@@ -12,8 +12,8 @@ import matplotlib.pyplot as plt | |||
from numpy.linalg import eig | |||
# read gram matrices from file. | |||
results_dir = 'results/marginalizedkernel' | |||
ds_name = 'Letter-med' | |||
results_dir = 'results/marginalizedkernel/myria' | |||
ds_name = 'ENZYMES' | |||
gmfile = np.load(results_dir + '/' + ds_name + '.gm.npz') | |||
#print('gm time: ', gmfile['gmtime']) | |||
# a list to store gram matrices for all param_grid_precomputed | |||
@@ -12,17 +12,17 @@ import multiprocessing | |||
from pygraph.kernels.marginalizedKernel import marginalizedkernel | |||
dslist = [ | |||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
# 'task': 'regression'}, # node symb | |||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt', }, | |||
# # contains single node graph, node symb | |||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds', }, # node/edge symb | |||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds', }, # unlabeled | |||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}}, # node/edge symb | |||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# # node nsymb | |||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
'task': 'regression'}, # node symb | |||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt', }, | |||
# contains single node graph, node symb | |||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds', }, # node/edge symb | |||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds', }, # unlabeled | |||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat', | |||
'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}}, # node/edge symb | |||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# node nsymb | |||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# node symb/nsymb | |||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | |||
@@ -81,5 +81,5 @@ for ds in dslist: | |||
extra_params=(ds['extra_params'] if 'extra_params' in ds else None), | |||
ds_name=ds['name'], | |||
n_jobs=multiprocessing.cpu_count(), | |||
read_gm_from_file=True) | |||
read_gm_from_file=False) | |||
print() |
@@ -65,7 +65,7 @@ param_grid_precomputed = {'node_kernels': | |||
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||
'edge_kernels': | |||
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||
'compute_method': ['trie']} | |||
'compute_method': ['naive']} | |||
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | |||
{'alpha': np.logspace(-10, 10, num=41, base=10)}] | |||
@@ -0,0 +1,141 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Wed Mar 6 16:03:11 2019 | |||
pre-image | |||
@author: ljia | |||
""" | |||
import sys | |||
import numpy as np | |||
import multiprocessing | |||
from tqdm import tqdm | |||
import networkx as nx | |||
import matplotlib.pyplot as plt | |||
sys.path.insert(0, "../") | |||
from pygraph.kernels.marginalizedKernel import marginalizedkernel | |||
from pygraph.utils.graphfiles import loadDataset | |||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat', | |||
'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb | |||
DN, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||
DN = DN[0:10] | |||
lmbda = 0.03 # termination probalility | |||
r_max = 10 # recursions | |||
l = 500 | |||
alpha_range = np.linspace(0.1, 0.9, 9) | |||
k = 5 # k nearest neighbors | |||
# randomly select two molecules | |||
np.random.seed(1) | |||
idx1, idx2 = np.random.randint(0, len(DN), 2) | |||
g1 = DN[idx1] | |||
g2 = DN[idx2] | |||
# compute | |||
k_list = [] # kernel between each graph and itself. | |||
k_g1_list = [] # kernel between each graph and g1 | |||
k_g2_list = [] # kernel between each graph and g2 | |||
for ig, g in tqdm(enumerate(DN), desc='computing self kernels', file=sys.stdout): | |||
ktemp = marginalizedkernel([g, g1, g2], node_label='atom', edge_label=None, | |||
p_quit=lmbda, n_iteration=20, remove_totters=False, | |||
n_jobs=multiprocessing.cpu_count(), verbose=False) | |||
k_list.append(ktemp[0][0, 0]) | |||
k_g1_list.append(ktemp[0][0, 1]) | |||
k_g2_list.append(ktemp[0][0, 2]) | |||
g_best = [] | |||
dis_best = [] | |||
# for each alpha | |||
for alpha in alpha_range: | |||
print('alpha =', alpha) | |||
# compute k nearest neighbors of phi in DN. | |||
dis_list = [] # distance between g_star and each graph. | |||
for ig, g in tqdm(enumerate(DN), desc='computing distances', file=sys.stdout): | |||
dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||
k_g2_list[ig]) + (alpha * alpha * k_list[idx1] + alpha * | |||
(1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||
k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||
