From 62338f40fa3bf38c8ca265ca088330372bc0af56 Mon Sep 17 00:00:00 2001 From: linlin Date: Sun, 4 Oct 2020 19:15:19 +0200 Subject: [PATCH] New translations run_structuralspkernel.py (French) --- lang/fr/notebooks/run_structuralspkernel.py | 96 +++++++++++++++++++++++++++++ 1 file changed, 96 insertions(+) create mode 100644 lang/fr/notebooks/run_structuralspkernel.py diff --git a/lang/fr/notebooks/run_structuralspkernel.py b/lang/fr/notebooks/run_structuralspkernel.py new file mode 100644 index 0000000..612cfc4 --- /dev/null +++ b/lang/fr/notebooks/run_structuralspkernel.py @@ -0,0 +1,96 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Sep 28 16:37:29 2018 + +@author: ljia +""" + +import functools +from libs import * +import multiprocessing + +from gklearn.kernels.structuralspKernel import structuralspkernel +from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct + +dslist = [ +# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', +# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, +# # contains single node graph, node symb +# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', +# 'task': 'regression'}, # node symb +# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb +# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled +# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb +# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, +# # node nsymb +# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb +# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb +# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb +# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, +# # node symb/nsymb + {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb +# {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt'}, +# # node nsymb symb +# +# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, +# # node/edge symb + # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb + # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb + # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb + # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'}, + # + # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb + # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb + # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb + # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb + # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb + + # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb + # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb + # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', + # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb + + # # not working below + # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, + # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',}, + # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',}, + # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, +] +estimator = structuralspkernel + +## for non-symbolic labels. +#gkernels = [functools.partial(gaussiankernel, gamma=1 / ga) +# for ga in np.logspace(0, 10, num=11, base=10)] +#mixkernels = [functools.partial(kernelproduct, deltakernel, gk) for gk in gkernels] +#sub_kernels = [{'symb': deltakernel, 'nsymb': gkernels[i], 'mix': mixkernels[i]} +# for i in range(len(gkernels))] + +# for symbolic labels only. +#gaussiankernel = functools.partial(gaussiankernel, gamma=0.5) +mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) +sub_kernels = [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}] + +param_grid_precomputed = {'node_kernels': sub_kernels, 'edge_kernels': sub_kernels, + 'compute_method': ['naive']} +param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, + {'alpha': np.logspace(-10, 10, num=41, base=10)}] + +for ds in dslist: + print() + print(ds['name']) + model_selection_for_precomputed_kernel( + ds['dataset'], + estimator, + param_grid_precomputed, + (param_grid[1] if ('task' in ds and ds['task'] + == 'regression') else param_grid[0]), + (ds['task'] if 'task' in ds else 'classification'), + NUM_TRIALS=30, + datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), + extra_params=(ds['extra_params'] if 'extra_params' in ds else None), + ds_name=ds['name'], + n_jobs=multiprocessing.cpu_count(), + read_gm_from_file=False, + verbose=True) + print()