Browse Source

rearrange notebooks directory.

v0.1
jajupmochi 6 years ago
parent
commit
62ede297d6
4 changed files with 0 additions and 244 deletions
  1. BIN
      notebooks/notebooks/results/spkernel/Acyclic.gm.npz
  2. +0
    -177
      notebooks/notebooks/results/spkernel/Acyclic.output.txt
  3. BIN
      notebooks/notebooks/results/spkernel/ds-unknown.gm.npz
  4. +0
    -67
      notebooks/notebooks/results/spkernel/ds-unknown.output.txt

BIN
notebooks/notebooks/results/spkernel/Acyclic.gm.npz View File


+ 0
- 177
notebooks/notebooks/results/spkernel/Acyclic.output.txt View File

@@ -1,177 +0,0 @@
###################### log time: 2019-03-26 10:59:51. ######################

# This file contains results of spkernel on dataset Acyclic,
# including gram matrices, serial numbers for gram matrix figures and performance.

This is a regression problem.

II. Gram matrices.

the gram matrix with parameters {'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8} is:

[[1. ,0.47140452,0.33333333,...,0.30151134,0.30512858,0.27852425],
[0.47140452,1. ,0. ,...,0.14213381,0.11986583,0.17232809],
[0.33333333,0. ,1. ,...,0.36851387,0.37293493,0.34815531],
...,
[0.30151134,0.14213381,0.36851387,...,1. ,0.96429344,0.95175317],
[0.30512858,0.11986583,0.37293493,...,0.96429344,1. ,0.96671243],
[0.27852425,0.17232809,0.34815531,...,0.95175317,0.96671243,1. ]]

1 gram matrices are calculated, 0 of which are ignored.

serial numbers of gram matrix figures and their corresponding parameters settings:

0: {'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8}

III. Performance.

best settings of hyper-params to build gram matrix: [{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8}]
best settings of other hyper-params: [{'alpha': 1e-06}]

best_val_perf: 9.55244065682399
best_val_std: 0.5574811966683159
final_performance: [9.724426192585643]
final_confidence: [2.999822095078807]
train_performance: [6.141755071354953]
train_std: [0.2732168016478284]

time to calculate gram matrix with different hyper-params: 16.95±nans
time to calculate best gram matrix: 16.95±nans
total training time with all hyper-param choices: 32.74s

table of performance v.s. hyper-params:

params train_perf valid_perf test_perf gram_matrix_time
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ------------ ------------ ----------- ------------------
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e-10'} 6.14±0.28 9.70±0.61 9.74±3.00 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e-10'} 6.13±0.27 9.75±0.74 9.74±3.03 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e-09'} 6.14±0.28 9.68±0.45 9.74±3.04 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e-09'} 6.14±0.28 9.75±0.55 9.76±2.99 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e-08'} 6.14±0.28 9.60±0.65 9.71±2.99 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e-08'} 6.14±0.27 9.74±0.64 9.74±3.00 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e-07'} 6.14±0.28 9.60±0.66 9.73±2.98 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e-07'} 6.14±0.28 9.77±0.65 9.77±3.07 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e-06'} 6.14±0.27 9.55±0.56 9.72±3.00 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e-06'} 6.13±0.27 9.79±0.61 9.73±3.04 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e-05'} 6.14±0.27 9.68±0.57 9.75±3.01 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e-05'} 6.14±0.27 9.75±0.57 9.70±3.02 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e-04'} 6.14±0.27 9.56±0.56 9.69±2.98 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e-04'} 6.15±0.27 9.62±0.65 9.70±2.97 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e-03'} 6.19±0.27 9.65±0.74 9.69±2.98 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e-03'} 6.36±0.27 9.73±0.46 9.71±2.92 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e-02'} 6.80±0.25 9.90±0.52 9.93±2.98 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e-02'} 7.63±0.25 10.33±0.57 10.29±3.01 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e-01'} 9.25±0.25 11.41±0.56 11.29±2.90 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e-01'} 12.42±0.25 14.03±0.34 14.06±2.65 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e+00'} 17.48±0.24 18.67±0.35 19.06±2.33 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e+00'} 24.52±0.21 25.24±0.31 26.11±2.41 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e+01'} 34.07±0.20 34.29±0.31 35.50±4.09 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e+01'} 48.90±0.28 48.62±0.40 49.78±7.09 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e+02'} 75.87±0.52 75.45±0.68 76.11±9.09 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e+02'} 107.85±0.80 107.50±0.87 107.80±9.36 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e+03'} 128.21±0.96 127.84±1.04 128.07±9.24 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e+03'} 136.81±1.03 136.43±1.13 136.63±9.17 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e+04'} 139.82±1.05 139.40±1.13 139.63±9.14 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e+04'} 140.80±1.05 140.41±1.07 140.61±9.13 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e+05'} 141.12±1.06 140.71±1.04 140.92±9.13 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e+05'} 141.22±1.06 140.84±1.12 141.02±9.13 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e+06'} 141.25±1.06 140.79±1.12 141.06±9.13 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e+06'} 141.26±1.06 140.87±1.06 141.07±9.13 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e+07'} 141.26±1.06 140.85±1.07 141.07±9.13 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e+07'} 141.26±1.06 140.79±1.05 141.07±9.13 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e+08'} 141.26±1.06 140.79±1.17 141.07±9.13 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e+08'} 141.26±1.06 140.86±1.08 141.07±9.13 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e+09'} 141.26±1.06 140.93±1.06 141.07±9.13 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '3.16e+09'} 141.26±1.06 140.85±1.13 141.07±9.13 16.95
{'node_kernels': {'symb': <function deltakernel at 0x7f3a99093950>, 'nsymb': <function gaussiankernel at 0x7f3a990931e0>, 'mix': functools.partial(<function kernelproduct at 0x7f3a99088ae8>, <function deltakernel at 0x7f3a99093950>, <function gaussiankernel at 0x7f3a990931e0>)}, 'n_jobs': 8, 'alpha': '1.00e+10'} 141.26±1.06 140.80±1.07 141.07±9.13 16.95




###################### log time: 2019-03-26 10:58:24. ######################

# This file contains results of spkernel on dataset Acyclic,
# including gram matrices, serial numbers for gram matrix figures and performance.

This is a regression problem.

II. Gram matrices.

the gram matrix with parameters {'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8} is:

[[1. ,0.47140452,0.33333333,...,0.30151134,0.30512858,0.27852425],
[0.47140452,1. ,0. ,...,0.14213381,0.11986583,0.17232809],
[0.33333333,0. ,1. ,...,0.36851387,0.37293493,0.34815531],
...,
[0.30151134,0.14213381,0.36851387,...,1. ,0.96429344,0.95175317],
[0.30512858,0.11986583,0.37293493,...,0.96429344,1. ,0.96671243],
[0.27852425,0.17232809,0.34815531,...,0.95175317,0.96671243,1. ]]

1 gram matrices are calculated, 0 of which are ignored.

serial numbers of gram matrix figures and their corresponding parameters settings:

0: {'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8}

III. Performance.

best settings of hyper-params to build gram matrix: [{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8}]
best settings of other hyper-params: [{'alpha': 1e-07}]

best_val_perf: 9.574376867060177
best_val_std: 0.7335499737848491
final_performance: [9.50365754990661]
final_confidence: [2.8602395698342087]
train_performance: [6.17134653357633]
train_std: [0.25758350163124855]

time to calculate gram matrix with different hyper-params: 1.29±nans
time to calculate best gram matrix: 1.29±nans
total training time with all hyper-param choices: 5.19s

table of performance v.s. hyper-params:

params train_perf valid_perf test_perf gram_matrix_time
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ------------ ------------ ----------- ------------------
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e-10'} 6.16±0.26 9.75±0.65 9.54±2.84 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e-10'} 6.16±0.26 9.75±0.66 9.53±2.90 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e-09'} 6.17±0.27 9.78±0.61 9.50±2.82 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e-09'} 6.16±0.26 9.79±0.56 9.53±2.83 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e-08'} 6.17±0.26 9.70±0.58 9.52±2.84 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e-08'} 6.16±0.25 9.81±0.68 9.52±2.82 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e-07'} 6.17±0.26 9.57±0.73 9.50±2.86 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e-07'} 6.16±0.26 9.95±0.70 9.51±2.86 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e-06'} 6.17±0.26 9.81±0.58 9.54±2.88 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e-06'} 6.16±0.26 9.74±0.70 9.53±2.94 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e-05'} 6.17±0.26 9.71±0.61 9.54±2.92 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e-05'} 6.17±0.26 9.69±0.61 9.51±2.88 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e-04'} 6.17±0.26 9.72±0.70 9.50±2.79 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e-04'} 6.18±0.26 9.62±0.73 9.42±2.85 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e-03'} 6.21±0.26 9.91±0.52 9.40±2.78 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e-03'} 6.39±0.25 9.86±0.64 9.42±2.79 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e-02'} 6.83±0.25 9.94±0.56 9.59±2.80 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e-02'} 7.66±0.24 10.30±0.45 9.99±2.69 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e-01'} 9.28±0.24 11.38±0.36 11.02±2.55 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e-01'} 12.45±0.22 14.06±0.38 13.79±2.36 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e+00'} 17.53±0.21 18.74±0.31 18.88±2.23 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e+00'} 24.57±0.19 25.32±0.28 26.29±2.72 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e+01'} 34.07±0.22 34.30±0.34 36.29±4.52 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e+01'} 48.85±0.34 48.65±0.41 51.21±7.45 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e+02'} 75.76±0.57 75.36±0.60 77.93±9.56 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e+02'} 107.68±0.86 107.24±0.95 109.70±9.96 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e+03'} 128.01±1.04 127.59±1.03 129.96±9.91 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e+03'} 136.59±1.11 136.19±1.20 138.51±9.86 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e+04'} 139.60±1.14 139.22±1.11 141.51±9.84 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e+04'} 140.58±1.15 140.22±1.21 142.49±9.83 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e+05'} 140.89±1.15 140.48±1.14 142.80±9.83 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e+05'} 140.99±1.15 140.54±1.17 142.90±9.83 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e+06'} 141.02±1.15 140.61±1.20 142.93±9.83 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e+06'} 141.04±1.15 140.65±1.23 142.94±9.83 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e+07'} 141.04±1.15 140.66±1.20 142.94±9.83 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e+07'} 141.04±1.15 140.64±1.24 142.94±9.83 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e+08'} 141.04±1.15 140.65±1.14 142.95±9.83 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e+08'} 141.04±1.15 140.61±1.22 142.95±9.83 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e+09'} 141.04±1.15 140.58±1.15 142.95±9.83 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '3.16e+09'} 141.04±1.15 140.71±1.17 142.95±9.83 1.29
{'node_kernels': {'symb': <function deltakernel at 0x7f5619e77598>, 'nsymb': <function gaussiankernel at 0x7f5619e77620>, 'mix': functools.partial(<function kernelproduct at 0x7f5619e77730>, <function deltakernel at 0x7f5619e77598>, <function gaussiankernel at 0x7f5619e77620>)}, 'n_jobs': 8, 'alpha': '1.00e+10'} 141.04±1.15 140.68±1.11 142.95±9.83 1.29


BIN
notebooks/notebooks/results/spkernel/ds-unknown.gm.npz View File


+ 0
- 67
notebooks/notebooks/results/spkernel/ds-unknown.output.txt View File

@@ -1,67 +0,0 @@
###################### log time: 2019-03-26 11:56:19. ######################

# This file contains results of spkernel on dataset ds-unknown,
# including gram matrices, serial numbers for gram matrix figures and performance.