dis_list.append(dtemp) | |||
# sort | |||
sort_idx = np.argsort(dis_list) | |||
dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] | |||
g0hat = DN[sort_idx[0]] # the nearest neighbor of phi in DN | |||
if dis_gs[0] == 0: # the exact pre-image. | |||
print('The exact pre-image is found from the input dataset.') | |||
g_pimg = g0hat | |||
break | |||
dhat = dis_gs[0] # the nearest distance | |||
Dk = [DN[ig] for ig in sort_idx[0:k]] # the k nearest neighbors | |||
gihat_list = [] | |||
i = 1 | |||
r = 1 | |||
while r < r_max: | |||
print('r =', r) | |||
found = False | |||
for ig, gs in enumerate(Dk + gihat_list): | |||
# nx.draw_networkx(gs) | |||
# plt.show() | |||
fdgs = int(np.abs(np.ceil(np.log(alpha * dis_gs[ig])))) # @todo ??? | |||
for trail in tqdm(range(0, l), desc='l loop', file=sys.stdout): | |||
# add and delete edges. | |||
gtemp = gs.copy() | |||
np.random.seed() | |||
# which edges to change. | |||
idx_change = np.random.randint(0, nx.number_of_nodes(gs) * | |||
(nx.number_of_nodes(gs) - 1), fdgs) | |||
for item in idx_change: | |||
node1 = int(item / (nx.number_of_nodes(gs) - 1)) | |||
node2 = (item - node1 * (nx.number_of_nodes(gs) - 1)) | |||
if node2 >= node1: | |||
node2 += 1 | |||
# @todo: is the randomness correct? | |||
if not gtemp.has_edge(node1, node2): | |||
gtemp.add_edges_from([(node1, node2, {'bond_type': 0})]) | |||
# nx.draw_networkx(gs) | |||
# plt.show() | |||
# nx.draw_networkx(gtemp) | |||
# plt.show() | |||
else: | |||
gtemp.remove_edge(node1, node2) | |||
# nx.draw_networkx(gs) | |||
# plt.show() | |||
# nx.draw_networkx(gtemp) | |||
# plt.show() | |||
# nx.draw_networkx(gtemp) | |||
# plt.show() | |||
# compute distance between phi and the new generated graph. | |||
knew = marginalizedkernel([gtemp, g1, g2], node_label='atom', edge_label=None, | |||
p_quit=lmbda, n_iteration=20, remove_totters=False, | |||
n_jobs=multiprocessing.cpu_count(), verbose=False) | |||
dnew = knew[0][0, 0] - 2 * (alpha * knew[0][0, 1] + (1 - alpha) * | |||
knew[0][0, 2]) + (alpha * alpha * k_list[idx1] + alpha * | |||
(1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||
k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||
if dnew <= dhat: # the new distance is smaller | |||
print('I am smaller!') | |||
dhat = dnew | |||
gnew = gtemp.copy() | |||
found = True # found better graph. | |||
if found: | |||
gihat_list = [gnew] | |||
dis_gs.append(dhat) | |||
else: | |||
r += 1 | |||
dis_best.append(dhat) | |||
g_best += ([g0hat] if len(gihat_list) == 0 else gihat_list) | |||
for idx, item in enumerate(alpha_range): | |||
print('when alpha is', item, 'the shortest distance is', dis_best[idx]) | |||
print('the corresponding pre-image is') | |||
nx.draw_networkx(g_best[idx]) | |||
plt.show() |
@@ -0,0 +1,842 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Sun Dec 23 16:53:57 2018 | |||
@author: ljia | |||
@references: S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and | |||
Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, | |||
11(Apr):1201–1242, 2010. | |||
""" | |||
import sys | |||
sys.path.insert(0, "../") | |||
import time | |||
from functools import partial | |||
from tqdm import tqdm | |||
import networkx as nx | |||
import numpy as np | |||
from scipy.sparse import identity, kron | |||
from scipy.sparse.linalg import cg | |||
from scipy.optimize import fixed_point | |||
from pygraph.utils.graphdataset import get_dataset_attributes | |||
from pygraph.utils.parallel import parallel_gm | |||
def randomwalkkernel(*args, | |||
# params for all method. | |||
compute_method=None, | |||
weight=1, | |||
p=None, | |||
q=None, | |||
edge_weight=None, | |||
# params for conjugate and fp method. | |||
node_kernels=None, | |||
edge_kernels=None, | |||
node_label='atom', | |||
edge_label='bond_type', | |||
# params for spectral method. | |||
sub_kernel=None, | |||
n_jobs=None): | |||
"""Calculate random walk graph kernels. | |||
Parameters | |||
---------- | |||
Gn : List of NetworkX graph | |||
List of graphs between which the kernels are calculated. | |||
/ | |||
G1, G2 : NetworkX graphs | |||
2 graphs between which the kernel is calculated. | |||
node_label : string | |||
node attribute used as label. The default node label is atom. | |||
edge_label : string | |||
edge attribute used as label. The default edge label is bond_type. | |||
h : integer | |||
Longest length of walks. | |||
method : string | |||
Method used to compute the random walk kernel. Available methods are 'sylvester', 'conjugate', 'fp', 'spectral' and 'kron'. | |||
Return | |||
