From 5fe81a932b96b647d773939175784bce5f703413 Mon Sep 17 00:00:00 2001 From: jajupmochi Date: Fri, 27 Mar 2020 09:34:26 +0100 Subject: [PATCH] clear repo: remove preimage. --- gklearn/preimage/common_types.py | 17 - gklearn/preimage/cpp2python.py | 134 ---- gklearn/preimage/find_best_k.py | 170 ----- gklearn/preimage/fitDistance.py | 430 ----------- gklearn/preimage/ged.py | 467 ------------ gklearn/preimage/iam.py | 775 ------------------- gklearn/preimage/knn.py | 114 --- gklearn/preimage/libs.py | 6 - gklearn/preimage/median.py | 218 ------ gklearn/preimage/median_benoit.py | 201 ----- gklearn/preimage/median_graph_estimator.py | 826 -------------------- gklearn/preimage/median_linlin.py | 215 ------ gklearn/preimage/median_preimage_generator.py | 15 - gklearn/preimage/misc.py | 108 --- gklearn/preimage/pathfrequency.py | 201 ----- gklearn/preimage/preimage_generator.py | 12 - gklearn/preimage/preimage_iam.py | 705 ----------------- gklearn/preimage/preimage_random.py | 309 -------- gklearn/preimage/python_code.py | 122 --- gklearn/preimage/test.py | 83 -- gklearn/preimage/test_fitDistance.py | 648 ---------------- gklearn/preimage/test_ged.py | 520 ------------- gklearn/preimage/test_iam.py | 964 ------------------------ gklearn/preimage/test_k_closest_graphs.py | 462 ------------ gklearn/preimage/test_median_graph_estimator.py | 91 --- gklearn/preimage/test_others.py | 686 ----------------- gklearn/preimage/test_preimage_iam.py | 620 --------------- gklearn/preimage/test_preimage_mix.py | 539 ------------- gklearn/preimage/test_preimage_random.py | 398 ---------- gklearn/preimage/timer.py | 40 - gklearn/preimage/utils.py | 151 ---- gklearn/preimage/visualization.py | 585 -------------- gklearn/preimage/xp_fit_method.py | 935 ----------------------- gklearn/preimage/xp_letter_h.py | 476 ------------ gklearn/preimage/xp_monoterpenoides.py | 249 ------ 35 files changed, 12492 deletions(-) delete mode 100644 gklearn/preimage/common_types.py delete mode 100644 gklearn/preimage/cpp2python.py delete mode 100644 gklearn/preimage/find_best_k.py delete mode 100644 gklearn/preimage/fitDistance.py delete mode 100644 gklearn/preimage/ged.py delete mode 100644 gklearn/preimage/iam.py delete mode 100644 gklearn/preimage/knn.py delete mode 100644 gklearn/preimage/libs.py delete mode 100644 gklearn/preimage/median.py delete mode 100644 gklearn/preimage/median_benoit.py delete mode 100644 gklearn/preimage/median_graph_estimator.py delete mode 100644 gklearn/preimage/median_linlin.py delete mode 100644 gklearn/preimage/median_preimage_generator.py delete mode 100644 gklearn/preimage/misc.py delete mode 100644 gklearn/preimage/pathfrequency.py delete mode 100644 gklearn/preimage/preimage_generator.py delete mode 100644 gklearn/preimage/preimage_iam.py delete mode 100644 gklearn/preimage/preimage_random.py delete mode 100644 gklearn/preimage/python_code.py delete mode 100644 gklearn/preimage/test.py delete mode 100644 gklearn/preimage/test_fitDistance.py delete mode 100644 gklearn/preimage/test_ged.py delete mode 100644 gklearn/preimage/test_iam.py delete mode 100644 gklearn/preimage/test_k_closest_graphs.py delete mode 100644 gklearn/preimage/test_median_graph_estimator.py delete mode 100644 gklearn/preimage/test_others.py delete mode 100644 gklearn/preimage/test_preimage_iam.py delete mode 100644 gklearn/preimage/test_preimage_mix.py delete mode 100644 gklearn/preimage/test_preimage_random.py delete mode 100644 gklearn/preimage/timer.py delete mode 100644 gklearn/preimage/utils.py delete mode 100644 gklearn/preimage/visualization.py delete mode 100644 gklearn/preimage/xp_fit_method.py delete mode 100644 gklearn/preimage/xp_letter_h.py delete mode 100644 gklearn/preimage/xp_monoterpenoides.py diff --git a/gklearn/preimage/common_types.py b/gklearn/preimage/common_types.py deleted file mode 100644 index 2face25..0000000 --- a/gklearn/preimage/common_types.py +++ /dev/null @@ -1,17 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Thu Mar 19 18:17:38 2020 - -@author: ljia -""" - -from enum import Enum, auto - -class AlgorithmState(Enum): - """can be used to specify the state of an algorithm. - """ - CALLED = auto # The algorithm has been called. - INITIALIZED = auto # The algorithm has been initialized. - CONVERGED = auto # The algorithm has converged. - TERMINATED = auto # The algorithm has terminated. \ No newline at end of file diff --git a/gklearn/preimage/cpp2python.py b/gklearn/preimage/cpp2python.py deleted file mode 100644 index 9d63026..0000000 --- a/gklearn/preimage/cpp2python.py +++ /dev/null @@ -1,134 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Fri Mar 20 11:09:04 2020 - -@author: ljia -""" -import re - -def convert_function(cpp_code): -# f_cpp = open('cpp_code.cpp', 'r') -# # f_cpp = open('cpp_ext/src/median_graph_estimator.ipp', 'r') -# cpp_code = f_cpp.read() - python_code = cpp_code.replace('else if (', 'elif ') - python_code = python_code.replace('if (', 'if ') - python_code = python_code.replace('else {', 'else:') - python_code = python_code.replace(') {', ':') - python_code = python_code.replace(';\n', '\n') - python_code = re.sub('\n(.*)}\n', '\n\n', python_code) - # python_code = python_code.replace('}\n', '') - python_code = python_code.replace('throw', 'raise') - python_code = python_code.replace('error', 'Exception') - python_code = python_code.replace('"', '\'') - python_code = python_code.replace('\\\'', '"') - python_code = python_code.replace('try {', 'try:') - python_code = python_code.replace('true', 'True') - python_code = python_code.replace('false', 'False') - python_code = python_code.replace('catch (...', 'except') - # python_code = re.sub('std::string\(\'(.*)\'\)', '$1', python_code) - - return python_code - - - -# # python_code = python_code.replace('}\n', '') - - - - -# python_code = python_code.replace('option.first', 'opt_name') -# python_code = python_code.replace('option.second', 'opt_val') -# python_code = python_code.replace('ged::Error', 'Exception') -# python_code = python_code.replace('std::string(\'Invalid argument "\')', '\'Invalid argument "\'') - - -# f_cpp.close() -# f_python = open('python_code.py', 'w') -# f_python.write(python_code) -# f_python.close() - - -def convert_function_comment(cpp_fun_cmt, param_types): - cpp_fun_cmt = cpp_fun_cmt.replace('\t', '') - cpp_fun_cmt = cpp_fun_cmt.replace('\n * ', ' ') - # split the input comment according to key words. - param_split = None - note = None - cmt_split = cpp_fun_cmt.split('@brief')[1] - brief = cmt_split - if '@param' in cmt_split: - cmt_split = cmt_split.split('@param') - brief = cmt_split[0] - param_split = cmt_split[1:] - if '@note' in cmt_split[-1]: - note_split = cmt_split[-1].split('@note') - if param_split is not None: - param_split.pop() - param_split.append(note_split[0]) - else: - brief = note_split[0] - note = note_split[1] - - # get parameters. - if param_split is not None: - for idx, param in enumerate(param_split): - _, param_name, param_desc = param.split(' ', 2) - param_name = function_comment_strip(param_name, ' *\n\t/') - param_desc = function_comment_strip(param_desc, ' *\n\t/') - param_split[idx] = (param_name, param_desc) - - # strip comments. - brief = function_comment_strip(brief, ' *\n\t/') - if note is not None: - note = function_comment_strip(note, ' *\n\t/') - - # construct the Python function comment. - python_fun_cmt = '"""' - python_fun_cmt += brief + '\n' - if param_split is not None and len(param_split) > 0: - python_fun_cmt += '\nParameters\n----------' - for idx, param in enumerate(param_split): - python_fun_cmt += '\n' + param[0] + ' : ' + param_types[idx] - python_fun_cmt += '\n\t' + param[1] + '\n' - if note is not None: - python_fun_cmt += '\nNote\n----\n' + note + '\n' - python_fun_cmt += '"""' - - return python_fun_cmt - - -def function_comment_strip(comment, bad_chars): - head_removed, tail_removed = False, False - while not head_removed or not tail_removed: - if comment[0] in bad_chars: - comment = comment[1:] - head_removed = False - else: - head_removed = True - if comment[-1] in bad_chars: - comment = comment[:-1] - tail_removed = False - else: - tail_removed = True - - return comment - - -if __name__ == '__main__': -# python_code = convert_function(""" -# if (print_to_stdout_ == 2) { -# std::cout << "\n===========================================================\n"; -# std::cout << "Block gradient descent for initial median " << median_pos + 1 << " of " << medians.size() << ".\n"; -# std::cout << "-----------------------------------------------------------\n"; -# } -# """) - - - python_fun_cmt = convert_function_comment(""" - /*! - * @brief Returns the sum of distances. - * @param[in] state The state of the estimator. - * @return The sum of distances of the median when the estimator was in the state @p state during the last call to run(). - */ - """, ['string', 'string']) \ No newline at end of file diff --git a/gklearn/preimage/find_best_k.py b/gklearn/preimage/find_best_k.py deleted file mode 100644 index df38d32..0000000 --- a/gklearn/preimage/find_best_k.py +++ /dev/null @@ -1,170 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Thu Jan 9 11:54:32 2020 - -@author: ljia -""" -import numpy as np -import random -import csv - -from gklearn.utils.graphfiles import loadDataset -from gklearn.preimage.test_k_closest_graphs import median_on_k_closest_graphs - -def find_best_k(): - ds = {'name': 'monoterpenoides', - 'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb - Gn, y_all = loadDataset(ds['dataset']) -# Gn = Gn[0:50] - gkernel = 'treeletkernel' - node_label = 'atom' - edge_label = 'bond_type' - ds_name = 'mono' - dir_output = 'results/test_find_best_k/' - - repeats = 50 - k_list = range(2, 11) - fit_method = 'k-graphs' - # fitted on the whole dataset - treelet - mono - edit_costs = [0.1268873773592978, 0.004084633224249829, 0.0897581955378986, 0.15328856114451297, 0.3109956881625734, 0.0] - - # create result files. - fn_output_detail = 'results_detail.' + fit_method + '.csv' - f_detail = open(dir_output + fn_output_detail, 'a') - csv.writer(f_detail).writerow(['dataset', 'graph kernel', 'fit method', 'k', - 'repeat', 'median set', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', - 'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', - 'dis_k gi -> GM']) - f_detail.close() - fn_output_summary = 'results_summary.csv' - f_summary = open(dir_output + fn_output_summary, 'a') - csv.writer(f_summary).writerow(['dataset', 'graph kernel', 'fit method', 'k', - 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', - 'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', - 'dis_k gi -> GM', '# SOD SM -> GM', '# dis_k SM -> GM', - '# dis_k gi -> SM', '# dis_k gi -> GM', 'repeats better SOD SM -> GM', - 'repeats better dis_k SM -> GM', 'repeats better dis_k gi -> SM', - 'repeats better dis_k gi -> GM']) - f_summary.close() - - random.seed(1) - rdn_seed_list = random.sample(range(0, repeats * 100), repeats) - - for k in k_list: - print('\n--------- k =', k, '----------') - - sod_sm_list = [] - sod_gm_list = [] - dis_k_sm_list = [] - dis_k_gm_list = [] - dis_k_gi_min_list = [] - nb_sod_sm2gm = [0, 0, 0] - nb_dis_k_sm2gm = [0, 0, 0] - nb_dis_k_gi2sm = [0, 0, 0] - nb_dis_k_gi2gm = [0, 0, 0] - repeats_better_sod_sm2gm = [] - repeats_better_dis_k_sm2gm = [] - repeats_better_dis_k_gi2sm = [] - repeats_better_dis_k_gi2gm = [] - - - for repeat in range(repeats): - print('\nrepeat =', repeat) - random.seed(rdn_seed_list[repeat]) - median_set_idx = random.sample(range(0, len(Gn)), k) - print('median set: ', median_set_idx) - - sod_sm, sod_gm, dis_k_sm, dis_k_gm, dis_k_gi, dis_k_gi_min \ - = median_on_k_closest_graphs(Gn, node_label, edge_label, gkernel, k, - fit_method='k-graphs', - edit_costs=edit_costs, - group_min=median_set_idx, - parallel=False) - - # write result detail. - sod_sm2gm = getRelations(np.sign(sod_gm - sod_sm)) - dis_k_sm2gm = getRelations(np.sign(dis_k_gm - dis_k_sm)) - dis_k_gi2sm = getRelations(np.sign(dis_k_sm - dis_k_gi_min)) - dis_k_gi2gm = getRelations(np.sign(dis_k_gm - dis_k_gi_min)) - f_detail = open(dir_output + fn_output_detail, 'a') - csv.writer(f_detail).writerow([ds_name, gkernel, fit_method, k, repeat, - median_set_idx, sod_sm, sod_gm, dis_k_sm, dis_k_gm, - dis_k_gi_min, sod_sm2gm, dis_k_sm2gm, dis_k_gi2sm, - dis_k_gi2gm]) - f_detail.close() - - # compute result summary. - sod_sm_list.append(sod_sm) - sod_gm_list.append(sod_gm) - dis_k_sm_list.append(dis_k_sm) - dis_k_gm_list.append(dis_k_gm) - dis_k_gi_min_list.append(dis_k_gi_min) - # # SOD SM -> GM - if sod_sm > sod_gm: - nb_sod_sm2gm[0] += 1 - repeats_better_sod_sm2gm.append(repeat) - elif sod_sm == sod_gm: - nb_sod_sm2gm[1] += 1 - elif sod_sm < sod_gm: - nb_sod_sm2gm[2] += 1 - # # dis_k SM -> GM - if dis_k_sm > dis_k_gm: - nb_dis_k_sm2gm[0] += 1 - repeats_better_dis_k_sm2gm.append(repeat) - elif dis_k_sm == dis_k_gm: - nb_dis_k_sm2gm[1] += 1 - elif dis_k_sm < dis_k_gm: - nb_dis_k_sm2gm[2] += 1 - # # dis_k gi -> SM - if dis_k_gi_min > dis_k_sm: - nb_dis_k_gi2sm[0] += 1 - repeats_better_dis_k_gi2sm.append(repeat) - elif dis_k_gi_min == dis_k_sm: - nb_dis_k_gi2sm[1] += 1 - elif dis_k_gi_min < dis_k_sm: - nb_dis_k_gi2sm[2] += 1 - # # dis_k gi -> GM - if dis_k_gi_min > dis_k_gm: - nb_dis_k_gi2gm[0] += 1 - repeats_better_dis_k_gi2gm.append(repeat) - elif dis_k_gi_min == dis_k_gm: - nb_dis_k_gi2gm[1] += 1 - elif dis_k_gi_min < dis_k_gm: - nb_dis_k_gi2gm[2] += 1 - - # write result summary. - sod_sm_mean = np.mean(sod_sm_list) - sod_gm_mean = np.mean(sod_gm_list) - dis_k_sm_mean = np.mean(dis_k_sm_list) - dis_k_gm_mean = np.mean(dis_k_gm_list) - dis_k_gi_min_mean = np.mean(dis_k_gi_min_list) - sod_sm2gm_mean = getRelations(np.sign(sod_gm_mean - sod_sm_mean)) - dis_k_sm2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_sm_mean)) - dis_k_gi2sm_mean = getRelations(np.sign(dis_k_sm_mean - dis_k_gi_min_mean)) - dis_k_gi2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_gi_min_mean)) - f_summary = open(dir_output + fn_output_summary, 'a') - csv.writer(f_summary).writerow([ds_name, gkernel, fit_method, k, - sod_sm_mean, sod_gm_mean, dis_k_sm_mean, dis_k_gm_mean, - dis_k_gi_min_mean, sod_sm2gm_mean, dis_k_sm2gm_mean, - dis_k_gi2sm_mean, dis_k_gi2gm_mean, nb_sod_sm2gm, - nb_dis_k_sm2gm, nb_dis_k_gi2sm, nb_dis_k_gi2gm, - repeats_better_sod_sm2gm, repeats_better_dis_k_sm2gm, - repeats_better_dis_k_gi2sm, repeats_better_dis_k_gi2gm]) - f_summary.close() - - print('\ncomplete.') - return - - -def getRelations(sign): - if sign == -1: - return 'better' - elif sign == 0: - return 'same' - elif sign == 1: - return 'worse' - - -if __name__ == '__main__': - find_best_k() \ No newline at end of file diff --git a/gklearn/preimage/fitDistance.py b/gklearn/preimage/fitDistance.py deleted file mode 100644 index 234f7fc..0000000 --- a/gklearn/preimage/fitDistance.py +++ /dev/null @@ -1,430 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Wed Oct 16 14:20:06 2019 - -@author: ljia -""" -import numpy as np -from tqdm import tqdm -from itertools import combinations_with_replacement, combinations -import multiprocessing -from multiprocessing import Pool -from functools import partial -import time -import random -import sys - -from scipy import optimize -from scipy.optimize import minimize -import cvxpy as cp - -from gklearn.preimage.ged import GED, get_nb_edit_operations, get_nb_edit_operations_letter, get_nb_edit_operations_nonsymbolic -from gklearn.preimage.utils import kernel_distance_matrix - -def fit_GED_to_kernel_distance(Gn, node_label, edge_label, gkernel, itr_max, - params_ged={'lib': 'gedlibpy', 'cost': 'CONSTANT', - 'method': 'IPFP', 'stabilizer': None}, - init_costs=[3, 3, 1, 3, 3, 1], - dataset='monoterpenoides', Kmatrix=None, - parallel=True): -# dataset = dataset.lower() - - # c_vi, c_vr, c_vs, c_ei, c_er, c_es or parts of them. -# random.seed(1) -# cost_rdm = random.sample(range(1, 10), 6) -# init_costs = cost_rdm + [0] -# init_costs = cost_rdm -# init_costs = [3, 3, 1, 3, 3, 1] -# init_costs = [i * 0.01 for i in cost_rdm] + [0] -# init_costs = [0.2, 0.2, 0.2, 0.2, 0.2, 0] -# init_costs = [0, 0, 0.9544, 0.026, 0.0196, 0] -# init_costs = [0.008429912251810438, 0.025461055985319694, 0.2047320869225948, 0.004148727085832133, 0.0, 0] -# idx_cost_nonzeros = [i for i, item in enumerate(edit_costs) if item != 0] - - # compute distances in feature space. - dis_k_mat, _, _, _ = kernel_distance_matrix(Gn, node_label, edge_label, - Kmatrix=Kmatrix, gkernel=gkernel) - dis_k_vec = [] - for i in range(len(dis_k_mat)): -# for j in range(i, len(dis_k_mat)): - for j in range(i + 1, len(dis_k_mat)): - dis_k_vec.append(dis_k_mat[i, j]) - dis_k_vec = np.array(dis_k_vec) - - # init ged. - print('\ninitial:') - time0 = time.time() - params_ged['dataset'] = dataset - params_ged['edit_cost_constant'] = init_costs - ged_vec_init, ged_mat, n_edit_operations = compute_geds(Gn, params_ged, - parallel=parallel) - residual_list = [np.sqrt(np.sum(np.square(np.array(ged_vec_init) - dis_k_vec)))] - time_list = [time.time() - time0] - edit_cost_list = [init_costs] - nb_cost_mat = np.array(n_edit_operations) - nb_cost_mat_list = [nb_cost_mat] - print('edit_costs:', init_costs) - print('residual_list:', residual_list) - - for itr in range(itr_max): - print('\niteration', itr) - time0 = time.time() - # "fit" geds to distances in feature space by tuning edit costs using the - # Least Squares Method. - np.savez('results/xp_fit_method/fit_data_debug' + str(itr) + '.gm', - nb_cost_mat=nb_cost_mat, dis_k_vec=dis_k_vec, - n_edit_operations=n_edit_operations, ged_vec_init=ged_vec_init, - ged_mat=ged_mat) - edit_costs_new, residual = update_costs(nb_cost_mat, dis_k_vec, - dataset=dataset, cost=params_ged['cost']) - for i in range(len(edit_costs_new)): - if -1e-9 <= edit_costs_new[i] <= 1e-9: - edit_costs_new[i] = 0 - if edit_costs_new[i] < 0: - raise ValueError('The edit cost is negative.') -# for i in range(len(edit_costs_new)): -# if edit_costs_new[i] < 0: -# edit_costs_new[i] = 0 - - # compute new GEDs and numbers of edit operations. - params_ged['edit_cost_constant'] = edit_costs_new # np.array([edit_costs_new[0], edit_costs_new[1], 0.75]) - ged_vec, ged_mat, n_edit_operations = compute_geds(Gn, params_ged, - parallel=parallel) - residual_list.append(np.sqrt(np.sum(np.square(np.array(ged_vec) - dis_k_vec)))) - time_list.append(time.time() - time0) - edit_cost_list.append(edit_costs_new) - nb_cost_mat = np.array(n_edit_operations) - nb_cost_mat_list.append(nb_cost_mat) - print('edit_costs:', edit_costs_new) - print('residual_list:', residual_list) - - return edit_costs_new, residual_list, edit_cost_list, dis_k_mat, ged_mat, \ - time_list, nb_cost_mat_list - - -def compute_geds(Gn, params_ged, parallel=False): - edit_cost_name = params_ged['cost'] - if edit_cost_name == 'LETTER' or edit_cost_name == 'LETTER2': - get_nb_eo = get_nb_edit_operations_letter - elif edit_cost_name == 'NON_SYMBOLIC': - get_nb_eo = get_nb_edit_operations_nonsymbolic - else: - get_nb_eo = get_nb_edit_operations - ged_mat = np.zeros((len(Gn), len(Gn))) - if parallel: -# print('parallel') -# len_itr = int(len(Gn) * (len(Gn) + 1) / 2) - len_itr = int(len(Gn) * (len(Gn) - 1) / 2) - ged_vec = [0 for i in range(len_itr)] - n_edit_operations = [0 for i in range(len_itr)] -# itr = combinations_with_replacement(range(0, len(Gn)), 2) - itr = combinations(range(0, len(Gn)), 2) - n_jobs = multiprocessing.cpu_count() - if len_itr < 100 * n_jobs: - chunksize = int(len_itr / n_jobs) + 1 - else: - chunksize = 100 - def init_worker(gn_toshare): - global G_gn - G_gn = gn_toshare - do_partial = partial(_wrapper_compute_ged_parallel, params_ged, get_nb_eo) - pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(Gn,)) - iterator = tqdm(pool.imap_unordered(do_partial, itr, chunksize), - desc='computing GEDs', file=sys.stdout) -# iterator = pool.imap_unordered(do_partial, itr, chunksize) - for i, j, dis, n_eo_tmp in iterator: - idx_itr = int(len(Gn) * i + j - (i + 1) * (i + 2) / 2) - ged_vec[idx_itr] = dis - ged_mat[i][j] = dis - ged_mat[j][i] = dis - n_edit_operations[idx_itr] = n_eo_tmp -# print('\n-------------------------------------------') -# print(i, j, idx_itr, dis) - pool.close() - pool.join() - - else: - ged_vec = [] - n_edit_operations = [] - for i in tqdm(range(len(Gn)), desc='computing GEDs', file=sys.stdout): -# for i in range(len(Gn)): - for j in range(i + 1, len(Gn)): - dis, pi_forward, pi_backward = GED(Gn[i], Gn[j], **params_ged) - ged_vec.append(dis) - ged_mat[i][j] = dis - ged_mat[j][i] = dis - n_eo_tmp = get_nb_eo(Gn[i], Gn[j], pi_forward, pi_backward) - n_edit_operations.append(n_eo_tmp) - - return ged_vec, ged_mat, n_edit_operations - - -def _wrapper_compute_ged_parallel(params_ged, get_nb_eo, itr): - i = itr[0] - j = itr[1] - dis, n_eo_tmp = _compute_ged_parallel(G_gn[i], G_gn[j], params_ged, get_nb_eo) - return i, j, dis, n_eo_tmp - - -def _compute_ged_parallel(g1, g2, params_ged, get_nb_eo): - dis, pi_forward, pi_backward = GED(g1, g2, **params_ged) - n_eo_tmp = get_nb_eo(g1, g2, pi_forward, pi_backward) # [0,0,0,0,0,0] - return dis, n_eo_tmp - - -def update_costs(nb_cost_mat, dis_k_vec, dataset='monoterpenoides', - cost='CONSTANT', rw_constraints='inequality'): -# if dataset == 'Letter-high': - if cost == 'LETTER': - pass -# # method 1: set alpha automatically, just tune c_vir and c_eir by -# # LMS using cvxpy. -# alpha = 0.5 -# coeff = 100 # np.max(alpha * nb_cost_mat[:,4] / dis_k_vec) -## if np.count_nonzero(nb_cost_mat[:,4]) == 0: -## alpha = 0.75 -## else: -## alpha = np.min([dis_k_vec / c_vs for c_vs in nb_cost_mat[:,4] if c_vs != 0]) -## alpha = alpha * 0.99 -# param_vir = alpha * (nb_cost_mat[:,0] + nb_cost_mat[:,1]) -# param_eir = (1 - alpha) * (nb_cost_mat[:,4] + nb_cost_mat[:,5]) -# nb_cost_mat_new = np.column_stack((param_vir, param_eir)) -# dis_new = coeff * dis_k_vec - alpha * nb_cost_mat[:,3] -# -# x = cp.Variable(nb_cost_mat_new.shape[1]) -# cost = cp.sum_squares(nb_cost_mat_new * x - dis_new) -# constraints = [x >= [0.0 for i in range(nb_cost_mat_new.shape[1])]] -# prob = cp.Problem(cp.Minimize(cost), constraints) -# prob.solve() -# edit_costs_new = x.value -# edit_costs_new = np.array([edit_costs_new[0], edit_costs_new[1], alpha]) -# residual = np.sqrt(prob.value) - -# # method 2: tune c_vir, c_eir and alpha by nonlinear programming by -# # scipy.optimize.minimize. -# w0 = nb_cost_mat[:,0] + nb_cost_mat[:,1] -# w1 = nb_cost_mat[:,4] + nb_cost_mat[:,5] -# w2 = nb_cost_mat[:,3] -# w3 = dis_k_vec -# func_min = lambda x: np.sum((w0 * x[0] * x[3] + w1 * x[1] * (1 - x[2]) \ -# + w2 * x[2] - w3 * x[3]) ** 2) -# bounds = ((0, None), (0., None), (0.5, 0.5), (0, None)) -# res = minimize(func_min, [0.9, 1.7, 0.75, 10], bounds=bounds) -# edit_costs_new = res.x[0:3] -# residual = res.fun - - # method 3: tune c_vir, c_eir and alpha by nonlinear programming using cvxpy. - - -# # method 4: tune c_vir, c_eir and alpha by QP function -# # scipy.optimize.least_squares. An initial guess is required. -# w0 = nb_cost_mat[:,0] + nb_cost_mat[:,1] -# w1 = nb_cost_mat[:,4] + nb_cost_mat[:,5] -# w2 = nb_cost_mat[:,3] -# w3 = dis_k_vec -# func = lambda x: (w0 * x[0] * x[3] + w1 * x[1] * (1 - x[2]) \ -# + w2 * x[2] - w3 * x[3]) ** 2 -# res = optimize.root(func, [0.9, 1.7, 0.75, 100]) -# edit_costs_new = res.x -# residual = None - elif cost == 'LETTER2': -# # 1. if c_vi != c_vr, c_ei != c_er. -# nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4,5]] -# x = cp.Variable(nb_cost_mat_new.shape[1]) -# cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) -## # 1.1 no constraints. -## constraints = [x >= [0.0 for i in range(nb_cost_mat_new.shape[1])]] -# # 1.2 c_vs <= c_vi + c_vr. -# constraints = [x >= [0.0 for i in range(nb_cost_mat_new.shape[1])], -# np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] -## # 2. if c_vi == c_vr, c_ei == c_er. -## nb_cost_mat_new = nb_cost_mat[:,[0,3,4]] -## nb_cost_mat_new[:,0] += nb_cost_mat[:,1] -## nb_cost_mat_new[:,2] += nb_cost_mat[:,5] -## x = cp.Variable(nb_cost_mat_new.shape[1]) -## cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) -## # 2.1 no constraints. -## constraints = [x >= [0.0 for i in range(nb_cost_mat_new.shape[1])]] -### # 2.2 c_vs <= c_vi + c_vr. -### constraints = [x >= [0.0 for i in range(nb_cost_mat_new.shape[1])], -### np.array([2.0, -1.0, 0.0]).T@x >= 0.0] -# -# prob = cp.Problem(cp.Minimize(cost_fun), constraints) -# prob.solve() -# edit_costs_new = [x.value[0], x.value[0], x.value[1], x.value[2], x.value[2]] -# edit_costs_new = np.array(edit_costs_new) -# residual = np.sqrt(prob.value) - if rw_constraints == 'inequality': - # c_vs <= c_vi + c_vr. - nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4,5]] - x = cp.Variable(nb_cost_mat_new.shape[1]) - cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) - constraints = [x >= [0.001 for i in range(nb_cost_mat_new.shape[1])], - np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] - prob = cp.Problem(cp.Minimize(cost_fun), constraints) - try: - prob.solve(verbose=True) - except MemoryError as error0: - print('\nUsing solver "OSQP" caused a memory error.') - print('the original error message is\n', error0) - print('solver status: ', prob.status) - print('trying solver "CVXOPT" instead...\n') - try: - prob.solve(solver=cp.CVXOPT, verbose=True) - except Exception as error1: - print('\nAn error occured when using solver "CVXOPT".') - print('the original error message is\n', error1) - print('solver status: ', prob.status) - print('trying solver "MOSEK" instead. Notice this solver is commercial and a lisence is required.\n') - prob.solve(solver=cp.MOSEK, verbose=True) - else: - print('solver status: ', prob.status) - else: - print('solver status: ', prob.status) - print() - edit_costs_new = x.value - residual = np.sqrt(prob.value) - elif rw_constraints == '2constraints': - # c_vs <= c_vi + c_vr and c_vi == c_vr, c_ei == c_er. - nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4,5]] - x = cp.Variable(nb_cost_mat_new.shape[1]) - cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) - constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])], - np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0, - np.array([1.0, -1.0, 0.0, 0.0, 0.0]).T@x == 0.0, - np.array([0.0, 0.0, 0.0, 1.0, -1.0]).T@x == 0.0] - prob = cp.Problem(cp.Minimize(cost_fun), constraints) - prob.solve() - edit_costs_new = x.value - residual = np.sqrt(prob.value) - elif rw_constraints == 'no-constraint': - # no constraint. - nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4,5]] - x = cp.Variable(nb_cost_mat_new.shape[1]) - cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) - constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])]] - prob = cp.Problem(cp.Minimize(cost_fun), constraints) - prob.solve() - edit_costs_new = x.value - residual = np.sqrt(prob.value) -# elif method == 'inequality_modified': -# # c_vs <= c_vi + c_vr. -# nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4,5]] -# x = cp.Variable(nb_cost_mat_new.shape[1]) -# cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) -# constraints = [x >= [0.0 for i in range(nb_cost_mat_new.shape[1])], -# np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] -# prob = cp.Problem(cp.Minimize(cost_fun), constraints) -# prob.solve() -# # use same costs for insertion and removal rather than the fitted costs. -# edit_costs_new = [x.value[0], x.value[0], x.value[1], x.value[2], x.value[2]] -# edit_costs_new = np.array(edit_costs_new) -# residual = np.sqrt(prob.value) - elif cost == 'NON_SYMBOLIC': - is_n_attr = np.count_nonzero(nb_cost_mat[:,2]) - is_e_attr = np.count_nonzero(nb_cost_mat[:,5]) - - if dataset == 'SYNTHETICnew': -# nb_cost_mat_new = nb_cost_mat[:,[0,1,2,3,4]] - nb_cost_mat_new = nb_cost_mat[:,[2,3,4]] - x = cp.Variable(nb_cost_mat_new.shape[1]) - cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) -# constraints = [x >= [0.0 for i in range(nb_cost_mat_new.shape[1])], -# np.array([0.0, 0.0, 0.0, 1.0, -1.0]).T@x == 0.0] -# constraints = [x >= [0.0001 for i in range(nb_cost_mat_new.shape[1])]] - constraints = [x >= [0.0001 for i in range(nb_cost_mat_new.shape[1])], - np.array([0.0, 1.0, -1.0]).T@x == 0.0] - prob = cp.Problem(cp.Minimize(cost_fun), constraints) - prob.solve() -# print(x.value) - edit_costs_new = np.concatenate((np.array([0.0, 0.0]), x.value, - np.array([0.0]))) - residual = np.sqrt(prob.value) - - elif rw_constraints == 'inequality': - # c_vs <= c_vi + c_vr. - if is_n_attr and is_e_attr: - nb_cost_mat_new = nb_cost_mat[:,[0,1,2,3,4,5]] - x = cp.Variable(nb_cost_mat_new.shape[1]) - cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) - constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])], - np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0]).T@x >= 0.0, - np.array([0.0, 0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] - prob = cp.Problem(cp.Minimize(cost_fun), constraints) - prob.solve() - edit_costs_new = x.value - residual = np.sqrt(prob.value) - elif is_n_attr and not is_e_attr: - nb_cost_mat_new = nb_cost_mat[:,[0,1,2,3,4]] - x = cp.Variable(nb_cost_mat_new.shape[1]) - cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) - constraints = [x >= [0.001 for i in range(nb_cost_mat_new.shape[1])], - np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] - prob = cp.Problem(cp.Minimize(cost_fun), constraints) - prob.solve() - print(x.value) - edit_costs_new = np.concatenate((x.value, np.array([0.0]))) - residual = np.sqrt(prob.value) - elif not is_n_attr and is_e_attr: - nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4,5]] - x = cp.Variable(nb_cost_mat_new.shape[1]) - cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) - constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])], - np.array([0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] - prob = cp.Problem(cp.Minimize(cost_fun), constraints) - prob.solve() - edit_costs_new = np.concatenate((x.value[0:2], np.array([0.0]), x.value[2:])) - residual = np.sqrt(prob.value) - else: - nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4]] - x = cp.Variable(nb_cost_mat_new.shape[1]) - cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) - constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])]] - prob = cp.Problem(cp.Minimize(cost_fun), constraints) - prob.solve() - edit_costs_new = np.concatenate((x.value[0:2], np.array([0.0]), - x.value[2:], np.array([0.0]))) - residual = np.sqrt(prob.value) - else: -# # method 1: simple least square method. -# edit_costs_new, residual, _, _ = np.linalg.lstsq(nb_cost_mat, dis_k_vec, -# rcond=None) - -# # method 2: least square method with x_i >= 0. -# edit_costs_new, residual = optimize.nnls(nb_cost_mat, dis_k_vec) - - # method 3: solve as a quadratic program with constraints. -# P = np.dot(nb_cost_mat.T, nb_cost_mat) -# q_T = -2 * np.dot(dis_k_vec.T, nb_cost_mat) -# G = -1 * np.identity(nb_cost_mat.shape[1]) -# h = np.array([0 for i in range(nb_cost_mat.shape[1])]) -# A = np.array([1 for i in range(nb_cost_mat.shape[1])]) -# b = 1 -# x = cp.Variable(nb_cost_mat.shape[1]) -# prob = cp.Problem(cp.Minimize(cp.quad_form(x, P) + q_T@x), -# [G@x <= h]) -# prob.solve() -# edit_costs_new = x.value -# residual = prob.value - np.dot(dis_k_vec.T, dis_k_vec) - -# G = -1 * np.identity(nb_cost_mat.shape[1]) -# h = np.array([0 for i in range(nb_cost_mat.shape[1])]) - x = cp.Variable(nb_cost_mat.shape[1]) - cost_fun = cp.sum_squares(nb_cost_mat * x - dis_k_vec) - constraints = [x >= [0.0 for i in range(nb_cost_mat.shape[1])], - # np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] - np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0]).T@x >= 0.0, - np.array([0.0, 0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] - prob = cp.Problem(cp.Minimize(cost_fun), constraints) - prob.solve() - edit_costs_new = x.value - residual = np.sqrt(prob.value) - - # method 4: - - return edit_costs_new, residual - - -if __name__ == '__main__': - print('check test_fitDistance.py') \ No newline at end of file diff --git a/gklearn/preimage/ged.py b/gklearn/preimage/ged.py deleted file mode 100644 index a66baaf..0000000 --- a/gklearn/preimage/ged.py +++ /dev/null @@ -1,467 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Thu Oct 17 18:44:59 2019 - -@author: ljia -""" -import numpy as np -import networkx as nx -from tqdm import tqdm -import sys -import multiprocessing -from multiprocessing import Pool -from functools import partial - -#from gedlibpy_linlin import librariesImport, gedlibpy -from gklearn.gedlib import librariesImport, gedlibpy - -def GED(g1, g2, dataset='monoterpenoides', lib='gedlibpy', cost='CHEM_1', method='IPFP', - edit_cost_constant=[], algo_options='', stabilizer='min', repeat=50): - """ - Compute GED for 2 graphs. - """ - -# dataset = dataset.lower() - - if lib == 'gedlibpy': - gedlibpy.restart_env() - gedlibpy.add_nx_graph(convertGraph(g1, cost), "") - gedlibpy.add_nx_graph(convertGraph(g2, cost), "") - - listID = gedlibpy.get_all_graph_ids() - gedlibpy.set_edit_cost(cost, edit_cost_constant=edit_cost_constant) - gedlibpy.init() - gedlibpy.set_method(method, algo_options) - gedlibpy.init_method() - - g = listID[0] - h = listID[1] - if stabilizer is None: - gedlibpy.run_method(g, h) - pi_forward = gedlibpy.get_forward_map(g, h) - pi_backward = gedlibpy.get_backward_map(g, h) - upper = gedlibpy.get_upper_bound(g, h) - lower = gedlibpy.get_lower_bound(g, h) - elif stabilizer == 'mean': - # @todo: to be finished... - upper_list = [np.inf] * repeat - for itr in range(repeat): - gedlibpy.run_method(g, h) - upper_list[itr] = gedlibpy.get_upper_bound(g, h) - pi_forward = gedlibpy.get_forward_map(g, h) - pi_backward = gedlibpy.get_backward_map(g, h) - lower = gedlibpy.get_lower_bound(g, h) - upper = np.mean(upper_list) - elif stabilizer == 'median': - if repeat % 2 == 0: - repeat += 1 - upper_list = [np.inf] * repeat - pi_forward_list = [0] * repeat - pi_backward_list = [0] * repeat - for itr in range(repeat): - gedlibpy.run_method(g, h) - upper_list[itr] = gedlibpy.get_upper_bound(g, h) - pi_forward_list[itr] = gedlibpy.get_forward_map(g, h) - pi_backward_list[itr] = gedlibpy.get_backward_map(g, h) - lower = gedlibpy.get_lower_bound(g, h) - upper = np.median(upper_list) - idx_median = upper_list.index(upper) - pi_forward = pi_forward_list[idx_median] - pi_backward = pi_backward_list[idx_median] - elif stabilizer == 'min': - upper = np.inf - for itr in range(repeat): - gedlibpy.run_method(g, h) - upper_tmp = gedlibpy.get_upper_bound(g, h) - if upper_tmp < upper: - upper = upper_tmp - pi_forward = gedlibpy.get_forward_map(g, h) - pi_backward = gedlibpy.get_backward_map(g, h) - lower = gedlibpy.get_lower_bound(g, h) - if upper == 0: - break - elif stabilizer == 'max': - upper = 0 - for itr in range(repeat): - gedlibpy.run_method(g, h) - upper_tmp = gedlibpy.get_upper_bound(g, h) - if upper_tmp > upper: - upper = upper_tmp - pi_forward = gedlibpy.get_forward_map(g, h) - pi_backward = gedlibpy.get_backward_map(g, h) - lower = gedlibpy.get_lower_bound(g, h) - elif stabilizer == 'gaussian': - pass - - dis = upper - - elif lib == 'gedlib-bash': - import time - import random - import os - from gklearn.utils.graphfiles import saveDataset - - tmp_dir = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/' - if not os.path.exists(tmp_dir): - os.makedirs(tmp_dir) - fn_collection = tmp_dir + 'collection.' + str(time.time()) + str(random.randint(0, 1e9)) - xparams = {'method': 'gedlib', 'graph_dir': fn_collection} - saveDataset([g1, g2], ['dummy', 'dummy'], gformat='gxl', group='xml', - filename=fn_collection, xparams=xparams) - - command = 'GEDLIB_HOME=\'/media/ljia/DATA/research-repo/codes/others/gedlib/gedlib2\'\n' - command += 'LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$GEDLIB_HOME/lib\n' - command += 'export LD_LIBRARY_PATH\n' - command += 'cd \'' + os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/bin\'\n' - command += './ged_for_python_bash monoterpenoides ' + fn_collection \ - + ' \'' + algo_options + '\' ' - for ec in edit_cost_constant: - command += str(ec) + ' ' -# output = os.system(command) - stream = os.popen(command) - output = stream.readlines() -# print(output) - - dis = float(output[0].strip()) - runtime = float(output[1].strip()) - size_forward = int(output[2].strip()) - pi_forward = [int(item.strip()) for item in output[3:3+size_forward]] - pi_backward = [int(item.strip()) for item in output[3+size_forward:]] - -# print(dis) -# print(runtime) -# print(size_forward) -# print(pi_forward) -# print(pi_backward) - - - # make the map label correct (label remove map as np.inf) - nodes1 = [n for n in g1.nodes()] - nodes2 = [n for n in g2.nodes()] - nb1 = nx.number_of_nodes(g1) - nb2 = nx.number_of_nodes(g2) - pi_forward = [nodes2[pi] if pi < nb2 else np.inf for pi in pi_forward] - pi_backward = [nodes1[pi] if pi < nb1 else np.inf for pi in pi_backward] -# print(pi_forward) - - - return dis, pi_forward, pi_backward - - -def convertGraph(G, cost): - """Convert a graph to the proper NetworkX format that can be - recognized by library gedlibpy. - """ - G_new = nx.Graph() - if cost == 'LETTER' or cost == 'LETTER2': - for nd, attrs in G.nodes(data=True): - G_new.add_node(str(nd), x=str(attrs['attributes'][0]), - y=str(attrs['attributes'][1])) - for nd1, nd2, attrs in G.edges(data=True): - G_new.add_edge(str(nd1), str(nd2)) - elif cost == 'NON_SYMBOLIC': - for nd, attrs in G.nodes(data=True): - G_new.add_node(str(nd)) - for a_name in G.graph['node_attrs']: - G_new.nodes[str(nd)][a_name] = str(attrs[a_name]) - for nd1, nd2, attrs in G.edges(data=True): - G_new.add_edge(str(nd1), str(nd2)) - for a_name in G.graph['edge_attrs']: - G_new.edges[str(nd1), str(nd2)][a_name] = str(attrs[a_name]) - else: - for nd, attrs in G.nodes(data=True): - G_new.add_node(str(nd), chem=attrs['atom']) - for nd1, nd2, attrs in G.edges(data=True): - G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type']) -# G_new.add_edge(str(nd1), str(nd2)) - - return G_new - - -def GED_n(Gn, lib='gedlibpy', cost='CHEM_1', method='IPFP', - edit_cost_constant=[], stabilizer='min', repeat=50): - """ - Compute GEDs for a group of graphs. - """ - if lib == 'gedlibpy': - def convertGraph(G): - """Convert a graph to the proper NetworkX format that can be - recognized by library gedlibpy. - """ - G_new = nx.Graph() - for nd, attrs in G.nodes(data=True): - G_new.add_node(str(nd), chem=attrs['atom']) - for nd1, nd2, attrs in G.edges(data=True): -# G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type']) - G_new.add_edge(str(nd1), str(nd2)) - - return G_new - - gedlibpy.restart_env() - gedlibpy.add_nx_graph(convertGraph(g1), "") - gedlibpy.add_nx_graph(convertGraph(g2), "") - - listID = gedlibpy.get_all_graph_ids() - gedlibpy.set_edit_cost(cost, edit_cost_constant=edit_cost_constant) - gedlibpy.init() - gedlibpy.set_method(method, "") - gedlibpy.init_method() - - g = listID[0] - h = listID[1] - if stabilizer is None: - gedlibpy.run_method(g, h) - pi_forward = gedlibpy.get_forward_map(g, h) - pi_backward = gedlibpy.get_backward_map(g, h) - upper = gedlibpy.get_upper_bound(g, h) - lower = gedlibpy.get_lower_bound(g, h) - elif stabilizer == 'min': - upper = np.inf - for itr in range(repeat): - gedlibpy.run_method(g, h) - upper_tmp = gedlibpy.get_upper_bound(g, h) - if upper_tmp < upper: - upper = upper_tmp - pi_forward = gedlibpy.get_forward_map(g, h) - pi_backward = gedlibpy.get_backward_map(g, h) - lower = gedlibpy.get_lower_bound(g, h) - if upper == 0: - break - - dis = upper - - # make the map label correct (label remove map as np.inf) - nodes1 = [n for n in g1.nodes()] - nodes2 = [n for n in g2.nodes()] - nb1 = nx.number_of_nodes(g1) - nb2 = nx.number_of_nodes(g2) - pi_forward = [nodes2[pi] if pi < nb2 else np.inf for pi in pi_forward] - pi_backward = [nodes1[pi] if pi < nb1 else np.inf for pi in pi_backward] - - return dis, pi_forward, pi_backward - - -def ged_median(Gn, Gn_median, verbose=False, params_ged={'lib': 'gedlibpy', - 'cost': 'CHEM_1', 'method': 'IPFP', 'edit_cost_constant': [], - 'algo_options': '--threads 8 --initial-solutions 40 --ratio-runs-from-initial-solutions 1', - 'stabilizer': None}, parallel=False): - if parallel: - len_itr = int(len(Gn)) - pi_forward_list = [[] for i in range(len_itr)] - dis_list = [0 for i in range(len_itr)] - - itr = range(0, len_itr) - n_jobs = multiprocessing.cpu_count() - if len_itr < 100 * n_jobs: - chunksize = int(len_itr / n_jobs) + 1 - else: - chunksize = 100 - def init_worker(gn_toshare, gn_median_toshare): - global G_gn, G_gn_median - G_gn = gn_toshare - G_gn_median = gn_median_toshare - do_partial = partial(_compute_ged_median, params_ged) - pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(Gn, Gn_median)) - if verbose: - iterator = tqdm(pool.imap_unordered(do_partial, itr, chunksize), - desc='computing GEDs', file=sys.stdout) - else: - iterator = pool.imap_unordered(do_partial, itr, chunksize) - for i, dis_sum, pi_forward in iterator: - pi_forward_list[i] = pi_forward - dis_list[i] = dis_sum -# print('\n-------------------------------------------') -# print(i, j, idx_itr, dis) - pool.close() - pool.join() - - else: - dis_list = [] - pi_forward_list = [] - for idx, G in tqdm(enumerate(Gn), desc='computing median distances', - file=sys.stdout) if verbose else enumerate(Gn): - dis_sum = 0 - pi_forward_list.append([]) - for G_p in Gn_median: - dis_tmp, pi_tmp_forward, pi_tmp_backward = GED(G, G_p, - **params_ged) - pi_forward_list[idx].append(pi_tmp_forward) - dis_sum += dis_tmp - dis_list.append(dis_sum) - - return dis_list, pi_forward_list - - -def _compute_ged_median(params_ged, itr): -# print(itr) - dis_sum = 0 - pi_forward = [] - for G_p in G_gn_median: - dis_tmp, pi_tmp_forward, pi_tmp_backward = GED(G_gn[itr], G_p, - **params_ged) - pi_forward.append(pi_tmp_forward) - dis_sum += dis_tmp - - return itr, dis_sum, pi_forward - - -def get_nb_edit_operations(g1, g2, forward_map, backward_map): - """Compute the number of each edit operations. - """ - n_vi = 0 - n_vr = 0 - n_vs = 0 - n_ei = 0 - n_er = 0 - n_es = 0 - - nodes1 = [n for n in g1.nodes()] - for i, map_i in enumerate(forward_map): - if map_i == np.inf: - n_vr += 1 - elif g1.node[nodes1[i]]['atom'] != g2.node[map_i]['atom']: - n_vs += 1 - for map_i in backward_map: - if map_i == np.inf: - n_vi += 1 - -# idx_nodes1 = range(0, len(node1)) - - edges1 = [e for e in g1.edges()] - nb_edges2_cnted = 0 - for n1, n2 in edges1: - idx1 = nodes1.index(n1) - idx2 = nodes1.index(n2) - # one of the nodes is removed, thus the edge is removed. - if forward_map[idx1] == np.inf or forward_map[idx2] == np.inf: - n_er += 1 - # corresponding edge is in g2. - elif (forward_map[idx1], forward_map[idx2]) in g2.edges(): - nb_edges2_cnted += 1 - # edge labels are different. - if g2.edges[((forward_map[idx1], forward_map[idx2]))]['bond_type'] \ - != g1.edges[(n1, n2)]['bond_type']: - n_es += 1 - elif (forward_map[idx2], forward_map[idx1]) in g2.edges(): - nb_edges2_cnted += 1 - # edge labels are different. - if g2.edges[((forward_map[idx2], forward_map[idx1]))]['bond_type'] \ - != g1.edges[(n1, n2)]['bond_type']: - n_es += 1 - # corresponding nodes are in g2, however the edge is removed. - else: - n_er += 1 - n_ei = nx.number_of_edges(g2) - nb_edges2_cnted - - return n_vi, n_vr, n_vs, n_ei, n_er, n_es - - -def get_nb_edit_operations_letter(g1, g2, forward_map, backward_map): - """Compute the number of each edit operations. - """ - n_vi = 0 - n_vr = 0 - n_vs = 0 - sod_vs = 0 - n_ei = 0 - n_er = 0 - - nodes1 = [n for n in g1.nodes()] - for i, map_i in enumerate(forward_map): - if map_i == np.inf: - n_vr += 1 - else: - n_vs += 1 - diff_x = float(g1.nodes[nodes1[i]]['x']) - float(g2.nodes[map_i]['x']) - diff_y = float(g1.nodes[nodes1[i]]['y']) - float(g2.nodes[map_i]['y']) - sod_vs += np.sqrt(np.square(diff_x) + np.square(diff_y)) - for map_i in backward_map: - if map_i == np.inf: - n_vi += 1 - -# idx_nodes1 = range(0, len(node1)) - - edges1 = [e for e in g1.edges()] - nb_edges2_cnted = 0 - for n1, n2 in edges1: - idx1 = nodes1.index(n1) - idx2 = nodes1.index(n2) - # one of the nodes is removed, thus the edge is removed. - if forward_map[idx1] == np.inf or forward_map[idx2] == np.inf: - n_er += 1 - # corresponding edge is in g2. Edge label is not considered. - elif (forward_map[idx1], forward_map[idx2]) in g2.edges() or \ - (forward_map[idx2], forward_map[idx1]) in g2.edges(): - nb_edges2_cnted += 1 - # corresponding nodes are in g2, however the edge is removed. - else: - n_er += 1 - n_ei = nx.number_of_edges(g2) - nb_edges2_cnted - - return n_vi, n_vr, n_vs, sod_vs, n_ei, n_er - - -def get_nb_edit_operations_nonsymbolic(g1, g2, forward_map, backward_map): - """Compute the number of each edit operations. - """ - n_vi = 0 - n_vr = 0 - n_vs = 0 - sod_vs = 0 - n_ei = 0 - n_er = 0 - n_es = 0 - sod_es = 0 - - nodes1 = [n for n in g1.nodes()] - for i, map_i in enumerate(forward_map): - if map_i == np.inf: - n_vr += 1 - else: - n_vs += 1 - sum_squares = 0 - for a_name in g1.graph['node_attrs']: - diff = float(g1.nodes[nodes1[i]][a_name]) - float(g2.nodes[map_i][a_name]) - sum_squares += np.square(diff) - sod_vs += np.sqrt(sum_squares) - for map_i in backward_map: - if map_i == np.inf: - n_vi += 1 - -# idx_nodes1 = range(0, len(node1)) - - edges1 = [e for e in g1.edges()] - for n1, n2 in edges1: - idx1 = nodes1.index(n1) - idx2 = nodes1.index(n2) - n1_g2 = forward_map[idx1] - n2_g2 = forward_map[idx2] - # one of the nodes is removed, thus the edge is removed. - if n1_g2 == np.inf or n2_g2 == np.inf: - n_er += 1 - # corresponding edge is in g2. - elif (n1_g2, n2_g2) in g2.edges(): - n_es += 1 - sum_squares = 0 - for a_name in g1.graph['edge_attrs']: - diff = float(g1.edges[n1, n2][a_name]) - float(g2.nodes[n1_g2, n2_g2][a_name]) - sum_squares += np.square(diff) - sod_es += np.sqrt(sum_squares) - elif (n2_g2, n1_g2) in g2.edges(): - n_es += 1 - sum_squares = 0 - for a_name in g1.graph['edge_attrs']: - diff = float(g1.edges[n2, n1][a_name]) - float(g2.nodes[n2_g2, n1_g2][a_name]) - sum_squares += np.square(diff) - sod_es += np.sqrt(sum_squares) - # corresponding nodes are in g2, however the edge is removed. - else: - n_er += 1 - n_ei = nx.number_of_edges(g2) - n_es - - return n_vi, n_vr, sod_vs, n_ei, n_er, sod_es - - -if __name__ == '__main__': - print('check test_ged.py') \ No newline at end of file diff --git a/gklearn/preimage/iam.py b/gklearn/preimage/iam.py deleted file mode 100644 index f3e2165..0000000 --- a/gklearn/preimage/iam.py +++ /dev/null @@ -1,775 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Fri Apr 26 11:49:12 2019 - -Iterative alternate minimizations using GED. -@author: ljia -""" -import numpy as np -import random -import networkx as nx -from tqdm import tqdm - -from gklearn.utils.graphdataset import get_dataset_attributes -from gklearn.utils.utils import graph_isIdentical, get_node_labels, get_edge_labels -from gklearn.preimage.ged import GED, ged_median - - -def iam_upgraded(Gn_median, Gn_candidate, c_ei=3, c_er=3, c_es=1, ite_max=50, - epsilon=0.001, node_label='atom', edge_label='bond_type', - connected=False, removeNodes=True, allBestInit=False, allBestNodes=False, - allBestEdges=False, allBestOutput=False, - params_ged={'lib': 'gedlibpy', 'cost': 'CHEM_1', 'method': 'IPFP', - 'edit_cost_constant': [], 'stabilizer': None, - 'algo_options': '--threads 8 --initial-solutions 40 --ratio-runs-from-initial-solutions 1'}): - """See my name, then you know what I do. - """ -# Gn_median = Gn_median[0:10] -# Gn_median = [nx.convert_node_labels_to_integers(g) for g in Gn_median] - node_ir = np.inf # corresponding to the node remove and insertion. - label_r = 