This is a regression problem.

II. Gram matrices.

the gram matrix with parameters {'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1} is:

[[1. ,0.47140452,0.33333333,...,0.30151134,0.30512858,0.27852425],
[0.47140452,1. ,0. ,...,0.14213381,0.11986583,0.17232809],
[0.33333333,0. ,1. ,...,0.36851387,0.37293493,0.34815531],
...,
[0.30151134,0.14213381,0.36851387,...,1. ,0.96429344,0.95175317],
[0.30512858,0.11986583,0.37293493,...,0.96429344,1. ,0.96671243],
[0.27852425,0.17232809,0.34815531,...,0.95175317,0.96671243,1. ]]

1 gram matrices are calculated, 0 of which are ignored.

serial numbers of gram matrix figures and their corresponding parameters settings:

0: {'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1}

III. Performance.

best settings of hyper-params to build gram matrix: [{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1}]
best settings of other hyper-params: [{'alpha': 0.0001}]

best_val_perf: 9.922073568477266
best_val_std: 0.3829108688812842
final_performance: [8.039190309451554]
final_confidence: [2.8576078550320037]
train_performance: [6.285008316076738]
train_std: [0.23613211181729038]

time to calculate gram matrix with different hyper-params: 3.52±nans
time to calculate best gram matrix: 3.52±nans
total training time with all hyper-param choices: 4.34s

table of performance v.s. hyper-params:

params train_perf valid_perf test_perf gram_matrix_time
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ------------ ------------ ------------ ------------------
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '1.00e-05'} 6.26±0.24 10.65±0.66 8.29±3.21 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '3.16e-05'} 6.28±0.25 10.69±0.03 8.15±3.02 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '1.00e-04'} 6.29±0.24 9.92±0.38 8.04±2.86 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '3.16e-04'} 6.29±0.28 10.29±0.77 7.97±2.94 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '1.00e-03'} 6.34±0.25 10.16±0.93 8.02±3.04 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '3.16e-03'} 6.53±0.24 10.08±0.24 7.82±3.10 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '1.00e-02'} 6.95±0.25 10.54±0.05 8.02±3.58 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '3.16e-02'} 7.77±0.33 10.76±0.14 8.60±4.14 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '1.00e-01'} 9.34±0.35 11.60±0.14 10.01±4.61 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '3.16e-01'} 12.51±0.31 14.52±0.68 13.44±4.70 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '1.00e+00'} 17.59±0.32 18.61±0.28 19.80±5.18 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '3.16e+00'} 24.46±0.39 25.24±0.56 28.52±6.10 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '1.00e+01'} 33.85±0.38 34.04±0.04 39.01±8.31 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '3.16e+01'} 48.65±0.49 48.14±0.20 54.40±12.56 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '1.00e+02'} 75.53±0.93 75.24±1.32 81.83±16.62 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '3.16e+02'} 107.29±1.56 106.50±0.85 114.11±18.46 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '1.00e+03'} 127.49±2.04 127.24±2.09 134.61±19.05 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '3.16e+03'} 136.01±2.24 135.60±2.06 143.25±19.23 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '1.00e+04'} 138.99±2.32 138.66±2.41 146.27±19.28 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '3.16e+04'} 139.97±2.35 139.63±2.70 147.26±19.30 3.52
{'node_kernels': {'symb': <function deltakernel at 0x7ff63c02c158>, 'nsymb': <function gaussiankernel at 0x7ff642e968c8>, 'mix': functools.partial(<function kernelproduct at 0x7ff60b9d21e0>, <function deltakernel at 0x7ff63c02c158>, <function gaussiankernel at 0x7ff642e968c8>)}, 'n_jobs': 1, 'alpha': '1.00e+05'} 140.28±2.35 139.84±2.38 147.58±19.30 3.52


Loading…
Cancel
Save