------ | |||
Kmatrix : Numpy matrix | |||
Kernel matrix, each element of which is the path kernel up to d between 2 praphs. | |||
""" | |||
compute_method = compute_method.lower() | |||
Gn = args[0] if len(args) == 1 else [args[0], args[1]] | |||
eweight = None | |||
if edge_weight == None: | |||
print('\n None edge weight specified. Set all weight to 1.\n') | |||
else: | |||
try: | |||
some_weight = list( | |||
nx.get_edge_attributes(Gn[0], edge_weight).values())[0] | |||
if isinstance(some_weight, float) or isinstance(some_weight, int): | |||
eweight = edge_weight | |||
else: | |||
print( | |||
'\n Edge weight with name %s is not float or integer. Set all weight to 1.\n' | |||
% edge_weight) | |||
except: | |||
print( | |||
'\n Edge weight with name "%s" is not found in the edge attributes. Set all weight to 1.\n' | |||
% edge_weight) | |||
ds_attrs = get_dataset_attributes( | |||
Gn, | |||
attr_names=['node_labeled', 'node_attr_dim', 'edge_labeled', | |||
'edge_attr_dim', 'is_directed'], | |||
node_label=node_label, | |||
edge_label=edge_label) | |||
ds_attrs['node_attr_dim'] = 0 | |||
ds_attrs['edge_attr_dim'] = 0 | |||
# remove graphs with no edges, as no walk can be found in their structures, | |||
# so the weight matrix between such a graph and itself might be zero. | |||
len_gn = len(Gn) | |||
Gn = [(idx, G) for idx, G in enumerate(Gn) if nx.number_of_edges(G) != 0] | |||
idx = [G[0] for G in Gn] | |||
Gn = [G[1] for G in Gn] | |||
if len(Gn) != len_gn: | |||
print('\n %d graphs are removed as they don\'t contain edges.\n' % | |||
(len_gn - len(Gn))) | |||
start_time = time.time() | |||
# # get vertex and edge concatenated labels for each graph | |||
# label_list, d = getLabels(Gn, node_label, edge_label, ds_attrs['is_directed']) | |||
# gmf = filterGramMatrix(A_wave_list[0], label_list[0], ('C', '0', 'O'), ds_attrs['is_directed']) | |||
if compute_method == 'sylvester': | |||
import warnings | |||
warnings.warn('All labels are ignored.') | |||
Kmatrix = _sylvester_equation(Gn, weight, p, q, eweight, n_jobs) | |||
elif compute_method == 'conjugate': | |||
Kmatrix = _conjugate_gradient(Gn, weight, p, q, ds_attrs, | |||
node_kernels, edge_kernels, | |||
node_label, edge_label, eweight, n_jobs) | |||
elif compute_method == 'fp': | |||
Kmatrix = _fixed_point(Gn, weight, p, q, ds_attrs, node_kernels, | |||
edge_kernels, node_label, edge_label, | |||
eweight, n_jobs) | |||
elif compute_method == 'spectral': | |||
import warnings | |||
warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||
Kmatrix = _spectral_decomposition(Gn, weight, p, q, sub_kernel, eweight, n_jobs) | |||
elif compute_method == 'kron': | |||
for i in range(0, len(Gn)): | |||
for j in range(i, len(Gn)): | |||
Kmatrix[i][j] = _randomwalkkernel_kron(Gn[i], Gn[j], | |||
node_label, edge_label) | |||
Kmatrix[j][i] = Kmatrix[i][j] | |||
else: | |||
raise Exception( | |||
'compute method name incorrect. Available methods: "sylvester", "conjugate", "fp", "spectral" and "kron".' | |||
) | |||
run_time = time.time() - start_time | |||
print( | |||
"\n --- kernel matrix of random walk kernel of size %d built in %s seconds ---" | |||
% (len(Gn), run_time)) | |||
return Kmatrix, run_time, idx | |||
############################################################################### | |||
def _sylvester_equation(Gn, lmda, p, q, eweight, n_jobs): | |||
"""Calculate walk graph kernels up to n between 2 graphs using Sylvester method. | |||
Parameters | |||
---------- | |||
G1, G2 : NetworkX graph | |||
Graphs between which the kernel is calculated. | |||
node_label : string | |||
node attribute used as label. | |||
edge_label : string | |||
edge attribute used as label. | |||
Return | |||
------ | |||
kernel : float | |||
Kernel between 2 graphs. | |||
""" | |||
Kmatrix = np.zeros((len(Gn), len(Gn))) | |||
if q == None: | |||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||
# A_wave_list accually contains the transposes of the adjacency matrices. | |||
A_wave_list = [ | |||
nx.adjacency_matrix(G, eweight).todense().transpose() for G in tqdm( | |||
Gn, desc='compute adjacency matrices', file=sys.stdout) | |||
] | |||
# # normalized adjacency matrices | |||
# A_wave_list = [] | |||
# for G in tqdm(Gn, desc='compute adjacency matrices', file=sys.stdout): | |||
# A_tilde = nx.adjacency_matrix(G, eweight).todense().transpose() | |||
# norm = A_tilde.sum(axis=0) | |||
# norm[norm == 0] = 1 | |||
# A_wave_list.append(A_tilde / norm) | |||
if p == None: # p is uniform distribution as default. | |||
def init_worker(Awl_toshare): | |||
global G_Awl | |||
