2. update load_tud function. 3. update MedianPreimageGenerator.v0.2.x
@@ -666,7 +666,8 @@ class MedianGraphEstimator(object): | |||
# Compute the median label and update the median. | |||
if len(node_labels) > 0: | |||
median_label = self.__ged_env.get_median_node_label(node_labels) | |||
# median_label = self.__ged_env.get_median_node_label(node_labels) | |||
median_label = self.__get_median_node_label(node_labels) | |||
if self.__ged_env.get_node_rel_cost(median.nodes[i], median_label) > self.__epsilon: | |||
nx.set_node_attributes(median, {i: median_label}) | |||
@@ -701,7 +702,7 @@ class MedianGraphEstimator(object): | |||
if median.has_edge(i, j): | |||
median_label = median.edges[(i, j)] | |||
if self.__labeled_edges and len(edge_labels) > 0: | |||
new_median_label = self.__ged_env.median_edge_label(edge_labels) | |||
new_median_label = self.__get_median_edge_label(edge_labels) | |||
if self.__ged_env.get_edge_rel_cost(median_label, new_median_label) > self.__epsilon: | |||
median_label = new_median_label | |||
for edge_label in edge_labels: | |||
@@ -821,4 +822,144 @@ class MedianGraphEstimator(object): | |||
def compute_my_cost(g, h, node_map): | |||
cost = 0.0 | |||
for node in g.nodes: | |||
cost += 0 | |||
cost += 0 | |||
def __get_median_node_label(self, node_labels): | |||
if True: | |||
return self.__get_median_label_nonsymbolic(node_labels) | |||
else: | |||
return self.__get_median_node_label_symbolic(node_labels) | |||
def __get_median_edge_label(self, edge_labels): | |||
if True: | |||
return self.__get_median_label_nonsymbolic(edge_labels) | |||
else: | |||
return self.__get_median_edge_label_symbolic(edge_labels) | |||
def __get_median_label_nonsymbolic(self, labels): | |||
if len(labels) == 0: | |||
return {} # @todo | |||
else: | |||
# Transform the labels into coordinates and compute mean label as initial solution. | |||
labels_as_coords = [] | |||
sums = {} | |||
for key, val in labels[0].items(): | |||
sums[key] = 0 | |||
for label in labels: | |||
coords = {} | |||
for key, val in label.items(): | |||
label = float(val) | |||
sums[key] += label | |||
coords[key] = label | |||
labels_as_coords.append(coords) | |||
median = {} | |||
for key, val in sums.items(): | |||
median[key] = val / len(labels) | |||
# Run main loop of Weiszfeld's Algorithm. | |||
epsilon = 0.0001 | |||
delta = 1.0 | |||
num_itrs = 0 | |||
all_equal = False | |||
while ((delta > epsilon) and (num_itrs < 100) and (not all_equal)): | |||
numerator = {} | |||
for key, val in sums.items(): | |||
numerator[key] = 0 | |||
denominator = 0 | |||
for label_as_coord in labels_as_coords: | |||
norm = 0 | |||
for key, val in label_as_coord.items(): | |||
norm += (val - median[key]) ** 2 | |||
norm += np.sqrt(norm) | |||
if norm > 0: | |||
for key, val in label_as_coord.items(): | |||
numerator[key] += val / norm | |||
denominator += 1.0 / norm | |||
if denominator == 0: | |||
all_equal = True | |||
else: | |||
new_median = {} | |||
delta = 0.0 | |||
for key, val in numerator.items(): | |||
this_median = val / denominator | |||
new_median[key] = this_median | |||
delta += np.abs(median[key] - this_median) | |||
median = new_median | |||
num_itrs += 1 | |||
# Transform the solution to strings and return it. | |||
median_label = {} | |||
for key, val in median.items(): | |||
median_label[key] = str(val) | |||
return median_label | |||
def __get_median_node_label_symbolic(self, node_labels): | |||
pass | |||
def __get_median_edge_label_symbolic(self, edge_labels): | |||
pass | |||
# def __get_median_edge_label_nonsymbolic(self, edge_labels): | |||
# if len(edge_labels) == 0: | |||
# return {} | |||
# else: | |||
# # Transform the labels into coordinates and compute mean label as initial solution. | |||
# edge_labels_as_coords = [] | |||
# sums = {} | |||
# for key, val in edge_labels[0].items(): | |||
# sums[key] = 0 | |||
# for edge_label in edge_labels: | |||
# coords = {} | |||
# for key, val in edge_label.items(): | |||
# label = float(val) | |||
# sums[key] += label | |||
# coords[key] = label | |||
# edge_labels_as_coords.append(coords) | |||
# median = {} | |||
# for key, val in sums.items(): | |||
# median[key] = val / len(edge_labels) | |||
# | |||
# # Run main loop of Weiszfeld's Algorithm. | |||
# epsilon = 0.0001 | |||
# delta = 1.0 | |||
# num_itrs = 0 | |||
# all_equal = False | |||
# while ((delta > epsilon) and (num_itrs < 100) and (not all_equal)): | |||
# numerator = {} | |||
# for key, val in sums.items(): | |||
# numerator[key] = 0 | |||
# denominator = 0 | |||
# for edge_label_as_coord in edge_labels_as_coords: | |||
# norm = 0 | |||
# for key, val in edge_label_as_coord.items(): | |||
# norm += (val - median[key]) ** 2 | |||
# norm += np.sqrt(norm) | |||
# if norm > 0: | |||
# for key, val in edge_label_as_coord.items(): | |||
# numerator[key] += val / norm | |||
# denominator += 1.0 / norm | |||
# if denominator == 0: | |||
# all_equal = True | |||
# else: | |||
# new_median = {} | |||
# delta = 0.0 | |||
# for key, val in numerator.items(): | |||
# this_median = val / denominator | |||
# new_median[key] = this_median | |||
# delta += np.abs(median[key] - this_median) | |||
# median = new_median | |||
# | |||
# num_itrs += 1 | |||
# | |||
# # Transform the solution to ged::GXLLabel and return it. | |||
# median_label = {} | |||
# for key, val in median.items(): | |||
# median_label[key] = str(val) | |||
# return median_label |
@@ -96,7 +96,10 @@ class MedianPreimageGenerator(PreimageGenerator): | |||
if self.__runtime_precompute_gm is None: | |||
raise Exception('Parameter "runtime_precompute_gm" must be given when using pre-computed Gram matrix.') | |||
self._graph_kernel.gram_matrix_unnorm = self.__gram_matrix_unnorm | |||
self._graph_kernel.gram_matrix = self._graph_kernel.normalize_gm(np.copy(self.__gram_matrix_unnorm)) | |||
if self._kernel_options['normalize']: | |||
self._graph_kernel.gram_matrix = self._graph_kernel.normalize_gm(np.copy(self.__gram_matrix_unnorm)) | |||
else: | |||
self._graph_kernel.gram_matrix = np.copy(self.__gram_matrix_unnorm) | |||
end_precompute_gm = time.time() | |||
start -= self.__runtime_precompute_gm | |||
@@ -447,31 +450,7 @@ class MedianPreimageGenerator(PreimageGenerator): | |||
constraints = [x >= [0.001 for i in range(nb_cost_mat_new.shape[1])], | |||
np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] | |||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||
try: | |||
prob.solve(verbose=True) | |||
except MemoryError as error0: | |||
if self._verbose >= 2: | |||
print('\nUsing solver "OSQP" caused a memory error.') | |||
print('the original error message is\n', error0) | |||
print('solver status: ', prob.status) | |||
print('trying solver "CVXOPT" instead...\n') | |||
try: | |||
prob.solve(solver=cp.CVXOPT, verbose=True) | |||
except Exception as error1: | |||
if self._verbose >= 2: | |||
print('\nAn error occured when using solver "CVXOPT".') | |||
print('the original error message is\n', error1) | |||
print('solver status: ', prob.status) | |||
print('trying solver "MOSEK" instead. Notice this solver is commercial and a lisence is required.\n') | |||
prob.solve(solver=cp.MOSEK, verbose=True) | |||
else: | |||
if self._verbose >= 2: | |||
print('solver status: ', prob.status) | |||
else: | |||
if self._verbose >= 2: | |||
print('solver status: ', prob.status) | |||
if self._verbose >= 2: | |||
print() | |||
self.__execute_cvx(prob) | |||
edit_costs_new = x.value | |||
residual = np.sqrt(prob.value) | |||
elif rw_constraints == '2constraints': | |||
@@ -551,9 +530,7 @@ class MedianPreimageGenerator(PreimageGenerator): | |||
constraints = [x >= [0.001 for i in range(nb_cost_mat_new.shape[1])], | |||
np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] | |||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||
prob.solve() | |||
if self._verbose >= 2: | |||
print(x.value) | |||
self.execute_cvx(prob) | |||
edit_costs_new = np.concatenate((x.value, np.array([0.0]))) | |||
residual = np.sqrt(prob.value) | |||
elif not is_n_attr and is_e_attr: | |||
@@ -616,6 +593,34 @@ class MedianPreimageGenerator(PreimageGenerator): | |||
return edit_costs_new, residual | |||
def __execute_cvx(self, prob): | |||
try: | |||
prob.solve(verbose=(self._verbose>=2)) | |||
except MemoryError as error0: | |||
if self._verbose >= 2: | |||
print('\nUsing solver "OSQP" caused a memory error.') | |||
print('the original error message is\n', error0) | |||
print('solver status: ', prob.status) | |||
print('trying solver "CVXOPT" instead...\n') | |||
try: | |||
prob.solve(solver=cp.CVXOPT, verbose=(self._verbose>=2)) | |||
except Exception as error1: | |||
if self._verbose >= 2: | |||
print('\nAn error occured when using solver "CVXOPT".') | |||