'thanksdanny' # the label for node remove. # @todo: make this label unrepeatable. - ds_attrs = get_dataset_attributes(Gn_median + Gn_candidate, - attr_names=['edge_labeled', 'node_attr_dim', 'edge_attr_dim'], - edge_label=edge_label) - node_label_set = get_node_labels(Gn_median, node_label) - edge_label_set = get_edge_labels(Gn_median, edge_label) - - - def generate_graph(G, pi_p_forward): - G_new_list = [G.copy()] # all "best" graphs generated in this iteration. -# nx.draw_networkx(G) -# import matplotlib.pyplot as plt -# plt.show() -# print(pi_p_forward) - - # update vertex labels. - # pre-compute h_i0 for each label. -# for label in get_node_labels(Gn, node_label): -# print(label) -# for nd in G.nodes(data=True): -# pass - if not ds_attrs['node_attr_dim']: # labels are symbolic - for ndi, (nd, _) in enumerate(G.nodes(data=True)): - h_i0_list = [] - label_list = [] - for label in node_label_set: - h_i0 = 0 - for idx, g in enumerate(Gn_median): - pi_i = pi_p_forward[idx][ndi] - if pi_i != node_ir and g.nodes[pi_i][node_label] == label: - h_i0 += 1 - h_i0_list.append(h_i0) - label_list.append(label) - # case when the node is to be removed. - if removeNodes: - h_i0_remove = 0 # @todo: maybe this can be added to the node_label_set above. - for idx, g in enumerate(Gn_median): - pi_i = pi_p_forward[idx][ndi] - if pi_i == node_ir: - h_i0_remove += 1 - h_i0_list.append(h_i0_remove) - label_list.append(label_r) - # get the best labels. - idx_max = np.argwhere(h_i0_list == np.max(h_i0_list)).flatten().tolist() - if allBestNodes: # choose all best graphs. - nlabel_best = [label_list[idx] for idx in idx_max] - # generate "best" graphs with regard to "best" node labels. - G_new_list_nd = [] - for g in G_new_list: # @todo: seems it can be simplified. The G_new_list will only contain 1 graph for now. - for nl in nlabel_best: - g_tmp = g.copy() - if nl == label_r: - g_tmp.remove_node(nd) - else: - g_tmp.nodes[nd][node_label] = nl - G_new_list_nd.append(g_tmp) - # nx.draw_networkx(g_tmp) - # import matplotlib.pyplot as plt - # plt.show() - # print(g_tmp.nodes(data=True)) - # print(g_tmp.edges(data=True)) - G_new_list = [ggg.copy() for ggg in G_new_list_nd] - else: - # choose one of the best randomly. - idx_rdm = random.randint(0, len(idx_max) - 1) - best_label = label_list[idx_max[idx_rdm]] - h_i0_max = h_i0_list[idx_max[idx_rdm]] - - g_new = G_new_list[0] - if best_label == label_r: - g_new.remove_node(nd) - else: - g_new.nodes[nd][node_label] = best_label - G_new_list = [g_new] - else: # labels are non-symbolic - for ndi, (nd, _) in enumerate(G.nodes(data=True)): - Si_norm = 0 - phi_i_bar = np.array([0.0 for _ in range(ds_attrs['node_attr_dim'])]) - for idx, g in enumerate(Gn_median): - pi_i = pi_p_forward[idx][ndi] - if g.has_node(pi_i): #@todo: what if no g has node? phi_i_bar = 0? - Si_norm += 1 - phi_i_bar += np.array([float(itm) for itm in g.nodes[pi_i]['attributes']]) - phi_i_bar /= Si_norm - G_new_list[0].nodes[nd]['attributes'] = phi_i_bar - -# for g in G_new_list: -# import matplotlib.pyplot as plt -# nx.draw(g, labels=nx.get_node_attributes(g, 'atom'), with_labels=True) -# plt.show() -# print(g.nodes(data=True)) -# print(g.edges(data=True)) - - # update edge labels and adjacency matrix. - if ds_attrs['edge_labeled']: - G_new_list_edge = [] - for g_new in G_new_list: - nd_list = [n for n in g_new.nodes()] - g_tmp_list = [g_new.copy()] - for nd1i in range(nx.number_of_nodes(g_new)): - nd1 = nd_list[nd1i]# @todo: not just edges, but all pairs of nodes - for nd2i in range(nd1i + 1, nx.number_of_nodes(g_new)): - nd2 = nd_list[nd2i] -# for nd1, nd2, _ in g_new.edges(data=True): - h_ij0_list = [] - label_list = [] - for label in edge_label_set: - h_ij0 = 0 - for idx, g in enumerate(Gn_median): - pi_i = pi_p_forward[idx][nd1i] - pi_j = pi_p_forward[idx][nd2i] - h_ij0_p = (g.has_node(pi_i) and g.has_node(pi_j) and - g.has_edge(pi_i, pi_j) and - g.edges[pi_i, pi_j][edge_label] == label) - h_ij0 += h_ij0_p - h_ij0_list.append(h_ij0) - label_list.append(label) - - # get the best labels. - idx_max = np.argwhere(h_ij0_list == np.max(h_ij0_list)).flatten().tolist() - if allBestEdges: # choose all best graphs. - elabel_best = [label_list[idx] for idx in idx_max] - h_ij0_max = [h_ij0_list[idx] for idx in idx_max] - # generate "best" graphs with regard to "best" node labels. - G_new_list_ed = [] - for g_tmp in g_tmp_list: # @todo: seems it can be simplified. The G_new_list will only contain 1 graph for now. - for idxl, el in enumerate(elabel_best): - g_tmp_copy = g_tmp.copy() - # check whether a_ij is 0 or 1. - sij_norm = 0 - for idx, g in enumerate(Gn_median): - pi_i = pi_p_forward[idx][nd1i] - pi_j = pi_p_forward[idx][nd2i] - if g.has_node(pi_i) and g.has_node(pi_j) and \ - g.has_edge(pi_i, pi_j): - sij_norm += 1 - if h_ij0_max[idxl] > len(Gn_median) * c_er / c_es + \ - sij_norm * (1 - (c_er + c_ei) / c_es): - if not g_tmp_copy.has_edge(nd1, nd2): - g_tmp_copy.add_edge(nd1, nd2) - g_tmp_copy.edges[nd1, nd2][edge_label] = elabel_best[idxl] - else: - if g_tmp_copy.has_edge(nd1, nd2): - g_tmp_copy.remove_edge(nd1, nd2) - G_new_list_ed.append(g_tmp_copy) - g_tmp_list = [ggg.copy() for ggg in G_new_list_ed] - else: # choose one of the best randomly. - idx_rdm = random.randint(0, len(idx_max) - 1) - best_label = label_list[idx_max[idx_rdm]] - h_ij0_max = h_ij0_list[idx_max[idx_rdm]] - - # check whether a_ij is 0 or 1. - sij_norm = 0 - for idx, g in enumerate(Gn_median): - pi_i = pi_p_forward[idx][nd1i] - pi_j = pi_p_forward[idx][nd2i] - if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): - sij_norm += 1 - if h_ij0_max > len(Gn_median) * c_er / c_es + sij_norm * (1 - (c_er + c_ei) / c_es): - if not g_new.has_edge(nd1, nd2): - g_new.add_edge(nd1, nd2) - g_new.edges[nd1, nd2][edge_label] = best_label - else: -# elif h_ij0_max < len(Gn_median) * c_er / c_es + sij_norm * (1 - (c_er + c_ei) / c_es): - if g_new.has_edge(nd1, nd2): - g_new.remove_edge(nd1, nd2) - g_tmp_list = [g_new] - G_new_list_edge += g_tmp_list - G_new_list = [ggg.copy() for ggg in G_new_list_edge] - - - else: # if edges are unlabeled - # @todo: is this even right? G or g_tmp? check if the new one is right - # @todo: works only for undirected graphs. - - for g_tmp in G_new_list: - nd_list = [n for n in g_tmp.nodes()] - for nd1i in range(nx.number_of_nodes(g_tmp)): - nd1 = nd_list[nd1i] - for nd2i in range(nd1i + 1, nx.number_of_nodes(g_tmp)): - nd2 = nd_list[nd2i] - sij_norm = 0 - for idx, g in enumerate(Gn_median): - pi_i = pi_p_forward[idx][nd1i] - pi_j = pi_p_forward[idx][nd2i] - if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): - sij_norm += 1 - if sij_norm > len(Gn_median) * c_er / (c_er + c_ei): - # @todo: should we consider if nd1 and nd2 in g_tmp? - # or just add the edge anyway? - if g_tmp.has_node(nd1) and g_tmp.has_node(nd2) \ - and not g_tmp.has_edge(nd1, nd2): - g_tmp.add_edge(nd1, nd2) - else: # @todo: which to use? -# elif sij_norm < len(Gn_median) * c_er / (c_er + c_ei): - if g_tmp.has_edge(nd1, nd2): - g_tmp.remove_edge(nd1, nd2) - # do not change anything when equal. - -# for i, g in enumerate(G_new_list): -# import matplotlib.pyplot as plt -# nx.draw(g, labels=nx.get_node_attributes(g, 'atom'), with_labels=True) -## plt.savefig("results/gk_iam/simple_two/xx" + str(i) + ".png", format="PNG") -# plt.show() -# print(g.nodes(data=True)) -# print(g.edges(data=True)) - -# # find the best graph generated in this iteration and update pi_p. - # @todo: should we update all graphs generated or just the best ones? - dis_list, pi_forward_list = ged_median(G_new_list, Gn_median, - params_ged=params_ged) - # @todo: should we remove the identical and connectivity check? - # Don't know which is faster. - if ds_attrs['node_attr_dim'] == 0 and ds_attrs['edge_attr_dim'] == 0: - G_new_list, idx_list = remove_duplicates(G_new_list) - pi_forward_list = [pi_forward_list[idx] for idx in idx_list] - dis_list = [dis_list[idx] for idx in idx_list] -# if connected == True: -# G_new_list, idx_list = remove_disconnected(G_new_list) -# pi_forward_list = [pi_forward_list[idx] for idx in idx_list] -# idx_min_list = np.argwhere(dis_list == np.min(dis_list)).flatten().tolist() -# dis_min = dis_list[idx_min_tmp_list[0]] -# pi_forward_list = [pi_forward_list[idx] for idx in idx_min_list] -# G_new_list = [G_new_list[idx] for idx in idx_min_list] - -# for g in G_new_list: -# import matplotlib.pyplot as plt -# nx.draw_networkx(g) -# plt.show() -# print(g.nodes(data=True)) -# print(g.edges(data=True)) - - return G_new_list, pi_forward_list, dis_list - - - def best_median_graphs(Gn_candidate, pi_all_forward, dis_all): - idx_min_list = np.argwhere(dis_all == np.min(dis_all)).flatten().tolist() - dis_min = dis_all[idx_min_list[0]] - pi_forward_min_list = [pi_all_forward[idx] for idx in idx_min_list] - G_min_list = [Gn_candidate[idx] for idx in idx_min_list] - return G_min_list, pi_forward_min_list, dis_min - - - def iteration_proc(G, pi_p_forward, cur_sod): - G_list = [G] - pi_forward_list = [pi_p_forward] - old_sod = cur_sod * 2 - sod_list = [cur_sod] - dis_list = [cur_sod] - # iterations. - itr = 0 - # @todo: what if difference == 0? -# while itr < ite_max and (np.abs(old_sod - cur_sod) > epsilon or -# np.abs(old_sod - cur_sod) == 0): - while itr < ite_max and np.abs(old_sod - cur_sod) > epsilon: -# while itr < ite_max: -# for itr in range(0, 5): # the convergence condition? - print('itr_iam is', itr) - G_new_list = [] - pi_forward_new_list = [] - dis_new_list = [] - for idx, g in enumerate(G_list): -# label_set = get_node_labels(Gn_median + [g], node_label) - G_tmp_list, pi_forward_tmp_list, dis_tmp_list = generate_graph( - g, pi_forward_list[idx]) - G_new_list += G_tmp_list - pi_forward_new_list += pi_forward_tmp_list - dis_new_list += dis_tmp_list - # @todo: need to remove duplicates here? - G_list = [ggg.copy() for ggg in G_new_list] - pi_forward_list = [pitem.copy() for pitem in pi_forward_new_list] - dis_list = dis_new_list[:] - - old_sod = cur_sod - cur_sod = np.min(dis_list) - sod_list.append(cur_sod) - - itr += 1 - - # @todo: do we return all graphs or the best ones? - # get the best ones of the generated graphs. - G_list, pi_forward_list, dis_min = best_median_graphs( - G_list, pi_forward_list, dis_list) - - if ds_attrs['node_attr_dim'] == 0 and ds_attrs['edge_attr_dim'] == 0: - G_list, idx_list = remove_duplicates(G_list) - pi_forward_list = [pi_forward_list[idx] for idx in idx_list] -# dis_list = [dis_list[idx] for idx in idx_list] - -# import matplotlib.pyplot as plt -# for g in G_list: -# nx.draw_networkx(g) -# plt.show() -# print(g.nodes(data=True)) -# print(g.edges(data=True)) - - print('\nsods:', sod_list, '\n') - - return G_list, pi_forward_list, dis_min, sod_list - - - def remove_duplicates(Gn): - """Remove duplicate graphs from list. - """ - Gn_new = [] - idx_list = [] - for idx, g in enumerate(Gn): - dupl = False - for g_new in Gn_new: - if graph_isIdentical(g_new, g): - dupl = True - break - if not dupl: - Gn_new.append(g) - idx_list.append(idx) - return Gn_new, idx_list - - - def remove_disconnected(Gn): - """Remove disconnected graphs from list. - """ - Gn_new = [] - idx_list = [] - for idx, g in enumerate(Gn): - if nx.is_connected(g): - Gn_new.append(g) - idx_list.append(idx) - return Gn_new, idx_list - - - ########################################################################### - - # phase 1: initilize. - # compute set-median. - dis_min = np.inf - dis_list, pi_forward_all = ged_median(Gn_candidate, Gn_median, - params_ged=params_ged, parallel=True) - print('finish computing GEDs.') - # find all smallest distances. - if allBestInit: # try all best init graphs. - idx_min_list = range(len(dis_list)) - dis_min = dis_list - else: - idx_min_list = np.argwhere(dis_list == np.min(dis_list)).flatten().tolist() - dis_min = [dis_list[idx_min_list[0]]] * len(idx_min_list) - idx_min_rdm = random.randint(0, len(idx_min_list) - 1) - idx_min_list = [idx_min_list[idx_min_rdm]] - sod_set_median = np.min(dis_min) - - - # phase 2: iteration. - G_list = [] - dis_list = [] - pi_forward_list = [] - G_set_median_list = [] -# sod_list = [] - for idx_tmp, idx_min in enumerate(idx_min_list): -# print('idx_min is', idx_min) - G = Gn_candidate[idx_min].copy() - G_set_median_list.append(G.copy()) - # list of edit operations. - pi_p_forward = pi_forward_all[idx_min] -# pi_p_backward = pi_all_backward[idx_min] - Gi_list, pi_i_forward_list, dis_i_min, sod_list = iteration_proc(G, - pi_p_forward, dis_min[idx_tmp]) - G_list += Gi_list - dis_list += [dis_i_min] * len(Gi_list) - pi_forward_list += pi_i_forward_list - - - if ds_attrs['node_attr_dim'] == 0 and ds_attrs['edge_attr_dim'] == 0: - G_list, idx_list = remove_duplicates(G_list) - dis_list = [dis_list[idx] for idx in idx_list] - pi_forward_list = [pi_forward_list[idx] for idx in idx_list] - if connected == True: - G_list_con, idx_list = remove_disconnected(G_list) - # if there is no connected graphs at all, then remain the disconnected ones. - if len(G_list_con) > 0: # @todo: ?????????????????????????? - G_list = G_list_con - dis_list = [dis_list[idx] for idx in idx_list] - pi_forward_list = [pi_forward_list[idx] for idx in idx_list] - -# import matplotlib.pyplot as plt -# for g in G_list: -# nx.draw_networkx(g) -# plt.show() -# print(g.nodes(data=True)) -# print(g.edges(data=True)) - - # get the best median graphs - G_gen_median_list, pi_forward_min_list, sod_gen_median = best_median_graphs( - G_list, pi_forward_list, dis_list) -# for g in G_gen_median_list: -# nx.draw_networkx(g) -# plt.show() -# print(g.nodes(data=True)) -# print(g.edges(data=True)) - - if not allBestOutput: - # randomly choose one graph. - idx_rdm = random.randint(0, len(G_gen_median_list) - 1) - G_gen_median_list = [G_gen_median_list[idx_rdm]] - - return G_gen_median_list, sod_gen_median, sod_list, G_set_median_list, sod_set_median - - -def iam_bash(Gn_names, edit_cost_constant, cost='CONSTANT', initial_solutions=1, - dataset='monoterpenoides', - graph_dir=''): - """Compute the iam by c++ implementation (gedlib) through bash. - """ - import os - import time - - def createCollectionFile(Gn_names, y, filename): - """Create collection file. - """ - dirname_ds = os.path.dirname(filename) - if dirname_ds != '': - dirname_ds += '/' - if not os.path.exists(dirname_ds) : - os.makedirs(dirname_ds) - - with open(filename + '.xml', 'w') as fgroup: - fgroup.write("") - fgroup.write("\n") - fgroup.write("\n") - for idx, fname in enumerate(Gn_names): - fgroup.write("\n\t") - fgroup.write("\n") - fgroup.close() - - tmp_dir = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/' - fn_collection = tmp_dir + 'collection.' + str(time.time()) + str(random.randint(0, 1e9)) - createCollectionFile(Gn_names, ['dummy'] * len(Gn_names), fn_collection) -# fn_collection = tmp_dir + 'collection_for_debug' -# graph_dir = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/generated_datsets/monoterpenoides/gxl' - -# if dataset == 'Letter-high' or dataset == 'Fingerprint': -# dataset = 'letter' - command = 'GEDLIB_HOME=\'/media/ljia/DATA/research-repo/codes/Linlin/gedlib\'\n' - command += 'LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$GEDLIB_HOME/lib\n' - command += 'export LD_LIBRARY_PATH\n' - command += 'cd \'' + os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/bin\'\n' - command += './iam_for_python_bash ' + dataset + ' ' + fn_collection \ - + ' \'' + graph_dir + '\' ' + ' ' + cost + ' ' + str(initial_solutions) + ' ' - if edit_cost_constant is None: - command += 'None' - else: - for ec in edit_cost_constant: - command += str(ec) + ' ' -# output = os.system(command) - stream = os.popen(command) - - output = stream.readlines() -# print(output) - sod_sm = float(output[0].strip()) - sod_gm = float(output[1].strip()) - - fname_sm = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/set_median.gxl' - fname_gm = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/gen_median.gxl' - - return sod_sm, sod_gm, fname_sm, fname_gm - - - -############################################################################### -# Old implementations. - -def iam(Gn, c_ei=3, c_er=3, c_es=1, node_label='atom', edge_label='bond_type', - connected=True): - """See my name, then you know what I do. - """ -# Gn = Gn[0:10] - Gn = [nx.convert_node_labels_to_integers(g) for g in Gn] - - # phase 1: initilize. - # compute set-median. - dis_min = np.inf - pi_p = [] - pi_all = [] - for idx1, G_p in enumerate(Gn): - dist_sum = 0 - pi_all.append([]) - for idx2, G_p_prime in enumerate(Gn): - dist_tmp, pi_tmp, _ = GED(G_p, G_p_prime) - pi_all[idx1].append(pi_tmp) - dist_sum += dist_tmp - if dist_sum < dis_min: - dis_min = dist_sum - G = G_p.copy() - idx_min = idx1 - # list of edit operations. - pi_p = pi_all[idx_min] - - # phase 2: iteration. - ds_attrs = get_dataset_attributes(Gn, attr_names=['edge_labeled', 'node_attr_dim'], - edge_label=edge_label) - for itr in range(0, 10): # @todo: the convergence condition? - G_new = G.copy() - # update vertex labels. - # pre-compute h_i0 for each label. -# for label in get_node_labels(Gn, node_label): -# print(label) -# for nd in G.nodes(data=True): -# pass - if not ds_attrs['node_attr_dim']: # labels are symbolic - for nd, _ in G.nodes(data=True): - h_i0_list = [] - label_list = [] - for label in get_node_labels(Gn, node_label): - h_i0 = 0 - for idx, g in enumerate(Gn): - pi_i = pi_p[idx][nd] - if g.has_node(pi_i) and g.nodes[pi_i][node_label] == label: - h_i0 += 1 - h_i0_list.append(h_i0) - label_list.append(label) - # choose one of the best randomly. - idx_max = np.argwhere(h_i0_list == np.max(h_i0_list)).flatten().tolist() - idx_rdm = random.randint(0, len(idx_max) - 1) - G_new.nodes[nd][node_label] = label_list[idx_max[idx_rdm]] - else: # labels are non-symbolic - for nd, _ in G.nodes(data=True): - Si_norm = 0 - phi_i_bar = np.array([0.0 for _ in range(ds_attrs['node_attr_dim'])]) - for idx, g in enumerate(Gn): - pi_i = pi_p[idx][nd] - if g.has_node(pi_i): #@todo: what if no g has node? phi_i_bar = 0? - Si_norm += 1 - phi_i_bar += np.array([float(itm) for itm in g.nodes[pi_i]['attributes']]) - phi_i_bar /= Si_norm - G_new.nodes[nd]['attributes'] = phi_i_bar - - # update edge labels and adjacency matrix. - if ds_attrs['edge_labeled']: - for nd1, nd2, _ in G.edges(data=True): - h_ij0_list = [] - label_list = [] - for label in get_edge_labels(Gn, edge_label): - h_ij0 = 0 - for idx, g in enumerate(Gn): - pi_i = pi_p[idx][nd1] - pi_j = pi_p[idx][nd2] - h_ij0_p = (g.has_node(pi_i) and g.has_node(pi_j) and - g.has_edge(pi_i, pi_j) and - g.edges[pi_i, pi_j][edge_label] == label) - h_ij0 += h_ij0_p - h_ij0_list.append(h_ij0) - label_list.append(label) - # choose one of the best randomly. - idx_max = np.argwhere(h_ij0_list == np.max(h_ij0_list)).flatten().tolist() - h_ij0_max = h_ij0_list[idx_max[0]] - idx_rdm = random.randint(0, len(idx_max) - 1) - best_label = label_list[idx_max[idx_rdm]] - - # check whether a_ij is 0 or 1. - sij_norm = 0 - for idx, g in enumerate(Gn): - pi_i = pi_p[idx][nd1] - pi_j = pi_p[idx][nd2] - if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): - sij_norm += 1 - if h_ij0_max > len(Gn) * c_er / c_es + sij_norm * (1 - (c_er + c_ei) / c_es): - if not G_new.has_edge(nd1, nd2): - G_new.add_edge(nd1, nd2) - G_new.edges[nd1, nd2][edge_label] = best_label - else: - if G_new.has_edge(nd1, nd2): - G_new.remove_edge(nd1, nd2) - else: # if edges are unlabeled - for nd1, nd2, _ in G.edges(data=True): - sij_norm = 0 - for idx, g in enumerate(Gn): - pi_i = pi_p[idx][nd1] - pi_j = pi_p[idx][nd2] - if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): - sij_norm += 1 - if sij_norm > len(Gn) * c_er / (c_er + c_ei): - if not G_new.has_edge(nd1, nd2): - G_new.add_edge(nd1, nd2) - else: - if G_new.has_edge(nd1, nd2): - G_new.remove_edge(nd1, nd2) - - G = G_new.copy() - - # update pi_p - pi_p = [] - for idx1, G_p in enumerate(Gn): - dist_tmp, pi_tmp, _ = GED(G, G_p) - pi_p.append(pi_tmp) - - return G - -# --------------------------- These are tests --------------------------------# - -def test_iam_with_more_graphs_as_init(Gn, G_candidate, c_ei=3, c_er=3, c_es=1, - node_label='atom', edge_label='bond_type'): - """See my name, then you know what I do. - """ -# Gn = Gn[0:10] - Gn = [nx.convert_node_labels_to_integers(g) for g in Gn] - - # phase 1: initilize. - # compute set-median. - dis_min = np.inf -# pi_p = [] - pi_all_forward = [] - pi_all_backward = [] - for idx1, G_p in tqdm(enumerate(G_candidate), desc='computing GEDs', file=sys.stdout): - dist_sum = 0 - pi_all_forward.append([]) - pi_all_backward.append([]) - for idx2, G_p_prime in enumerate(Gn): - dist_tmp, pi_tmp_forward, pi_tmp_backward = GED(G_p, G_p_prime) - pi_all_forward[idx1].append(pi_tmp_forward) - pi_all_backward[idx1].append(pi_tmp_backward) - dist_sum += dist_tmp - if dist_sum <= dis_min: - dis_min = dist_sum - G = G_p.copy() - idx_min = idx1 - # list of edit operations. - pi_p_forward = pi_all_forward[idx_min] - pi_p_backward = pi_all_backward[idx_min] - - # phase 2: iteration. - ds_attrs = get_dataset_attributes(Gn + [G], attr_names=['edge_labeled', 'node_attr_dim'], - edge_label=edge_label) - label_set = get_node_labels(Gn + [G], node_label) - for itr in range(0, 10): # @todo: the convergence condition? - G_new = G.copy() - # update vertex labels. - # pre-compute h_i0 for each label. -# for label in get_node_labels(Gn, node_label): -# print(label) -# for nd in G.nodes(data=True): -# pass - if not ds_attrs['node_attr_dim']: # labels are symbolic - for nd in G.nodes(): - h_i0_list = [] - label_list = [] - for label in label_set: - h_i0 = 0 - for idx, g in enumerate(Gn): - pi_i = pi_p_forward[idx][nd] - if g.has_node(pi_i) and g.nodes[pi_i][node_label] == label: - h_i0 += 1 - h_i0_list.append(h_i0) - label_list.append(label) - # choose one of the best randomly. - idx_max = np.argwhere(h_i0_list == np.max(h_i0_list)).flatten().tolist() - idx_rdm = random.randint(0, len(idx_max) - 1) - G_new.nodes[nd][node_label] = label_list[idx_max[idx_rdm]] - else: # labels are non-symbolic - for nd in G.nodes(): - Si_norm = 0 - phi_i_bar = np.array([0.0 for _ in range(ds_attrs['node_attr_dim'])]) - for idx, g in enumerate(Gn): - pi_i = pi_p_forward[idx][nd] - if g.has_node(pi_i): #@todo: what if no g has node? phi_i_bar = 0? - Si_norm += 1 - phi_i_bar += np.array([float(itm) for itm in g.nodes[pi_i]['attributes']]) - phi_i_bar /= Si_norm - G_new.nodes[nd]['attributes'] = phi_i_bar - - # update edge labels and adjacency matrix. - if ds_attrs['edge_labeled']: - for nd1, nd2, _ in G.edges(data=True): - h_ij0_list = [] - label_list = [] - for label in get_edge_labels(Gn, edge_label): - h_ij0 = 0 - for idx, g in enumerate(Gn): - pi_i = pi_p_forward[idx][nd1] - pi_j = pi_p_forward[idx][nd2] - h_ij0_p = (g.has_node(pi_i) and g.has_node(pi_j) and - g.has_edge(pi_i, pi_j) and - g.edges[pi_i, pi_j][edge_label] == label) - h_ij0 += h_ij0_p - h_ij0_list.append(h_ij0) - label_list.append(label) - # choose one of the best randomly. - idx_max = np.argwhere(h_ij0_list == np.max(h_ij0_list)).flatten().tolist() - h_ij0_max = h_ij0_list[idx_max[0]] - idx_rdm = random.randint(0, len(idx_max) - 1) - best_label = label_list[idx_max[idx_rdm]] - - # check whether a_ij is 0 or 1. - sij_norm = 0 - for idx, g in enumerate(Gn): - pi_i = pi_p_forward[idx][nd1] - pi_j = pi_p_forward[idx][nd2] - if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): - sij_norm += 1 - if h_ij0_max > len(Gn) * c_er / c_es + sij_norm * (1 - (c_er + c_ei) / c_es): - if not G_new.has_edge(nd1, nd2): - G_new.add_edge(nd1, nd2) - G_new.edges[nd1, nd2][edge_label] = best_label - else: - if G_new.has_edge(nd1, nd2): - G_new.remove_edge(nd1, nd2) - else: # if edges are unlabeled - # @todo: works only for undirected graphs. - for nd1 in range(nx.number_of_nodes(G)): - for nd2 in range(nd1 + 1, nx.number_of_nodes(G)): - sij_norm = 0 - for idx, g in enumerate(Gn): - pi_i = pi_p_forward[idx][nd1] - pi_j = pi_p_forward[idx][nd2] - if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): - sij_norm += 1 - if sij_norm > len(Gn) * c_er / (c_er + c_ei): - if not G_new.has_edge(nd1, nd2): - G_new.add_edge(nd1, nd2) - elif sij_norm < len(Gn) * c_er / (c_er + c_ei): - if G_new.has_edge(nd1, nd2): - G_new.remove_edge(nd1, nd2) - # do not change anything when equal. - - G = G_new.copy() - - # update pi_p - pi_p_forward = [] - for G_p in Gn: - dist_tmp, pi_tmp_forward, pi_tmp_backward = GED(G, G_p) - pi_p_forward.append(pi_tmp_forward) - - return G - - -############################################################################### - -if __name__ == '__main__': - from gklearn.utils.graphfiles import loadDataset - ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat', - 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb -# ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', -# 'extra_params': {}} # node nsymb -# ds = {'name': 'Acyclic', 'dataset': '../datasets/monoterpenoides/trainset_9.ds', -# 'extra_params': {}} - Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) - - iam(Gn) \ No newline at end of file diff --git a/gklearn/preimage/knn.py b/gklearn/preimage/knn.py deleted file mode 100644 index c179287..0000000 --- a/gklearn/preimage/knn.py +++ /dev/null @@ -1,114 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Fri Jan 10 13:22:04 2020 - -@author: ljia -""" -import numpy as np -#import matplotlib.pyplot as plt -from tqdm import tqdm -import random -#import csv -from shutil import copyfile -import os - -from gklearn.preimage.iam import iam_bash -from gklearn.utils.graphfiles import loadDataset, loadGXL -from gklearn.preimage.ged import GED -from gklearn.preimage.utils import get_same_item_indices - -def test_knn(): - ds = {'name': 'monoterpenoides', - 'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb - Gn, y_all = loadDataset(ds['dataset']) -# Gn = Gn[0:50] -# gkernel = 'treeletkernel' -# node_label = 'atom' -# edge_label = 'bond_type' -# ds_name = 'mono' - dir_output = 'results/knn/' - graph_dir = os.path.dirname(os.path.realpath(__file__)) + '../../datasets/monoterpenoides/' - - k_nn = 1 - percent = 0.1 - repeats = 50 - edit_cost_constant = [3, 3, 1, 3, 3, 1] - - # get indices by classes. - y_idx = get_same_item_indices(y_all) - sod_sm_list_list - for repeat in range(0, repeats): - print('\n---------------------------------') - print('repeat =', repeat) - accuracy_sm_list = [] - accuracy_gm_list = [] - sod_sm_list = [] - sod_gm_list = [] - - random.seed(repeat) - set_median_list = [] - gen_median_list = [] - train_y_set = [] - for y, values in y_idx.items(): - print('\ny =', y) - size_median_set = int(len(values) * percent) - median_set_idx = random.sample(values, size_median_set) - print('median set: ', median_set_idx) - - # compute set median and gen median using IAM (C++ through bash). - # Gn_median = [Gn[idx] for idx in median_set_idx] - group_fnames = [Gn[g].graph['filename'] for g in median_set_idx] - sod_sm, sod_gm, fname_sm, fname_gm = iam_bash(group_fnames, edit_cost_constant, - graph_dir=graph_dir) - print('sod_sm, sod_gm:', sod_sm, sod_gm) - sod_sm_list.append(sod_sm) - sod_gm_list.append(sod_gm) - fname_sm_new = dir_output + 'medians/set_median.y' + str(int(y)) + '.repeat' + str(repeat) + '.gxl' - copyfile(fname_sm, fname_sm_new) - fname_gm_new = dir_output + 'medians/gen_median.y' + str(int(y)) + '.repeat' + str(repeat) + '.gxl' - copyfile(fname_gm, fname_gm_new) - set_median_list.append(loadGXL(fname_sm_new)) - gen_median_list.append(loadGXL(fname_gm_new)) - train_y_set.append(int(y)) - - print(sod_sm, sod_gm) - - # do 1-nn. - test_y_set = [int(y) for y in y_all] - accuracy_sm = knn(set_median_list, train_y_set, Gn, test_y_set, k=k_nn, distance='ged') - accuracy_gm = knn(set_median_list, train_y_set, Gn, test_y_set, k=k_nn, distance='ged') - accuracy_sm_list.append(accuracy_sm) - accuracy_gm_list.append(accuracy_gm) - print('current accuracy sm and gm:', accuracy_sm, accuracy_gm) - - # output - accuracy_sm_mean = np.mean(accuracy_sm_list) - accuracy_gm_mean = np.mean(accuracy_gm_list) - print('\ntotal average accuracy sm and gm:', accuracy_sm_mean, accuracy_gm_mean) - - -def knn(train_set, train_y_set, test_set, test_y_set, k=1, distance='ged'): - if k == 1 and distance == 'ged': - algo_options = '--threads 8 --initial-solutions 40 --ratio-runs-from-initial-solutions 1' - params_ged = {'lib': 'gedlibpy', 'cost': 'CONSTANT', 'method': 'IPFP', - 'algo_options': algo_options, 'stabilizer': None} - accuracy = 0 - for idx_test, g_test in tqdm(enumerate(test_set), desc='computing 1-nn', - file=sys.stdout): - dis = np.inf - for idx_train, g_train in enumerate(train_set): - dis_cur, _, _ = GED(g_test, g_train, **params_ged) - if dis_cur < dis: - dis = dis_cur - test_y_cur = train_y_set[idx_train] - if test_y_cur == test_y_set[idx_test]: - accuracy += 1 - accuracy = accuracy / len(test_set) - - return accuracy - - - -if __name__ == '__main__': - test_knn() \ No newline at end of file diff --git a/gklearn/preimage/libs.py b/gklearn/preimage/libs.py deleted file mode 100644 index 76005c6..0000000 --- a/gklearn/preimage/libs.py +++ /dev/null @@ -1,6 +0,0 @@ -import sys -import pathlib - -# insert gedlibpy library. -sys.path.insert(0, "../../../") -from gedlibpy import librariesImport, gedlibpy diff --git a/gklearn/preimage/median.py b/gklearn/preimage/median.py deleted file mode 100644 index 1c5bb0f..0000000 --- a/gklearn/preimage/median.py +++ /dev/null @@ -1,218 +0,0 @@ -import sys -sys.path.insert(0, "../") -#import pathlib -import numpy as np -import networkx as nx -import time - -from gedlibpy import librariesImport, gedlibpy -#import script -sys.path.insert(0, "/home/bgauzere/dev/optim-graphes/") -import gklearn -from gklearn.utils.graphfiles import loadDataset - -def replace_graph_in_env(script, graph, old_id, label='median'): - """ - Replace a graph in script - - If old_id is -1, add a new graph to the environnemt - - """ - if(old_id > -1): - script.PyClearGraph(old_id) - new_id = script.PyAddGraph(label) - for i in graph.nodes(): - script.PyAddNode(new_id,str(i),graph.node[i]) # !! strings are required bt gedlib - for e in graph.edges: - script.PyAddEdge(new_id, str(e[0]),str(e[1]), {}) - script.PyInitEnv() - script.PySetMethod("IPFP", "") - script.PyInitMethod() - - return new_id - -#Dessin median courrant -def draw_Letter_graph(graph, savepath=''): - import numpy as np - import networkx as nx - import matplotlib.pyplot as plt - plt.figure() - pos = {} - for n in graph.nodes: - pos[n] = np.array([float(graph.node[n]['attributes'][0]), - float(graph.node[n]['attributes'][1])]) - nx.draw_networkx(graph, pos) - if savepath != '': - plt.savefig(savepath + str(time.time()) + '.eps', format='eps', dpi=300) - plt.show() - plt.clf() - -#compute new mappings -def update_mappings(script,median_id,listID): - med_distances = {} - med_mappings = {} - sod = 0 - for i in range(0,len(listID)): - script.PyRunMethod(median_id,listID[i]) - med_distances[i] = script.PyGetUpperBound(median_id,listID[i]) - med_mappings[i] = script.PyGetForwardMap(median_id,listID[i]) - sod += med_distances[i] - return med_distances, med_mappings, sod - -def calcul_Sij(all_mappings, all_graphs,i,j): - s_ij = 0 - for k in range(0,len(all_mappings)): - cur_graph = all_graphs[k] - cur_mapping = all_mappings[k] - size_graph = cur_graph.order() - if ((cur_mapping[i] < size_graph) and - (cur_mapping[j] < size_graph) and - (cur_graph.has_edge(cur_mapping[i], cur_mapping[j]) == True)): - s_ij += 1 - - return s_ij - -# def update_median_nodes_L1(median,listIdSet,median_id,dataset, mappings): -# from scipy.stats.mstats import gmean - -# for i in median.nodes(): -# for k in listIdSet: -# vectors = [] #np.zeros((len(listIdSet),2)) -# if(k != median_id): -# phi_i = mappings[k][i] -# if(phi_i < dataset[k].order()): -# vectors.append([float(dataset[k].node[phi_i]['x']),float(dataset[k].node[phi_i]['y'])]) - -# new_labels = gmean(vectors) -# median.node[i]['x'] = str(new_labels[0]) -# median.node[i]['y'] = str(new_labels[1]) -# return median - -def update_median_nodes(median,dataset,mappings): - #update node attributes - for i in median.nodes(): - nb_sub=0 - mean_label = {'x' : 0, 'y' : 0} - for k in range(0,len(mappings)): - phi_i = mappings[k][i] - if ( phi_i < dataset[k].order() ): - nb_sub += 1 - mean_label['x'] += 0.75*float(dataset[k].node[phi_i]['x']) - mean_label['y'] += 0.75*float(dataset[k].node[phi_i]['y']) - median.node[i]['x'] = str((1/0.75)*(mean_label['x']/nb_sub)) - median.node[i]['y'] = str((1/0.75)*(mean_label['y']/nb_sub)) - return median - -def update_median_edges(dataset, mappings, median, cei=0.425,cer=0.425): -#for letter high, ceir = 1.7, alpha = 0.75 - size_dataset = len(dataset) - ratio_cei_cer = cer/(cei + cer) - threshold = size_dataset*ratio_cei_cer - order_graph_median = median.order() - for i in range(0,order_graph_median): - for j in range(i+1,order_graph_median): - s_ij = calcul_Sij(mappings,dataset,i,j) - if(s_ij > threshold): - median.add_edge(i,j) - else: - if(median.has_edge(i,j)): - median.remove_edge(i,j) - return median - - - -def compute_median(script, listID, dataset,verbose=False): - """Compute a graph median of a dataset according to an environment - - Parameters - - script : An gedlib initialized environnement - listID (list): a list of ID in script: encodes the dataset - dataset (list): corresponding graphs in networkX format. We assume that graph - listID[i] corresponds to dataset[i] - - Returns: - A networkX graph, which is the median, with corresponding sod - """ - print(len(listID)) - median_set_index, median_set_sod = compute_median_set(script, listID) - print(median_set_index) - print(median_set_sod) - sods = [] - #Ajout median dans environnement - set_median = dataset[median_set_index].copy() - median = dataset[median_set_index].copy() - cur_med_id = replace_graph_in_env(script,median,-1) - med_distances, med_mappings, cur_sod = update_mappings(script,cur_med_id,listID) - sods.append(cur_sod) - if(verbose): - print(cur_sod) - ite_max = 50 - old_sod = cur_sod * 2 - ite = 0 - epsilon = 0.001 - - best_median - while((ite < ite_max) and (np.abs(old_sod - cur_sod) > epsilon )): - median = update_median_nodes(median,dataset, med_mappings) - median = update_median_edges(dataset,med_mappings,median) - - cur_med_id = replace_graph_in_env(script,median,cur_med_id) - med_distances, med_mappings, cur_sod = update_mappings(script,cur_med_id,listID) - - - sods.append(cur_sod) - if(verbose): - print(cur_sod) - ite += 1 - return median, cur_sod, sods, set_median - - draw_Letter_graph(median) - - -def compute_median_set(script,listID): - 'Returns the id in listID corresponding to median set' - #Calcul median set - N=len(listID) - map_id_to_index = {} - map_index_to_id = {} - for i in range(0,len(listID)): - map_id_to_index[listID[i]] = i - map_index_to_id[i] = listID[i] - - distances = np.zeros((N,N)) - for i in listID: - for j in listID: - script.PyRunMethod(i,j) - distances[map_id_to_index[i],map_id_to_index[j]] = script.PyGetUpperBound(i,j) - - median_set_index = np.argmin(np.sum(distances,0)) - sod = np.min(np.sum(distances,0)) - - return median_set_index, sod - -if __name__ == "__main__": - #Chargement du dataset - script.PyLoadGXLGraph('/home/bgauzere/dev/gedlib/data/datasets/Letter/HIGH/', '/home/bgauzere/dev/gedlib/data/collections/Letter_Z.xml') - script.PySetEditCost("LETTER") - script.PyInitEnv() - script.PySetMethod("IPFP", "") - script.PyInitMethod() - - dataset,my_y = gklearn.utils.graphfiles.loadDataset("/home/bgauzere/dev/gedlib/data/datasets/Letter/HIGH/Letter_Z.cxl") - - listID = script.PyGetAllGraphIds() - median, sod = compute_median(script,listID,dataset,verbose=True) - - print(sod) - draw_Letter_graph(median) - - -#if __name__ == '__main__': -# # test draw_Letter_graph -# ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', -# 'extra_params': {}} # node nsymb -# Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) -# print(y_all) -# for g in Gn: -# draw_Letter_graph(g) \ No newline at end of file diff --git a/gklearn/preimage/median_benoit.py b/gklearn/preimage/median_benoit.py deleted file mode 100644 index 6712196..0000000 --- a/gklearn/preimage/median_benoit.py +++ /dev/null @@ -1,201 +0,0 @@ -import sys -import pathlib -import numpy as np -import networkx as nx - -import librariesImport -import script -sys.path.insert(0, "/home/bgauzere/dev/optim-graphes/") -import gklearn - -def replace_graph_in_env(script, graph, old_id, label='median'): - """ - Replace a graph in script - - If old_id is -1, add a new graph to the environnemt - - """ - if(old_id > -1): - script.PyClearGraph(old_id) - new_id = script.PyAddGraph(label) - for i in graph.nodes(): - script.PyAddNode(new_id,str(i),graph.node[i]) # !! strings are required bt gedlib - for e in graph.edges: - script.PyAddEdge(new_id, str(e[0]),str(e[1]), {}) - script.PyInitEnv() - script.PySetMethod("IPFP", "") - script.PyInitMethod() - - return new_id - -#Dessin median courrant -def draw_Letter_graph(graph): - import numpy as np - import networkx as nx - import matplotlib.pyplot as plt - plt.figure() - pos = {} - for n in graph.nodes: - pos[n] = np.array([float(graph.node[n]['x']),float(graph.node[n]['y'])]) - nx.draw_networkx(graph,pos) - plt.show() - -#compute new mappings -def update_mappings(script,median_id,listID): - med_distances = {} - med_mappings = {} - sod = 0 - for i in range(0,len(listID)): - script.PyRunMethod(median_id,listID[i]) - med_distances[i] = script.PyGetUpperBound(median_id,listID[i]) - med_mappings[i] = script.PyGetForwardMap(median_id,listID[i]) - sod += med_distances[i] - return med_distances, med_mappings, sod - -def calcul_Sij(all_mappings, all_graphs,i,j): - s_ij = 0 - for k in range(0,len(all_mappings)): - cur_graph = all_graphs[k] - cur_mapping = all_mappings[k] - size_graph = cur_graph.order() - if ((cur_mapping[i] < size_graph) and - (cur_mapping[j] < size_graph) and - (cur_graph.has_edge(cur_mapping[i], cur_mapping[j]) == True)): - s_ij += 1 - - return s_ij - -# def update_median_nodes_L1(median,listIdSet,median_id,dataset, mappings): -# from scipy.stats.mstats import gmean - -# for i in median.nodes(): -# for k in listIdSet: -# vectors = [] #np.zeros((len(listIdSet),2)) -# if(k != median_id): -# phi_i = mappings[k][i] -# if(phi_i < dataset[k].order()): -# vectors.append([float(dataset[k].node[phi_i]['x']),float(dataset[k].node[phi_i]['y'])]) - -# new_labels = gmean(vectors) -# median.node[i]['x'] = str(new_labels[0]) -# median.node[i]['y'] = str(new_labels[1]) -# return median - -def update_median_nodes(median,dataset,mappings): - #update node attributes - for i in median.nodes(): - nb_sub=0 - mean_label = {'x' : 0, 'y' : 0} - for k in range(0,len(mappings)): - phi_i = mappings[k][i] - if ( phi_i < dataset[k].order() ): - nb_sub += 1 - mean_label['x'] += 0.75*float(dataset[k].node[phi_i]['x']) - mean_label['y'] += 0.75*float(dataset[k].node[phi_i]['y']) - median.node[i]['x'] = str((1/0.75)*(mean_label['x']/nb_sub)) - median.node[i]['y'] = str((1/0.75)*(mean_label['y']/nb_sub)) - return median - -def update_median_edges(dataset, mappings, median, cei=0.425,cer=0.425): -#for letter high, ceir = 1.7, alpha = 0.75 - size_dataset = len(dataset) - ratio_cei_cer = cer/(cei + cer) - threshold = size_dataset*ratio_cei_cer - order_graph_median = median.order() - for i in range(0,order_graph_median): - for j in range(i+1,order_graph_median): - s_ij = calcul_Sij(mappings,dataset,i,j) - if(s_ij > threshold): - median.add_edge(i,j) - else: - if(median.has_edge(i,j)): - median.remove_edge(i,j) - return median - - - -def compute_median(script, listID, dataset,verbose=False): - """Compute a graph median of a dataset according to an environment - - Parameters - - script : An gedlib initialized environnement - listID (list): a list of ID in script: encodes the dataset - dataset (list): corresponding graphs in networkX format. We assume that graph - listID[i] corresponds to dataset[i] - - Returns: - A networkX graph, which is the median, with corresponding sod - """ - print(len(listID)) - median_set_index, median_set_sod = compute_median_set(script, listID) - print(median_set_index) - print(median_set_sod) - sods = [] - #Ajout median dans environnement - set_median = dataset[median_set_index].copy() - median = dataset[median_set_index].copy() - cur_med_id = replace_graph_in_env(script,median,-1) - med_distances, med_mappings, cur_sod = update_mappings(script,cur_med_id,listID) - sods.append(cur_sod) - if(verbose): - print(cur_sod) - ite_max = 50 - old_sod = cur_sod * 2 - ite = 0 - epsilon = 0.001 - - best_median - while((ite < ite_max) and (np.abs(old_sod - cur_sod) > epsilon )): - median = update_median_nodes(median,dataset, med_mappings) - median = update_median_edges(dataset,med_mappings,median) - - cur_med_id = replace_graph_in_env(script,median,cur_med_id) - med_distances, med_mappings, cur_sod = update_mappings(script,cur_med_id,listID) - - - sods.append(cur_sod) - if(verbose): - print(cur_sod) - ite += 1 - return median, cur_sod, sods, set_median - - draw_Letter_graph(median) - - -def compute_median_set(script,listID): - 'Returns the id in listID corresponding to median set' - #Calcul median set - N=len(listID) - map_id_to_index = {} - map_index_to_id = {} - for i in range(0,len(listID)): - map_id_to_index[listID[i]] = i - map_index_to_id[i] = listID[i] - - distances = np.zeros((N,N)) - for i in listID: - for j in listID: - script.PyRunMethod(i,j) - distances[map_id_to_index[i],map_id_to_index[j]] = script.PyGetUpperBound(i,j) - - median_set_index = np.argmin(np.sum(distances,0)) - sod = np.min(np.sum(distances,0)) - - return median_set_index, sod - -if __name__ == "__main__": - #Chargement du dataset - script.PyLoadGXLGraph('/home/bgauzere/dev/gedlib/data/datasets/Letter/HIGH/', '/home/bgauzere/dev/gedlib/data/collections/Letter_Z.xml') - script.PySetEditCost("LETTER") - script.PyInitEnv() - script.PySetMethod("IPFP", "") - script.PyInitMethod() - - dataset,my_y = gklearn.utils.graphfiles.loadDataset("/home/bgauzere/dev/gedlib/data/datasets/Letter/HIGH/Letter_Z.cxl") - - listID = script.PyGetAllGraphIds() - median, sod = compute_median(script,listID,dataset,verbose=True) - - print(sod) - draw_Letter_graph(median) diff --git a/gklearn/preimage/median_graph_estimator.py b/gklearn/preimage/median_graph_estimator.py deleted file mode 100644 index b70cc61..0000000 --- a/gklearn/preimage/median_graph_estimator.py +++ /dev/null @@ -1,826 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Mon Mar 16 18:04:55 2020 - -@author: ljia -""" -import numpy as np -from gklearn.preimage.common_types import AlgorithmState -from gklearn.preimage import misc -from gklearn.preimage.timer import Timer -from gklearn.utils.utils import graph_isIdentical -import time -from tqdm import tqdm -import sys -import networkx as nx - - -class MedianGraphEstimator(object): - - def __init__(self, ged_env, constant_node_costs): - """Constructor. - - Parameters - ---------- - ged_env : gklearn.gedlib.gedlibpy.GEDEnv - Initialized GED environment. The edit costs must be set by the user. - - constant_node_costs : Boolean - Set to True if the node relabeling costs are constant. - """ - self.__ged_env = ged_env - self.__init_method = 'BRANCH_FAST' - self.__init_options = '' - self.__descent_method = 'BRANCH_FAST' - self.__descent_options = '' - self.__refine_method = 'IPFP' - self.__refine_options = '' - self.__constant_node_costs = constant_node_costs - self.__labeled_nodes = (ged_env.get_num_node_labels() > 1) - self.__node_del_cost = ged_env.get_node_del_cost(ged_env.get_node_label(1)) - self.__node_ins_cost = ged_env.get_node_ins_cost(ged_env.get_node_label(1)) - self.__labeled_edges = (ged_env.get_num_edge_labels() > 1) - self.__edge_del_cost = ged_env.get_edge_del_cost(ged_env.get_edge_label(1)) - self.__edge_ins_cost = ged_env.get_edge_ins_cost(ged_env.get_edge_label(1)) - self.__init_type = 'RANDOM' - self.__num_random_inits = 10 - self.__desired_num_random_inits = 10 - self.__use_real_randomness = True - self.__seed = 0 - self.__refine = True - self.__time_limit_in_sec = 0 - self.__epsilon = 0.0001 - self.__max_itrs = 100 - self.__max_itrs_without_update = 3 - self.__num_inits_increase_order = 10 - self.__init_type_increase_order = 'K-MEANS++' - self.__max_itrs_increase_order = 10 - self.__print_to_stdout = 2 - self.__median_id = np.inf # @todo: check - self.__median_node_id_prefix = '' # @todo: check - self.__node_maps_from_median = {} - self.__sum_of_distances = 0 - self.__best_init_sum_of_distances = np.inf - self.__converged_sum_of_distances = np.inf - self.__runtime = None - self.__runtime_initialized = None - self.__runtime_converged = None - self.__itrs = [] # @todo: check: {} ? - self.__num_decrease_order = 0 - self.__num_increase_order = 0 - self.__num_converged_descents = 0 - self.__state = AlgorithmState.TERMINATED - - if ged_env is None: - raise Exception('The GED environment pointer passed to the constructor of MedianGraphEstimator is null.') - elif not ged_env.is_initialized(): - raise Exception('The GED environment is uninitialized. Call gedlibpy.GEDEnv.init() before passing it to the constructor of MedianGraphEstimator.') - - - def set_options(self, options): - """Sets the options of the estimator. - - Parameters - ---------- - options : string - String that specifies with which options to run the estimator. - """ - self.__set_default_options() - options_map = misc.options_string_to_options_map(options) - for opt_name, opt_val in options_map.items(): - if opt_name == 'init-type': - self.__init_type = opt_val - if opt_val != 'MEDOID' and opt_val != 'RANDOM' and opt_val != 'MIN' and opt_val != 'MAX' and opt_val != 'MEAN': - raise Exception('Invalid argument ' + opt_val + ' for option init-type. Usage: options = "[--init-type RANDOM|MEDOID|EMPTY|MIN|MAX|MEAN] [...]"') - elif opt_name == 'random-inits': - try: - self.__num_random_inits = int(opt_val) - self.__desired_num_random_inits = self.__num_random_inits - except: - raise Exception('Invalid argument "' + opt_val + '" for option random-inits. Usage: options = "[--random-inits ]"') - - if self.__num_random_inits <= 0: - raise Exception('Invalid argument "' + opt_val + '" for option random-inits. Usage: options = "[--random-inits ]"') - - elif opt_name == 'randomness': - if opt_val == 'PSEUDO': - self.__use_real_randomness = False - - elif opt_val == 'REAL': - self.__use_real_randomness = True - - else: - raise Exception('Invalid argument "' + opt_val + '" for option randomness. Usage: options = "[--randomness REAL|PSEUDO] [...]"') - - elif opt_name == 'stdout': - if opt_val == '0': - self.__print_to_stdout = 0 - - elif opt_val == '1': - self.__print_to_stdout = 1 - - elif opt_val == '2': - self.__print_to_stdout = 2 - - else: - raise Exception('Invalid argument "' + opt_val + '" for option stdout. Usage: options = "[--stdout 0|1|2] [...]"') - - elif opt_name == 'refine': - if opt_val == 'TRUE': - self.__refine = True - - elif opt_val == 'FALSE': - self.__refine = False - - else: - raise Exception('Invalid argument "' + opt_val + '" for option refine. Usage: options = "[--refine TRUE|FALSE] [...]"') - - elif opt_name == 'time-limit': - try: - self.__time_limit_in_sec = float(opt_val) - - except: - raise Exception('Invalid argument "' + opt_val + '" for option time-limit. Usage: options = "[--time-limit ] [...]') - - elif opt_name == 'max-itrs': - try: - self.__max_itrs = int(opt_val) - - except: - raise Exception('Invalid argument "' + opt_val + '" for option max-itrs. Usage: options = "[--max-itrs ] [...]') - - elif opt_name == 'max-itrs-without-update': - try: - self.