G_Awl = Awl_toshare | |||
do_partial = partial(wrapper_se_do, lmda) | |||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
glbv=(A_wave_list,), n_jobs=n_jobs) | |||
# pbar = tqdm( | |||
# total=(1 + len(Gn)) * len(Gn) / 2, | |||
# desc='calculating kernels', | |||
# file=sys.stdout) | |||
# for i in range(0, len(Gn)): | |||
# for j in range(i, len(Gn)): | |||
# S = lmda * A_wave_list[j] | |||
# T_t = A_wave_list[i] | |||
# # use uniform distribution if there is no prior knowledge. | |||
# nb_pd = len(A_wave_list[i]) * len(A_wave_list[j]) | |||
# p_times_uni = 1 / nb_pd | |||
# M0 = np.full((len(A_wave_list[j]), len(A_wave_list[i])), p_times_uni) | |||
# X = dlyap(S, T_t, M0) | |||
# X = np.reshape(X, (-1, 1), order='F') | |||
# # use uniform distribution if there is no prior knowledge. | |||
# q_times = np.full((1, nb_pd), p_times_uni) | |||
# Kmatrix[i][j] = np.dot(q_times, X) | |||
# Kmatrix[j][i] = Kmatrix[i][j] | |||
# pbar.update(1) | |||
return Kmatrix | |||
def wrapper_se_do(lmda, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, _se_do(G_Awl[i], G_Awl[j], lmda) | |||
def _se_do(A_wave1, A_wave2, lmda): | |||
from control import dlyap | |||
S = lmda * A_wave2 | |||
T_t = A_wave1 | |||
# use uniform distribution if there is no prior knowledge. | |||
nb_pd = len(A_wave1) * len(A_wave2) | |||
p_times_uni = 1 / nb_pd | |||
M0 = np.full((len(A_wave2), len(A_wave1)), p_times_uni) | |||
X = dlyap(S, T_t, M0) | |||
X = np.reshape(X, (-1, 1), order='F') | |||
# use uniform distribution if there is no prior knowledge. | |||
q_times = np.full((1, nb_pd), p_times_uni) | |||
return np.dot(q_times, X) | |||
############################################################################### | |||
def _conjugate_gradient(Gn, lmda, p, q, ds_attrs, node_kernels, edge_kernels, | |||
node_label, edge_label, eweight, n_jobs): | |||
"""Calculate walk graph kernels up to n between 2 graphs using conjugate method. | |||
Parameters | |||
---------- | |||
G1, G2 : NetworkX graph | |||
Graphs between which the kernel is calculated. | |||
node_label : string | |||
node attribute used as label. | |||
edge_label : string | |||
edge attribute used as label. | |||
Return | |||
------ | |||
kernel : float | |||
Kernel between 2 graphs. | |||
""" | |||
Kmatrix = np.zeros((len(Gn), len(Gn))) | |||
# if not ds_attrs['node_labeled'] and ds_attrs['node_attr_dim'] < 1 and \ | |||
# not ds_attrs['edge_labeled'] and ds_attrs['edge_attr_dim'] < 1: | |||
# # this is faster from unlabeled graphs. @todo: why? | |||
# if q == None: | |||
# # don't normalize adjacency matrices if q is a uniform vector. Note | |||
# # A_wave_list accually contains the transposes of the adjacency matrices. | |||
# A_wave_list = [ | |||
# nx.adjacency_matrix(G, eweight).todense().transpose() for G in | |||
# tqdm(Gn, desc='compute adjacency matrices', file=sys.stdout) | |||
# ] | |||
# if p == None: # p is uniform distribution as default. | |||
# def init_worker(Awl_toshare): | |||
# global G_Awl | |||
# G_Awl = Awl_toshare | |||
# do_partial = partial(wrapper_cg_unlabled_do, lmda) | |||
# parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
# glbv=(A_wave_list,), n_jobs=n_jobs) | |||
# else: | |||
# reindex nodes using consecutive integers for convenience of kernel calculation. | |||
Gn = [nx.convert_node_labels_to_integers( | |||
g, first_label=0, label_attribute='label_orignal') for g in tqdm( | |||
Gn, desc='reindex vertices', file=sys.stdout)] | |||
if p == None and q == None: # p and q are uniform distributions as default. | |||
def init_worker(gn_toshare): | |||
global G_gn | |||
G_gn = gn_toshare | |||
do_partial = partial(wrapper_cg_labled_do, ds_attrs, node_kernels, | |||
node_label, edge_kernels, edge_label, lmda) | |||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
glbv=(Gn,), n_jobs=n_jobs) | |||
# pbar = tqdm( | |||
# total=(1 + len(Gn)) * len(Gn) / 2, | |||
# desc='calculating kernels', | |||
# file=sys.stdout) | |||
# for i in range(0, len(Gn)): | |||
# for j in range(i, len(Gn)): | |||
# result = _cg_labled_do(Gn[i], Gn[j], ds_attrs, node_kernels, | |||
# node_label, edge_kernels, edge_label, lmda) | |||
# Kmatrix[i][j] = result | |||
# Kmatrix[j][i] = Kmatrix[i][j] | |||
# pbar.update(1) | |||
return Kmatrix | |||
def wrapper_cg_unlabled_do(lmda, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, _cg_unlabled_do(G_Awl[i], G_Awl[j], lmda) | |||
def _cg_unlabled_do(A_wave1, A_wave2, lmda): | |||
nb_pd = len(A_wave1) * len(A_wave2) | |||
p_times_uni = 1 / nb_pd | |||
w_times = kron(A_wave1, A_wave2).todense() | |||
