i] for i in range_] | self.__graphs = [self.__graphs[i] for i in range_] | ||||
self.set_labels_attrs() | |||||
if self.__targets is not None: | |||||
self.__targets = [self.__targets[i] for i in range_] | |||||
# @todo | |||||
# self.set_labels_attrs() | |||||
def __get_dataset_size(self): | def __get_dataset_size(self): | ||||
@@ -574,5 +607,6 @@ def split_dataset_by_target(dataset): | |||||
sub_graphs = [graphs[i] for i in val] | sub_graphs = [graphs[i] for i in val] | ||||
sub_dataset = Dataset() | sub_dataset = Dataset() | ||||
sub_dataset.load_graphs(sub_graphs, [key] * len(val)) | sub_dataset.load_graphs(sub_graphs, [key] * len(val)) | ||||
sub_dataset.set_labels(node_labels=dataset.node_labels, node_attrs=dataset.node_attrs, edge_labels=dataset.edge_labels, edge_attrs=dataset.edge_attrs) | |||||
datasets.append(sub_dataset) | datasets.append(sub_dataset) | ||||
return datasets | return datasets |
@@ -296,3 +296,59 @@ def get_edge_labels(Gn, edge_label): | |||||
for G in Gn: | for G in Gn: | ||||
el = el | set(nx.get_edge_attributes(G, edge_label).values()) | el = el | set(nx.get_edge_attributes(G, edge_label).values()) | ||||
return el | return el | ||||
def get_graph_kernel_by_name(name, node_labels=None, edge_labels=None, node_attrs=None, edge_attrs=None, ds_infos=None, kernel_options={}): | |||||
if name == 'structuralspkernel': | |||||
from gklearn.kernels import StructuralSP | |||||
graph_kernel = StructuralSP(node_labels=node_labels, edge_labels=edge_labels, | |||||
node_attrs=node_attrs, edge_attrs=edge_attrs, | |||||
ds_infos=ds_infos, **kernel_options) | |||||
return graph_kernel | |||||
def compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save='', irrelevant_labels=None): | |||||
from gklearn.utils import Dataset, split_dataset_by_target | |||||
# 1. get dataset. | |||||
print('1. getting dataset...') | |||||
dataset_all = Dataset() | |||||
dataset_all.load_predefined_dataset(ds_name) | |||||
if not irrelevant_labels is None: | |||||
dataset_all.remove_labels(**irrelevant_labels) | |||||
# dataset_all.cut_graphs(range(0, 10)) | |||||
datasets = split_dataset_by_target(dataset_all) | |||||
gram_matrix_unnorm_list = [] | |||||
run_time_list = [] | |||||
print('start generating preimage for each class of target...') | |||||
for idx, dataset in enumerate(datasets): | |||||
target = dataset.targets[0] | |||||
print('\ntarget =', target, '\n') | |||||
# 2. initialize graph kernel. | |||||
print('2. initializing graph kernel and setting parameters...') | |||||
graph_kernel = get_graph_kernel_by_name(kernel_options['name'], | |||||
node_labels=dataset.node_labels, | |||||
edge_labels=dataset.edge_labels, | |||||
node_attrs=dataset.node_attrs, | |||||
edge_attrs=dataset.edge_attrs, | |||||
ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
kernel_options=kernel_options) | |||||
# 3. compute gram matrix. | |||||
print('3. computing gram matrix...') | |||||
gram_matrix, run_time = graph_kernel.compute(dataset.graphs, **kernel_options) | |||||
gram_matrix_unnorm = graph_kernel.gram_matrix_unnorm | |||||
gram_matrix_unnorm_list.append(gram_matrix_unnorm) | |||||
run_time_list.append(run_time) | |||||
# 4. save results. | |||||
print() | |||||
print('4. saving results...') | |||||
if save_results: | |||||
np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm_list=gram_matrix_unnorm_list, run_time_list=run_time_list) | |||||
print('\ncomplete.') |
@@ -0,0 +1,33 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Fri Apr 3 10:38:59 2020 | |||||
@author: ljia | |||||
""" | |||||
from tqdm import tqdm | |||||
import sys | |||||
print('start') | |||||
for i in tqdm(range(10000000), file=sys.stdout): | |||||
x = i | |||||
# print(x) | |||||
# ============================================================================= | |||||
# summary | |||||
# terminal, IPython 7.0.1 (Spyder 4): Works. | |||||
# write to file: does not work. Progress bar splits as the progress goes. | |||||
# Jupyter: | |||||
# ============================================================================= | |||||
# for i in tqdm(range(10000000)): | |||||
# x = i | |||||
# print(x) | |||||
# ============================================================================= | |||||
# summary | |||||
# terminal, IPython 7.0.1 (Spyder 4): does not work. When combines with other | |||||
# print, progress bar splits. | |||||
# write to file: does not work. Cannot write progress bar to file. | |||||
# Jupyter: | |||||
# ============================================================================= |
@@ -1,7 +1,10 @@ | |||||
numpy==1.15.2 | |||||
scipy==1.1.0 | |||||
matplotlib==3.0.0 | |||||
networkx==2.2 | |||||
scikit-learn==0.20.0 | |||||
tabulate==0.8.2 | |||||
tqdm==4.26.0 | |||||
numpy>=1.15.2 | |||||
scipy>=1.1.0 | |||||
matplotlib>=3.0.0 | |||||
networkx>=2.2 | |||||
scikit-learn>=0.20.0 | |||||
tabulate>=0.8.2 | |||||
tqdm>=4.26.0 | |||||
# cvxpy # for preimage. | |||||
# cvxopt # for preimage. | |||||
# mosek # for preimage. |