__max_itrs_without_update = int(opt_val) - - except: - raise Exception('Invalid argument "' + opt_val + '" for option max-itrs-without-update. Usage: options = "[--max-itrs-without-update ] [...]') - - elif opt_name == 'seed': - try: - self.__seed = int(opt_val) - - except: - raise Exception('Invalid argument "' + opt_val + '" for option seed. Usage: options = "[--seed ] [...]') - - elif opt_name == 'epsilon': - try: - self.__epsilon = float(opt_val) - - except: - raise Exception('Invalid argument "' + opt_val + '" for option epsilon. Usage: options = "[--epsilon ] [...]') - - if self.__epsilon <= 0: - raise Exception('Invalid argument "' + opt_val + '" for option epsilon. Usage: options = "[--epsilon ] [...]') - - elif opt_name == 'inits-increase-order': - try: - self.__num_inits_increase_order = int(opt_val) - - except: - raise Exception('Invalid argument "' + opt_val + '" for option inits-increase-order. Usage: options = "[--inits-increase-order ]"') - - if self.__num_inits_increase_order <= 0: - raise Exception('Invalid argument "' + opt_val + '" for option inits-increase-order. Usage: options = "[--inits-increase-order ]"') - - elif opt_name == 'init-type-increase-order': - self.__init_type_increase_order = opt_val - if opt_val != 'CLUSTERS' and opt_val != 'K-MEANS++': - raise Exception('Invalid argument ' + opt_val + ' for option init-type-increase-order. Usage: options = "[--init-type-increase-order CLUSTERS|K-MEANS++] [...]"') - - elif opt_name == 'max-itrs-increase-order': - try: - self.__max_itrs_increase_order = int(opt_val) - - except: - raise Exception('Invalid argument "' + opt_val + '" for option max-itrs-increase-order. Usage: options = "[--max-itrs-increase-order ] [...]') - - else: - valid_options = '[--init-type ] [--random-inits ] [--randomness ] [--seed ] [--stdout ] ' - valid_options += '[--time-limit ] [--max-itrs ] [--epsilon ] ' - valid_options += '[--inits-increase-order ] [--init-type-increase-order ] [--max-itrs-increase-order ]' - raise Exception('Invalid option "' + opt_name + '". Usage: options = "' + valid_options + '"') - - - def set_init_method(self, init_method, init_options=''): - """Selects method to be used for computing the initial medoid graph. - - Parameters - ---------- - init_method : string - The selected method. Default: ged::Options::GEDMethod::BRANCH_UNIFORM. - - init_options : string - The options for the selected method. Default: "". - - Notes - ----- - Has no effect unless "--init-type MEDOID" is passed to set_options(). - """ - self.__init_method = init_method; - self.__init_options = init_options; - - - def set_descent_method(self, descent_method, descent_options=''): - """Selects method to be used for block gradient descent.. - - Parameters - ---------- - descent_method : string - The selected method. Default: ged::Options::GEDMethod::BRANCH_FAST. - - descent_options : string - The options for the selected method. Default: "". - - Notes - ----- - Has no effect unless "--init-type MEDOID" is passed to set_options(). - """ - self.__descent_method = descent_method; - self.__descent_options = descent_options; - - - def set_refine_method(self, refine_method, refine_options): - """Selects method to be used for improving the sum of distances and the node maps for the converged median. - - Parameters - ---------- - refine_method : string - The selected method. Default: "IPFP". - - refine_options : string - The options for the selected method. Default: "". - - Notes - ----- - Has no effect if "--refine FALSE" is passed to set_options(). - """ - self.__refine_method = refine_method - self.__refine_options = refine_options - - - def run(self, graph_ids, set_median_id, gen_median_id): - """Computes a generalized median graph. - - Parameters - ---------- - graph_ids : list[integer] - The IDs of the graphs for which the median should be computed. Must have been added to the environment passed to the constructor. - - set_median_id : integer - The ID of the computed set-median. A dummy graph with this ID must have been added to the environment passed to the constructor. Upon termination, the computed median can be obtained via gklearn.gedlib.gedlibpy.GEDEnv.get_graph(). - - - gen_median_id : integer - The ID of the computed generalized median. Upon termination, the computed median can be obtained via gklearn.gedlib.gedlibpy.GEDEnv.get_graph(). - """ - # Sanity checks. - if len(graph_ids) == 0: - raise Exception('Empty vector of graph IDs, unable to compute median.') - all_graphs_empty = True - for graph_id in graph_ids: - if self.__ged_env.get_graph_num_nodes(graph_id) > 0: - self.__median_node_id_prefix = self.__ged_env.get_original_node_ids(graph_id)[0] - all_graphs_empty = False - break - if all_graphs_empty: - raise Exception('All graphs in the collection are empty.') - - # Start timer and record start time. - start = time.time() - timer = Timer(self.__time_limit_in_sec) - self.__median_id = gen_median_id - self.__state = AlgorithmState.TERMINATED - - # Get ExchangeGraph representations of the input graphs. - graphs = {} - for graph_id in graph_ids: - # @todo: get_nx_graph() function may need to be modified according to the coming code. - graphs[graph_id] = self.__ged_env.get_nx_graph(graph_id, True, True, False) -# print(self.__ged_env.get_graph_internal_id(0)) -# print(graphs[0].graph) -# print(graphs[0].nodes(data=True)) -# print(graphs[0].edges(data=True)) -# print(nx.adjacency_matrix(graphs[0])) - - - # Construct initial medians. - medians = [] - self.__construct_initial_medians(graph_ids, timer, medians) - end_init = time.time() - self.__runtime_initialized = end_init - start -# print(medians[0].graph) -# print(medians[0].nodes(data=True)) -# print(medians[0].edges(data=True)) -# print(nx.adjacency_matrix(medians[0])) - - # Reset information about iterations and number of times the median decreases and increases. - self.__itrs = [0] * len(medians) - self.__num_decrease_order = 0 - self.__num_increase_order = 0 - self.__num_converged_descents = 0 - - # Initialize the best median. - best_sum_of_distances = np.inf - self.__best_init_sum_of_distances = np.inf - node_maps_from_best_median = {} - - # Run block gradient descent from all initial medians. - self.__ged_env.set_method(self.__descent_method, self.__descent_options) - for median_pos in range(0, len(medians)): - - # Terminate if the timer has expired and at least one SOD has been computed. - if timer.expired() and median_pos > 0: - break - - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('\n===========================================================') - print('Block gradient descent for initial median', str(median_pos + 1), 'of', str(len(medians)), '.') - print('-----------------------------------------------------------') - - # Get reference to the median. - median = medians[median_pos] - - # Load initial median into the environment. - self.__ged_env.load_nx_graph(median, gen_median_id) - self.__ged_env.init(self.__ged_env.get_init_type()) - - # Print information about current iteration. - if self.__print_to_stdout == 2: - progress = tqdm(desc='\rComputing initial node maps', total=len(graph_ids), file=sys.stdout) - - # Compute node maps and sum of distances for initial median. - self.__sum_of_distances = 0 - self.__node_maps_from_median.clear() # @todo - for graph_id in graph_ids: - self.__ged_env.run_method(gen_median_id, graph_id) - self.__node_maps_from_median[graph_id] = self.__ged_env.get_node_map(gen_median_id, graph_id) -# print(self.__node_maps_from_median[graph_id]) - self.__sum_of_distances += self.__ged_env.get_induced_cost(gen_median_id, graph_id) # @todo: the C++ implementation for this function in GedLibBind.ipp re-call get_node_map() once more, this is not neccessary. -# print(self.__sum_of_distances) - # Print information about current iteration. - if self.__print_to_stdout == 2: - progress.update(1) - - self.__best_init_sum_of_distances = min(self.__best_init_sum_of_distances, self.__sum_of_distances) - self.__ged_env.load_nx_graph(median, set_median_id) -# print(self.__best_init_sum_of_distances) - - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('\n') - - # Run block gradient descent from initial median. - converged = False - itrs_without_update = 0 - while not self.__termination_criterion_met(converged, timer, self.__itrs[median_pos], itrs_without_update): - - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('\n===========================================================') - print('Iteration', str(self.__itrs[median_pos] + 1), 'for initial median', str(median_pos + 1), 'of', str(len(medians)), '.') - print('-----------------------------------------------------------') - - # Initialize flags that tell us what happened in the iteration. - median_modified = False - node_maps_modified = False - decreased_order = False - increased_order = False - - # Update the median. # @todo!!!!!!!!!!!!!!!!!!!!!! - median_modified = self.__update_median(graphs, median) - if not median_modified or self.__itrs[median_pos] == 0: - decreased_order = False - if not decreased_order or self.__itrs[median_pos] == 0: - increased_order = False - - # Update the number of iterations without update of the median. - if median_modified or decreased_order or increased_order: - itrs_without_update = 0 - else: - itrs_without_update += 1 - - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('Loading median to environment: ... ', end='') - - # Load the median into the environment. - # @todo: should this function use the original node label? - self.__ged_env.load_nx_graph(median, gen_median_id) - self.__ged_env.init(self.__ged_env.get_init_type()) - - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('done.') - - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('Updating induced costs: ... ', end='') - - # Compute induced costs of the old node maps w.r.t. the updated median. - for graph_id in graph_ids: -# print(self.__ged_env.get_induced_cost(gen_median_id, graph_id)) - # @todo: watch out if compute_induced_cost is correct, this may influence: increase/decrease order, induced_cost() in the following code.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - self.__ged_env.compute_induced_cost(gen_median_id, graph_id) -# print('---------------------------------------') -# print(self.__ged_env.get_induced_cost(gen_median_id, graph_id)) - - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('done.') - - # Update the node maps. - node_maps_modified = self.__update_node_maps() # @todo - - # Update the order of the median if no improvement can be found with the current order. - - # Update the sum of distances. - old_sum_of_distances = self.__sum_of_distances - self.__sum_of_distances = 0 - for graph_id in self.__node_maps_from_median: - self.__sum_of_distances += self.__ged_env.get_induced_cost(gen_median_id, graph_id) # @todo: see above. - - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('Old local SOD: ', old_sum_of_distances) - print('New local SOD: ', self.__sum_of_distances) - print('Best converged SOD: ', best_sum_of_distances) - print('Modified median: ', median_modified) - print('Modified node maps: ', node_maps_modified) - print('Decreased order: ', decreased_order) - print('Increased order: ', increased_order) - print('===========================================================\n') - - converged = not (median_modified or node_maps_modified or decreased_order or increased_order) - - self.__itrs[median_pos] += 1 - - # Update the best median. - if self.__sum_of_distances < self.__best_init_sum_of_distances: - best_sum_of_distances = self.__sum_of_distances - node_maps_from_best_median = self.__node_maps_from_median - best_median = median - - # Update the number of converged descents. - if converged: - self.__num_converged_descents += 1 - - # Store the best encountered median. - self.__sum_of_distances = best_sum_of_distances - self.__node_maps_from_median = node_maps_from_best_median - self.__ged_env.load_nx_graph(best_median, gen_median_id) - self.__ged_env.init(self.__ged_env.get_init_type()) - end_descent = time.time() - self.__runtime_converged = end_descent - start - - # Refine the sum of distances and the node maps for the converged median. - self.__converged_sum_of_distances = self.__sum_of_distances - if self.__refine: - self.__improve_sum_of_distances(timer) # @todo - - # Record end time, set runtime and reset the number of initial medians. - end = time.time() - self.__runtime = end - start - self.__num_random_inits = self.__desired_num_random_inits - - # Print global information. - if self.__print_to_stdout != 0: - print('\n===========================================================') - print('Finished computation of generalized median graph.') - print('-----------------------------------------------------------') - print('Best SOD after initialization: ', self.__best_init_sum_of_distances) - print('Converged SOD: ', self.__converged_sum_of_distances) - if self.__refine: - print('Refined SOD: ', self.__sum_of_distances) - print('Overall runtime: ', self.__runtime) - print('Runtime of initialization: ', self.__runtime_initialized) - print('Runtime of block gradient descent: ', self.__runtime_converged - self.__runtime_initialized) - if self.__refine: - print('Runtime of refinement: ', self.__runtime - self.__runtime_converged) - print('Number of initial medians: ', len(medians)) - total_itr = 0 - num_started_descents = 0 - for itr in self.__itrs: - total_itr += itr - if itr > 0: - num_started_descents += 1 - print('Size of graph collection: ', len(graph_ids)) - print('Number of started descents: ', num_started_descents) - print('Number of converged descents: ', self.__num_converged_descents) - print('Overall number of iterations: ', total_itr) - print('Overall number of times the order decreased: ', self.__num_decrease_order) - print('Overall number of times the order increased: ', self.__num_increase_order) - print('===========================================================\n') - - - def get_sum_of_distances(self, state=''): - """Returns the sum of distances. - - Parameters - ---------- - state : string - The state of the estimator. Can be 'initialized' or 'converged'. Default: "" - - Returns - ------- - float - The sum of distances (SOD) of the median when the estimator was in the state `state` during the last call to run(). If `state` is not given, the converged SOD (without refinement) or refined SOD (with refinement) is returned. - """ - if not self.__median_available(): - raise Exception('No median has been computed. Call run() before calling get_sum_of_distances().') - if state == 'initialized': - return self.__best_init_sum_of_distances - if state == 'converged': - return self.__converged_sum_of_distances - return self.__sum_of_distances - - - def __set_default_options(self): - self.__init_type = 'RANDOM' - self.__num_random_inits = 10 - self.__desired_num_random_inits = 10 - self.__use_real_randomness = True - self.__seed = 0 - self.__refine = True - self.__time_limit_in_sec = 0 - self.__epsilon = 0.0001 - self.__max_itrs = 100 - self.__max_itrs_without_update = 3 - self.__num_inits_increase_order = 10 - self.__init_type_increase_order = 'K-MEANS++' - self.__max_itrs_increase_order = 10 - self.__print_to_stdout = 2 - - - def __construct_initial_medians(self, graph_ids, timer, initial_medians): - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('\n===========================================================') - print('Constructing initial median(s).') - print('-----------------------------------------------------------') - - # Compute or sample the initial median(s). - initial_medians.clear() - if self.__init_type == 'MEDOID': - self.__compute_medoid(graph_ids, timer, initial_medians) - elif self.__init_type == 'MAX': - pass # @todo -# compute_max_order_graph_(graph_ids, initial_medians) - elif self.__init_type == 'MIN': - pass # @todo -# compute_min_order_graph_(graph_ids, initial_medians) - elif self.