A = identity(w_times.shape[0]) - w_times * lmda | |||
b = np.full((nb_pd, 1), p_times_uni) | |||
x, _ = cg(A, b) | |||
# use uniform distribution if there is no prior knowledge. | |||
q_times = np.full((1, nb_pd), p_times_uni) | |||
return np.dot(q_times, x) | |||
def wrapper_cg_labled_do(ds_attrs, node_kernels, node_label, edge_kernels, | |||
edge_label, lmda, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, _cg_labled_do(G_gn[i], G_gn[j], ds_attrs, node_kernels, | |||
node_label, edge_kernels, edge_label, lmda) | |||
def _cg_labled_do(g1, g2, ds_attrs, node_kernels, node_label, | |||
edge_kernels, edge_label, lmda): | |||
# Frist, ompute kernels between all pairs of nodes, method borrowed | |||
# from FCSP. It is faster than directly computing all edge kernels | |||
# when $d_1d_2>2$, where $d_1$ and $d_2$ are vertex degrees of the | |||
# graphs compared, which is the most case we went though. For very | |||
# sparse graphs, this would be slow. | |||
vk_dict = computeVK(g1, g2, ds_attrs, node_kernels, node_label) | |||
# Compute weight matrix of the direct product graph. | |||
w_times, w_dim = computeW(g1, g2, vk_dict, ds_attrs, | |||
edge_kernels, edge_label) | |||
# use uniform distribution if there is no prior knowledge. | |||
p_times_uni = 1 / w_dim | |||
A = identity(w_times.shape[0]) - w_times * lmda | |||
b = np.full((w_dim, 1), p_times_uni) | |||
x, _ = cg(A, b) | |||
# use uniform distribution if there is no prior knowledge. | |||
q_times = np.full((1, w_dim), p_times_uni) | |||
return np.dot(q_times, x) | |||
############################################################################### | |||
def _fixed_point(Gn, lmda, p, q, ds_attrs, node_kernels, edge_kernels, | |||
node_label, edge_label, eweight, n_jobs): | |||
"""Calculate walk graph kernels up to n between 2 graphs using Fixed-Point method. | |||
Parameters | |||
---------- | |||
G1, G2 : NetworkX graph | |||
Graphs between which the kernel is calculated. | |||
node_label : string | |||
node attribute used as label. | |||
edge_label : string | |||
edge attribute used as label. | |||
Return | |||
------ | |||
kernel : float | |||
Kernel between 2 graphs. | |||
""" | |||
Kmatrix = np.zeros((len(Gn), len(Gn))) | |||
# if not ds_attrs['node_labeled'] and ds_attrs['node_attr_dim'] < 1 and \ | |||
# not ds_attrs['edge_labeled'] and ds_attrs['edge_attr_dim'] > 1: | |||
# # this is faster from unlabeled graphs. @todo: why? | |||
# if q == None: | |||
# # don't normalize adjacency matrices if q is a uniform vector. Note | |||
# # A_wave_list accually contains the transposes of the adjacency matrices. | |||
# A_wave_list = [ | |||
# nx.adjacency_matrix(G, eweight).todense().transpose() for G in | |||
# tqdm(Gn, desc='compute adjacency matrices', file=sys.stdout) | |||
# ] | |||
# if p == None: # p is uniform distribution as default. | |||
# pbar = tqdm( | |||
# total=(1 + len(Gn)) * len(Gn) / 2, | |||
# desc='calculating kernels', | |||
# file=sys.stdout) | |||
# for i in range(0, len(Gn)): | |||
# for j in range(i, len(Gn)): | |||
# # use uniform distribution if there is no prior knowledge. | |||
# nb_pd = len(A_wave_list[i]) * len(A_wave_list[j]) | |||
# p_times_uni = 1 / nb_pd | |||
# w_times = kron(A_wave_list[i], A_wave_list[j]).todense() | |||
# p_times = np.full((nb_pd, 1), p_times_uni) | |||
# x = fixed_point(func_fp, p_times, args=(p_times, lmda, w_times)) | |||
# # use uniform distribution if there is no prior knowledge. | |||
# q_times = np.full((1, nb_pd), p_times_uni) | |||
# Kmatrix[i][j] = np.dot(q_times, x) | |||
# Kmatrix[j][i] = Kmatrix[i][j] | |||
# pbar.update(1) | |||
# else: | |||
# reindex nodes using consecutive integers for convenience of kernel calculation. | |||
Gn = [nx.convert_node_labels_to_integers( | |||
g, first_label=0, label_attribute='label_orignal') for g in tqdm( | |||
Gn, desc='reindex vertices', file=sys.stdout)] | |||
if p == None and q == None: # p and q are uniform distributions as default. | |||
def init_worker(gn_toshare): | |||
global G_gn | |||
G_gn = gn_toshare | |||
do_partial = partial(wrapper_fp_labled_do, ds_attrs, node_kernels, | |||
node_label, edge_kernels, edge_label, lmda) | |||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
glbv=(Gn,), n_jobs=n_jobs) | |||
return Kmatrix | |||
def wrapper_fp_labled_do(ds_attrs, node_kernels, node_label, edge_kernels, | |||
edge_label, lmda, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, _fp_labled_do(G_gn[i], G_gn[j], ds_attrs, node_kernels, | |||
node_label, edge_kernels, edge_label, lmda) | |||
def _fp_labled_do(g1, g2, ds_attrs, node_kernels, node_label, | |||