print('the original error message is\n', error1) | |||
print('solver status: ', prob.status) | |||
print('trying solver "MOSEK" instead. Notice this solver is commercial and a lisence is required.\n') | |||
prob.solve(solver=cp.MOSEK, verbose=(self._verbose>=2)) | |||
else: | |||
if self._verbose >= 2: | |||
print('solver status: ', prob.status) | |||
else: | |||
if self._verbose >= 2: | |||
print('solver status: ', prob.status) | |||
if self._verbose >= 2: | |||
print() | |||
def __generate_preimage_iam(self): | |||
# Set up the ged environment. | |||
ged_env = gedlibpy.GEDEnv() # @todo: maybe create a ged_env as a private varible. | |||
@@ -67,8 +67,8 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz' | |||
gmfile_exist = os.path.isfile(os.path.abspath(gm_fname)) | |||
if gmfile_exist: | |||
gmfile = np.load(gm_fname) | |||
gram_matrix_unnorm_list = gmfile['gram_matrix_unnorm_list'] | |||
gmfile = np.load(gm_fname, allow_pickle=True) # @todo: may not be safe. | |||
gram_matrix_unnorm_list = [item for item in gmfile['gram_matrix_unnorm_list']] | |||
time_precompute_gm_list = gmfile['run_time_list'].tolist() | |||
else: | |||
gram_matrix_unnorm_list = [] | |||
@@ -87,6 +87,7 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
print('start generating preimage for each class of target...') | |||
idx_offset = 0 | |||
for idx, dataset in enumerate(datasets): | |||
target = dataset.targets[0] | |||
print('\ntarget =', target, '\n') | |||
@@ -96,14 +97,15 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
num_graphs = len(dataset.graphs) | |||
if num_graphs < 2: | |||
print('\nnumber of graphs = ', num_graphs, ', skip.\n') | |||
idx_offset += 1 | |||
continue | |||
# 2. set parameters. | |||
print('2. initializing mpg and setting parameters...') | |||
if load_gm: | |||
if gmfile_exist: | |||
mpg_options['gram_matrix_unnorm'] = gram_matrix_unnorm_list[idx] | |||
mpg_options['runtime_precompute_gm'] = time_precompute_gm_list[idx] | |||
mpg_options['gram_matrix_unnorm'] = gram_matrix_unnorm_list[idx - idx_offset] | |||
mpg_options['runtime_precompute_gm'] = time_precompute_gm_list[idx - idx_offset] | |||
mpg = MedianPreimageGenerator() | |||
mpg.dataset = dataset | |||
mpg.set_options(**mpg_options.copy()) | |||
@@ -92,9 +92,11 @@ class Dataset(object): | |||
elif ds_name == 'COIL-RAG': | |||
pass | |||
elif ds_name == 'COLORS-3': | |||
pass | |||
ds_file = current_path + '../../datasets/COLORS-3/COLORS-3_A.txt' | |||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
elif ds_name == 'FRANKENSTEIN': | |||
pass | |||
ds_file = current_path + '../../datasets/FRANKENSTEIN/FRANKENSTEIN_A.txt' | |||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
self.__node_labels = label_names['node_labels'] | |||
self.__node_attrs = label_names['node_attrs'] | |||
@@ -541,10 +541,21 @@ def load_tud(filename): | |||
content_gi = open(fgi).read().splitlines() # graph indicator | |||
content_am = open(fam).read().splitlines() # adjacency matrix | |||
content_gl = open(fgl).read().splitlines() # graph labels | |||
# load targets. | |||
if 'fgl' in locals(): | |||
content_targets = open(fgl).read().splitlines() # targets (classification) | |||
targets = [float(i) for i in content_targets] | |||
elif 'fga' in locals(): | |||
content_targets = open(fga).read().splitlines() # targets (regression) | |||
targets = [int(i) for i in content_targets] | |||
if 'class_label_map' in locals(): | |||
targets = [class_label_map[t] for t in targets] | |||
else: | |||
raise Exception('Can not find targets file. Please make sure there is a "', ds_name, '_graph_labels.txt" or "', ds_name, '_graph_attributes.txt"', 'file in your dataset folder.') | |||
# create graphs and add nodes | |||
data = [nx.Graph(name=str(i)) for i in range(0, len(content_gl))] | |||
data = [nx.Graph(name=str(i)) for i in range(0, len(content_targets))] | |||
if 'fnl' in locals(): | |||
content_nl = open(fnl).read().splitlines() # node labels | |||
for idx, line in enumerate(content_gi): | |||
@@ -619,11 +630,6 @@ def load_tud(filename): | |||
for i, a_name in enumerate(label_names['edge_attrs']): | |||
data[g].edges[n[0], n[1]][a_name] = attrs[i] | |||
# load targets. | |||
targets = [int(i) for i in content_gl] | |||
if 'class_label_map' in locals(): | |||
targets = [class_label_map[t] for t in targets] | |||
return data, targets, label_names | |||