__init_type == 'MEAN': - pass # @todo -# compute_mean_order_graph_(graph_ids, initial_medians) - else: - pass # @todo -# sample_initial_medians_(graph_ids, initial_medians) - - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('===========================================================') - - - def __compute_medoid(self, graph_ids, timer, initial_medians): - # Use method selected for initialization phase. - self.__ged_env.set_method(self.__init_method, self.__init_options) - - # Print information about current iteration. - if self.__print_to_stdout == 2: - progress = tqdm(desc='\rComputing medoid', total=len(graph_ids), file=sys.stdout) - - # Compute the medoid. - medoid_id = graph_ids[0] - best_sum_of_distances = np.inf - for g_id in graph_ids: - if timer.expired(): - self.__state = AlgorithmState.CALLED - break - sum_of_distances = 0 - for h_id in graph_ids: - self.__ged_env.run_method(g_id, h_id) - sum_of_distances += self.__ged_env.get_upper_bound(g_id, h_id) - if sum_of_distances < best_sum_of_distances: - best_sum_of_distances = sum_of_distances - medoid_id = g_id - - # Print information about current iteration. - if self.__print_to_stdout == 2: - progress.update(1) - initial_medians.append(self.__ged_env.get_nx_graph(medoid_id, True, True, False)) # @todo - - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('\n') - - - def __termination_criterion_met(self, converged, timer, itr, itrs_without_update): - if timer.expired() or (itr >= self.__max_itrs if self.__max_itrs >= 0 else False): - if self.__state == AlgorithmState.TERMINATED: - self.__state = AlgorithmState.INITIALIZED - return True - return converged or (itrs_without_update > self.__max_itrs_without_update if self.__max_itrs_without_update >= 0 else False) - - - def __update_median(self, graphs, median): - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('Updating median: ', end='') - - # Store copy of the old median. - old_median = median.copy() # @todo: this is just a shallow copy. - - # Update the node labels. - if self.__labeled_nodes: - self.__update_node_labels(graphs, median) - - # Update the edges and their labels. - self.__update_edges(graphs, median) - - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('done.') - - return not self.__are_graphs_equal(median, old_median) - - - def __update_node_labels(self, graphs, median): - - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('nodes ... ', end='') - - # Iterate through all nodes of the median. - for i in range(0, nx.number_of_nodes(median)): -# print('i: ', i) - # Collect the labels of the substituted nodes. - node_labels = [] - for graph_id, graph in graphs.items(): -# print('graph_id: ', graph_id) -# print(self.__node_maps_from_median[graph_id]) - k = self.__get_node_image_from_map(self.__node_maps_from_median[graph_id], i) -# print('k: ', k) - if k != np.inf: - node_labels.append(graph.nodes[k]) - - # Compute the median label and update the median. - if len(node_labels) > 0: - median_label = self.__ged_env.get_median_node_label(node_labels) - if self.__ged_env.get_node_rel_cost(median.nodes[i], median_label) > self.__epsilon: - nx.set_node_attributes(median, {i: median_label}) - - - def __update_edges(self, graphs, median): - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('edges ... ', end='') - - # Clear the adjacency lists of the median and reset number of edges to 0. - median_edges = list(median.edges) - for (head, tail) in median_edges: - median.remove_edge(head, tail) - - # @todo: what if edge is not labeled? - # Iterate through all possible edges (i,j) of the median. - for i in range(0, nx.number_of_nodes(median)): - for j in range(i + 1, nx.number_of_nodes(median)): - - # Collect the labels of the edges to which (i,j) is mapped by the node maps. - edge_labels = [] - for graph_id, graph in graphs.items(): - k = self.__get_node_image_from_map(self.__node_maps_from_median[graph_id], i) - l = self.__get_node_image_from_map(self.__node_maps_from_median[graph_id], j) - if k != np.inf and l != np.inf: - if graph.has_edge(k, l): - edge_labels.append(graph.edges[(k, l)]) - - # Compute the median edge label and the overall edge relabeling cost. - rel_cost = 0 - median_label = self.__ged_env.get_edge_label(1) - if median.has_edge(i, j): - median_label = median.edges[(i, j)] - if self.__labeled_edges and len(edge_labels) > 0: - new_median_label = self.__ged_env.median_edge_label(edge_labels) - if self.__ged_env.get_edge_rel_cost(median_label, new_median_label) > self.__epsilon: - median_label = new_median_label - for edge_label in edge_labels: - rel_cost += self.__ged_env.get_edge_rel_cost(median_label, edge_label) - - # Update the median. - if rel_cost < (self.__edge_ins_cost + self.__edge_del_cost) * len(edge_labels) - self.__edge_del_cost * len(graphs): - median.add_edge(i, j, **median_label) - else: - if median.has_edge(i, j): - median.remove_edge(i, j) - - - def __update_node_maps(self): - # Print information about current iteration. - if self.__print_to_stdout == 2: - progress = tqdm(desc='\rUpdating node maps', total=len(self.__node_maps_from_median), file=sys.stdout) - - # Update the node maps. - node_maps_were_modified = False - for graph_id in self.__node_maps_from_median: - self.__ged_env.run_method(self.__median_id, graph_id) - if self.__ged_env.get_upper_bound(self.__median_id, graph_id) < self.__ged_env.get_induced_cost(self.__median_id, graph_id) - self.__epsilon: # @todo: see above. - self.__node_maps_from_median[graph_id] = self.__ged_env.get_node_map(self.__median_id, graph_id) # @todo: node_map may not assigned. - node_maps_were_modified = True - # Print information about current iteration. - if self.__print_to_stdout == 2: - progress.update(1) - - # Print information about current iteration. - if self.__print_to_stdout == 2: - print('\n') - - # Return true if the node maps were modified. - return node_maps_were_modified - - - def __improve_sum_of_distances(self, timer): - pass - - - def __median_available(self): - return self.__median_id != np.inf - - - def __get_node_image_from_map(self, node_map, node): - """ - Return ID of the node mapping of `node` in `node_map`. - - Parameters - ---------- - node_map : list[tuple(int, int)] - List of node maps where the mapping node is found. - - node : int - The mapping node of this node is returned - - Raises - ------ - Exception - If the node with ID `node` is not contained in the source nodes of the node map. - - Returns - ------- - int - ID of the mapping of `node`. - - Notes - ----- - This function is not implemented in the `ged::MedianGraphEstimator` class of the `GEDLIB` library. Instead it is a Python implementation of the `ged::NodeMap::image` function. - """ - if node < len(node_map): - return node_map[node][1] if node_map[node][1] < len(node_map) else np.inf - else: - raise Exception('The node with ID ', str(node), ' is not contained in the source nodes of the node map.') - return np.inf - - - def __are_graphs_equal(self, g1, g2): - """ - Check if the two graphs are equal. - - Parameters - ---------- - g1 : NetworkX graph object - Graph 1 to be compared. - - g2 : NetworkX graph object - Graph 2 to be compared. - - Returns - ------- - bool - True if the two graph are equal. - - Notes - ----- - This is not an identical check. Here the two graphs are equal if and only if their original_node_ids, nodes, all node labels, edges and all edge labels are equal. This function is specifically designed for class `MedianGraphEstimator` and should not be used elsewhere. - """ - # check original node ids. - if not g1.graph['original_node_ids'] == g2.graph['original_node_ids']: - return False - # check nodes. - nlist1 = [n for n in g1.nodes(data=True)] - nlist2 = [n for n in g2.nodes(data=True)] - if not nlist1 == nlist2: - return False - # check edges. - elist1 = [n for n in g1.edges(data=True)] - elist2 = [n for n in g2.edges(data=True)] - if not elist1 == elist2: - return False - - return True - - - def compute_my_cost(g, h, node_map): - cost = 0.0 - for node in g.nodes: - cost += 0 - \ No newline at end of file diff --git a/gklearn/preimage/median_linlin.py b/gklearn/preimage/median_linlin.py deleted file mode 100644 index 6139558..0000000 --- a/gklearn/preimage/median_linlin.py +++ /dev/null @@ -1,215 +0,0 @@ -import sys -import pathlib -import numpy as np -import networkx as nx - -from gedlibpy import librariesImport, gedlibpy -sys.path.insert(0, "/home/bgauzere/dev/optim-graphes/") -import gklearn - -def replace_graph_in_env(script, graph, old_id, label='median'): - """ - Replace a graph in script - - If old_id is -1, add a new graph to the environnemt - - """ - if(old_id > -1): - script.PyClearGraph(old_id) - new_id = script.PyAddGraph(label) - for i in graph.nodes(): - script.PyAddNode(new_id,str(i),graph.node[i]) # !! strings are required bt gedlib - for e in graph.edges: - script.PyAddEdge(new_id, str(e[0]),str(e[1]), {}) - script.PyInitEnv() - script.PySetMethod("IPFP", "") - script.PyInitMethod() - - return new_id - -#Dessin median courrant -def draw_Letter_graph(graph): - import numpy as np - import networkx as nx - import matplotlib.pyplot as plt - plt.figure() - pos = {} - for n in graph.nodes: - pos[n] = np.array([float(graph.node[n]['x']),float(graph.node[n]['y'])]) - nx.draw_networkx(graph,pos) - plt.show() - -#compute new mappings -def update_mappings(script,median_id,listID): - med_distances = {} - med_mappings = {} - sod = 0 - for i in range(0,len(listID)): - script.PyRunMethod(median_id,listID[i]) - med_distances[i] = script.PyGetUpperBound(median_id,listID[i]) - med_mappings[i] = script.PyGetForwardMap(median_id,listID[i]) - sod += med_distances[i] - return med_distances, med_mappings, sod - -def calcul_Sij(all_mappings, all_graphs,i,j): - s_ij = 0 - for k in range(0,len(all_mappings)): - cur_graph = all_graphs[k] - cur_mapping = all_mappings[k] - size_graph = cur_graph.order() - if ((cur_mapping[i] < size_graph) and - (cur_mapping[j] < size_graph) and - (cur_graph.has_edge(cur_mapping[i], cur_mapping[j]) == True)): - s_ij += 1 - - return s_ij - -# def update_median_nodes_L1(median,listIdSet,median_id,dataset, mappings): -# from scipy.stats.mstats import gmean - -# for i in median.nodes(): -# for k in listIdSet: -# vectors = [] #np.zeros((len(listIdSet),2)) -# if(k != median_id): -# phi_i = mappings[k][i] -# if(phi_i < dataset[k].order()): -# vectors.append([float(dataset[k].node[phi_i]['x']),float(dataset[k].node[phi_i]['y'])]) - -# new_labels = gmean(vectors) -# median.node[i]['x'] = str(new_labels[0]) -# median.node[i]['y'] = str(new_labels[1]) -# return median - -def update_median_nodes(median,dataset,mappings): - #update node attributes - for i in median.nodes(): - nb_sub=0 - mean_label = {'x' : 0, 'y' : 0} - for k in range(0,len(mappings)): - phi_i = mappings[k][i] - if ( phi_i < dataset[k].order() ): - nb_sub += 1 - mean_label['x'] += 0.75*float(dataset[k].node[phi_i]['x']) - mean_label['y'] += 0.75*float(dataset[k].node[phi_i]['y']) - median.node[i]['x'] = str((1/0.75)*(mean_label['x']/nb_sub)) - median.node[i]['y'] = str((1/0.75)*(mean_label['y']/nb_sub)) - return median - -def update_median_edges(dataset, mappings, median, cei=0.425,cer=0.425): -#for letter high, ceir = 1.7, alpha = 0.75 - size_dataset = len(dataset) - ratio_cei_cer = cer/(cei + cer) - threshold = size_dataset*ratio_cei_cer - order_graph_median = median.order() - for i in range(0,order_graph_median): - for j in range(i+1,order_graph_median): - s_ij = calcul_Sij(mappings,dataset,i,j) - if(s_ij > threshold): - median.add_edge(i,j) - else: - if(median.has_edge(i,j)): - median.remove_edge(i,j) - return median - - - -def compute_median(script, listID, dataset,verbose=False): - """Compute a graph median of a dataset according to an environment - - Parameters - - script : An gedlib initialized environnement - listID (list): a list of ID in script: encodes the dataset - dataset (list): corresponding graphs in networkX format. We assume that graph - listID[i] corresponds to dataset[i] - - Returns: - A networkX graph, which is the median, with corresponding sod - """ - print(len(listID)) - median_set_index, median_set_sod = compute_median_set(script, listID) - print(median_set_index) - print(median_set_sod) - sods = [] - #Ajout median dans environnement - set_median = dataset[median_set_index].copy() - median = dataset[median_set_index].copy() - cur_med_id = replace_graph_in_env(script,median,-1) - med_distances, med_mappings, cur_sod = update_mappings(script,cur_med_id,listID) - sods.append(cur_sod) - if(verbose): - print(cur_sod) - ite_max = 50 - old_sod = cur_sod * 2 - ite = 0 - epsilon = 0.001 - - best_median - while((ite < ite_max) and (np.abs(old_sod - cur_sod) > epsilon )): - median = update_median_nodes(median,dataset, med_mappings) - median = update_median_edges(dataset,med_mappings,median) - - cur_med_id = replace_graph_in_env(script,median,cur_med_id) - med_distances, med_mappings, cur_sod = update_mappings(script,cur_med_id,listID) - - - sods.append(cur_sod) - if(verbose): - print(cur_sod) - ite += 1 - return median, cur_sod, sods, set_median - - draw_Letter_graph(median) - - -def compute_median_set(script,listID): - 'Returns the id in listID corresponding to median set' - #Calcul median set - N=len(listID) - map_id_to_index = {} - map_index_to_id = {} - for i in range(0,len(listID)): - map_id_to_index[listID[i]] = i - map_index_to_id[i] = listID[i] - - distances = np.zeros((N,N)) - for i in listID: - for j in listID: - script.PyRunMethod(i,j) - distances[map_id_to_index[i],map_id_to_index[j]] = script.PyGetUpperBound(i,j) - - median_set_index = np.argmin(np.sum(distances,0)) - sod = np.min(np.sum(distances,0)) - - return median_set_index, sod - -def _convertGraph(G): - """Convert a graph to the proper NetworkX format that can be - recognized by library gedlibpy. - """ - G_new = nx.Graph() - for nd, attrs in G.nodes(data=True): - G_new.add_node(str(nd), chem=attrs['atom']) -# G_new.add_node(str(nd), x=str(attrs['attributes'][0]), -# y=str(attrs['attributes'][1])) - for nd1, nd2, attrs in G.edges(data=True): - G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type']) -# G_new.add_edge(str(nd1), str(nd2)) - - return G_new - -if __name__ == "__main__": - #Chargement du dataset - gedlibpy.PyLoadGXLGraph('/home/bgauzere/dev/gedlib/data/datasets/Letter/HIGH/', '/home/bgauzere/dev/gedlib/data/collections/Letter_Z.xml') - gedlibpy.PySetEditCost("LETTER") - gedlibpy.PyInitEnv() - gedlibpy.PySetMethod("IPFP", "") - gedlibpy.PyInitMethod() - - dataset,my_y = gklearn.utils.graphfiles.loadDataset("/home/bgauzere/dev/gedlib/data/datasets/Letter/HIGH/Letter_Z.cxl") - - listID = gedlibpy.PyGetAllGraphIds() - median, sod = compute_median(gedlibpy,listID,dataset,verbose=True) - - print(sod) - draw_Letter_graph(median) diff --git a/gklearn/preimage/median_preimage_generator.py b/gklearn/preimage/median_preimage_generator.py deleted file mode 100644 index dfbaef2..0000000 --- a/gklearn/preimage/median_preimage_generator.py +++ /dev/null @@ -1,15 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Thu Mar 26 18:27:22 2020 - -@author: ljia -""" -from gklearn.preimage.preimage_generator import PreimageGenerator -# from gklearn.utils.dataset import Dataset - -class MedianPreimageGenerator(PreimageGenerator): - - def __init__(self, mge, dataset): - self.__mge = mge - self.__dataset = dataset \ No newline at end of file diff --git a/gklearn/preimage/misc.py b/gklearn/preimage/misc.py deleted file mode 100644 index 18682c8..0000000 --- a/gklearn/preimage/misc.py +++ /dev/null @@ -1,108 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Thu Mar 19 18:13:56 2020 - -@author: ljia -""" - -def options_string_to_options_map(options_string): - """Transforms an options string into an options map. - - Parameters - ---------- - options_string : string - Options string of the form "[--