edge_kernels, edge_label, lmda): | |||
# Frist, ompute kernels between all pairs of nodes, method borrowed | |||
# from FCSP. It is faster than directly computing all edge kernels | |||
# when $d_1d_2>2$, where $d_1$ and $d_2$ are vertex degrees of the | |||
# graphs compared, which is the most case we went though. For very | |||
# sparse graphs, this would be slow. | |||
vk_dict = computeVK(g1, g2, ds_attrs, node_kernels, node_label) | |||
# Compute weight matrix of the direct product graph. | |||
w_times, w_dim = computeW(g1, g2, vk_dict, ds_attrs, | |||
edge_kernels, edge_label) | |||
# use uniform distribution if there is no prior knowledge. | |||
p_times_uni = 1 / w_dim | |||
p_times = np.full((w_dim, 1), p_times_uni) | |||
x = fixed_point(func_fp, p_times, args=(p_times, lmda, w_times), | |||
xtol=1e-06, maxiter=1000) | |||
# use uniform distribution if there is no prior knowledge. | |||
q_times = np.full((1, w_dim), p_times_uni) | |||
return np.dot(q_times, x) | |||
def func_fp(x, p_times, lmda, w_times): | |||
haha = w_times * x | |||
haha = lmda * haha | |||
haha = p_times + haha | |||
return p_times + lmda * np.dot(w_times, x) | |||
############################################################################### | |||
def _spectral_decomposition(Gn, weight, p, q, sub_kernel, eweight, n_jobs): | |||
"""Calculate walk graph kernels up to n between 2 unlabeled graphs using | |||
spectral decomposition method. Labels will be ignored. | |||
Parameters | |||
---------- | |||
G1, G2 : NetworkX graph | |||
Graphs between which the kernel is calculated. | |||
node_label : string | |||
node attribute used as label. | |||
edge_label : string | |||
edge attribute used as label. | |||
Return | |||
------ | |||
kernel : float | |||
Kernel between 2 graphs. | |||
""" | |||
Kmatrix = np.zeros((len(Gn), len(Gn))) | |||
if q == None: | |||
# precompute the spectral decomposition of each graph. | |||
P_list = [] | |||
D_list = [] | |||
for G in tqdm(Gn, desc='spectral decompose', file=sys.stdout): | |||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||
# A accually is the transpose of the adjacency matrix. | |||
A = nx.adjacency_matrix(G, eweight).todense().transpose() | |||
ew, ev = np.linalg.eig(A) | |||
D_list.append(ew) | |||
P_list.append(ev) | |||
# P_inv_list = [p.T for p in P_list] # @todo: also works for directed graphs? | |||
if p == None: # p is uniform distribution as default. | |||
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in Gn] | |||
# q_T_list = [q.T for q in q_list] | |||
def init_worker(q_T_toshare, P_toshare, D_toshare): | |||
global G_q_T, G_P, G_D | |||
G_q_T = q_T_toshare | |||
G_P = P_toshare | |||
G_D = D_toshare | |||
do_partial = partial(wrapper_sd_do, weight, sub_kernel) | |||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
glbv=(q_T_list, P_list, D_list), n_jobs=n_jobs) | |||
# pbar = tqdm( | |||
# total=(1 + len(Gn)) * len(Gn) / 2, | |||
# desc='calculating kernels', | |||
# file=sys.stdout) | |||
# for i in range(0, len(Gn)): | |||
# for j in range(i, len(Gn)): | |||
# result = _sd_do(q_T_list[i], q_T_list[j], P_list[i], P_list[j], | |||
# D_list[i], D_list[j], weight, sub_kernel) | |||
# Kmatrix[i][j] = result | |||
# Kmatrix[j][i] = Kmatrix[i][j] | |||
# pbar.update(1) | |||
return Kmatrix | |||
def wrapper_sd_do(weight, sub_kernel, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, _sd_do(G_q_T[i], G_q_T[j], G_P[i], G_P[j], G_D[i], G_D[j], | |||
weight, sub_kernel) | |||
def _sd_do(q_T1, q_T2, P1, P2, D1, D2, weight, sub_kernel): | |||
# use uniform distribution if there is no prior knowledge. | |||
kl = kron(np.dot(q_T1, P1), np.dot(q_T2, P2)).todense() | |||
# @todo: this is not be needed when p = q (kr = kl.T) for undirected graphs | |||
# kr = kron(np.dot(P_inv_list[i], q_list[i]), np.dot(P_inv_list[j], q_list[j])).todense() | |||
if sub_kernel == 'exp': | |||
D_diag = np.array([d1 * d2 for d1 in D1 for d2 in D2]) | |||
kmiddle = np.diag(np.exp(weight * D_diag)) | |||
elif sub_kernel == 'geo': | |||
D_diag = np.array([d1 * d2 for d1 in D1 for d2 in D2]) | |||
kmiddle = np.diag(weight * D_diag) | |||
kmiddle = np.identity(len(kmiddle)) - weight * kmiddle | |||
kmiddle = np.linalg.inv(kmiddle) | |||
return np.dot(np.dot(kl, kmiddle), kl.T)[0, 0] | |||
############################################################################### | |||
def _randomwalkkernel_kron(G1, G2, node_label, edge_label): | |||
"""Calculate walk graph kernels up to n between 2 graphs using nearest Kronecker product approximation method. | |||
Parameters | |||
---------- | |||
G1, G2 : NetworkX graph | |||
Graphs between which the kernel is calculated. | |||
node_label : string | |||
node attribute used as label. | |||
edge_label : string | |||
edge attribute used as label. | |||
Return | |||
------ | |||
kernel : float | |||
Kernel between 2 graphs. | |||
""" | |||
pass | |||
############################################################################### | |||
def getLabels(Gn, node_label, edge_label, directed): | |||
"""Get symbolic labels of a graph dataset, where vertex labels are dealt | |||
with by concatenating them to the edge labels of adjacent edges. | |||
""" | |||
label_list = [] | |||
label_set = set() | |||
for g in Gn: | |||
label_g = {} | |||
for e in g.edges(data=True): | |||
nl1 = g.node[e[0]][node_label] | |||
nl2 = g.node[e[1]][node_label] | |||
if not directed and nl1 > nl2: | |||
nl1, nl2 = nl2, nl1 | |||
label = (nl1, e[2][edge_label], nl2) | |||
label_g[(e[0], e[1])] = label | |||
label_list.append(label_g) | |||
label_set = set([l for lg in label_list for l in lg.values()]) | |||
return label_list, len(label_set) | |||
def filterGramMatrix(gmt, label_dict, label, directed): | |||
"""Compute (the transpose of) the Gram matrix filtered by a label. | |||
""" | |||
gmf = np.zeros(gmt.shape) | |||
for (n1, n2), l in label_dict.items(): | |||
if l == label: | |||
gmf[n2, n1] = gmt[n2, n1] | |||
if not directed: | |||
gmf[n1, n2] = gmt[n1, n2] | |||
return gmf | |||
def computeVK(g1, g2, ds_attrs, node_kernels, node_label): | |||
'''Compute vertex kernels between vertices of two graphs. | |||
''' | |||
vk_dict = {} # shortest path matrices dict | |||
if ds_attrs['node_labeled']: | |||
# node symb and non-synb labeled | |||
if ds_attrs['node_attr_dim'] > 0: | |||
kn = node_kernels['mix'] | |||
for n1 in g1.nodes(data=True): | |||
for n2 in g2.nodes(data=True): | |||
vk_dict[(n1[0], n2[0])] = kn( | |||
n1[1][node_label], n2[1][node_label], | |||
n1[1]['attributes'], n2[1]['attributes']) | |||
# node symb labeled | |||
else: | |||
kn = node_kernels['symb'] | |||
for n1 in g1.nodes(data=True): | |||
for n2 in g2.nodes(data=True): | |||
vk_dict[(n1[0], n2[0])] = kn(n1[1][node_label], | |||
n2[1][node_label]) | |||
else: | |||
# node non-synb labeled | |||
if ds_attrs['node_attr_dim'] > 0: | |||
kn = node_kernels['nsymb'] | |||
for n1 in g1.nodes(data=True): | |||
for n2 in g2.nodes(data=True): | |||
vk_dict[(n1[0], n2[0])] = kn(n1[1]['attributes'], | |||
n2[1]['attributes']) | |||
# node unlabeled | |||
else: | |||
pass | |||
return vk_dict | |||
def computeW(g1, g2, vk_dict, ds_attrs, edge_kernels, edge_label): | |||
'''Compute weight matrix of the direct product graph. | |||
''' | |||
w_dim = nx.number_of_nodes(g1) * nx.number_of_nodes(g2) | |||
w_times = np.zeros((w_dim, w_dim)) | |||
if vk_dict: # node labeled | |||
if ds_attrs['is_directed']: | |||
if ds_attrs['edge_labeled']: | |||
# edge symb and non-synb labeled | |||
if ds_attrs['edge_attr_dim'] > 0: | |||
ke = edge_kernels['mix'] | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
ek_temp = ke(e1[2][edge_label], e2[2][edge_label], | |||
e1[2]['attributes'], e2[2]['attributes']) | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = vk_dict[(e1[0], e2[0])] \ | |||
* ek_temp * vk_dict[(e1[1], e2[1])] | |||
# edge symb labeled | |||
else: | |||
ke = edge_kernels['symb'] | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
ek_temp = ke(e1[2][edge_label], e2[2][edge_label]) | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = vk_dict[(e1[0], e2[0])] \ | |||
* ek_temp * vk_dict[(e1[1], e2[1])] | |||
else: | |||
# edge non-synb labeled | |||
if ds_attrs['edge_attr_dim'] > 0: | |||
ke = edge_kernels['nsymb'] | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
ek_temp = ke(e1[2]['attributes'], e2[2]['attributes']) | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = vk_dict[(e1[0], e2[0])] \ | |||
* ek_temp * vk_dict[(e1[1], e2[1])] | |||
# edge unlabeled | |||
else: | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = vk_dict[(e1[0], e2[0])] \ | |||
* vk_dict[(e1[1], e2[1])] | |||
else: # undirected | |||
if ds_attrs['edge_labeled']: | |||
# edge symb and non-synb labeled | |||
if ds_attrs['edge_attr_dim'] > 0: | |||
ke = edge_kernels['mix'] | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
ek_temp = ke(e1[2][edge_label], e2[2][edge_label], | |||
e1[2]['attributes'], e2[2]['attributes']) | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = vk_dict[(e1[0], e2[0])] \ | |||
* ek_temp * vk_dict[(e1[1], e2[1])] \ | |||
+ vk_dict[(e1[0], e2[1])] \ | |||
* ek_temp * vk_dict[(e1[1], e2[0])] | |||
w_times[w_idx[1], w_idx[0]] = w_times[w_idx[0], w_idx[1]] | |||
w_idx2 = (e1[0] * nx.number_of_nodes(g2) + e2[1], | |||
e1[1] * nx.number_of_nodes(g2) + e2[0]) | |||
w_times[w_idx2[0], w_idx2[1]] = w_times[w_idx[0], w_idx[1]] | |||
w_times[w_idx2[1], w_idx2[0]] = w_times[w_idx[0], w_idx[1]] | |||
# edge symb labeled | |||
else: | |||
ke = edge_kernels['symb'] | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
ek_temp = ke(e1[2][edge_label], e2[2][edge_label]) | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = vk_dict[(e1[0], e2[0])] \ | |||
* ek_temp * vk_dict[(e1[1], e2[1])] \ | |||
+ vk_dict[(e1[0], e2[1])] \ | |||
* ek_temp * vk_dict[(e1[1], e2[0])] | |||
w_times[w_idx[1], w_idx[0]] = w_times[w_idx[0], w_idx[1]] | |||
w_idx2 = (e1[0] * nx.number_of_nodes(g2) + e2[1], | |||
e1[1] * nx.number_of_nodes(g2) + e2[0]) | |||
w_times[w_idx2[0], w_idx2[1]] = w_times[w_idx[0], w_idx[1]] | |||
w_times[w_idx2[1], w_idx2[0]] = w_times[w_idx[0], w_idx[1]] | |||
else: | |||
# edge non-synb labeled | |||
if ds_attrs['edge_attr_dim'] > 0: | |||
ke = edge_kernels['nsymb'] | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
ek_temp = ke(e1[2]['attributes'], e2[2]['attributes']) | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = vk_dict[(e1[0], e2[0])] \ | |||
* ek_temp * vk_dict[(e1[1], e2[1])] \ | |||
+ vk_dict[(e1[0], e2[1])] \ | |||
* ek_temp * vk_dict[(e1[1], e2[0])] | |||
w_times[w_idx[1], w_idx[0]] = w_times[w_idx[0], w_idx[1]] | |||
w_idx2 = (e1[0] * nx.number_of_nodes(g2) + e2[1], | |||
e1[1] * nx.number_of_nodes(g2) + e2[0]) | |||
w_times[w_idx2[0], w_idx2[1]] = w_times[w_idx[0], w_idx[1]] | |||
w_times[w_idx2[1], w_idx2[0]] = w_times[w_idx[0], w_idx[1]] | |||
# edge unlabeled | |||
else: | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = vk_dict[(e1[0], e2[0])] \ | |||
* vk_dict[(e1[1], e2[1])] \ | |||
+ vk_dict[(e1[0], e2[1])] \ | |||
* vk_dict[(e1[1], e2[0])] | |||
w_times[w_idx[1], w_idx[0]] = w_times[w_idx[0], w_idx[1]] | |||
w_idx2 = (e1[0] * nx.number_of_nodes(g2) + e2[1], | |||
e1[1] * nx.number_of_nodes(g2) + e2[0]) | |||
w_times[w_idx2[0], w_idx2[1]] = w_times[w_idx[0], w_idx[1]] | |||
w_times[w_idx2[1], w_idx2[0]] = w_times[w_idx[0], w_idx[1]] | |||
else: # node unlabeled | |||
if ds_attrs['is_directed']: | |||
if ds_attrs['edge_labeled']: | |||
# edge symb and non-synb labeled | |||
if ds_attrs['edge_attr_dim'] > 0: | |||
ke = edge_kernels['mix'] | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
ek_temp = ke(e1[2][edge_label], e2[2][edge_label], | |||
e1[2]['attributes'], e2[2]['attributes']) | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = ek_temp | |||
# edge symb labeled | |||
else: | |||
ke = edge_kernels['symb'] | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
ek_temp = ke(e1[2][edge_label], e2[2][edge_label]) | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = ek_temp | |||
else: | |||
# edge non-synb labeled | |||
if ds_attrs['edge_attr_dim'] > 0: | |||
ke = edge_kernels['nsymb'] | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
ek_temp = ke(e1[2]['attributes'], e2[2]['attributes']) | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = ek_temp | |||
# edge unlabeled | |||
else: | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = 1 | |||
else: # undirected | |||
if ds_attrs['edge_labeled']: | |||
# edge symb and non-synb labeled | |||
if ds_attrs['edge_attr_dim'] > 0: | |||
ke = edge_kernels['mix'] | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
ek_temp = ke(e1[2][edge_label], e2[2][edge_label], | |||
e1[2]['attributes'], e2[2]['attributes']) | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = ek_temp | |||
w_times[w_idx[1], w_idx[0]] = w_times[w_idx[0], w_idx[1]] | |||
w_idx2 = (e1[0] * nx.number_of_nodes(g2) + e2[1], | |||
e1[1] * nx.number_of_nodes(g2) + e2[0]) | |||
w_times[w_idx2[0], w_idx2[1]] = w_times[w_idx[0], w_idx[1]] | |||
w_times[w_idx2[1], w_idx2[0]] = w_times[w_idx[0], w_idx[1]] | |||
# edge symb labeled | |||
else: | |||
ke = edge_kernels['symb'] | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
ek_temp = ke(e1[2][edge_label], e2[2][edge_label]) | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = ek_temp | |||
w_times[w_idx[1], w_idx[0]] = w_times[w_idx[0], w_idx[1]] | |||
w_idx2 = (e1[0] * nx.number_of_nodes(g2) + e2[1], | |||
e1[1] * nx.number_of_nodes(g2) + e2[0]) | |||
w_times[w_idx2[0], w_idx2[1]] = w_times[w_idx[0], w_idx[1]] | |||
w_times[w_idx2[1], w_idx2[0]] = w_times[w_idx[0], w_idx[1]] | |||
else: | |||
# edge non-synb labeled | |||
if ds_attrs['edge_attr_dim'] > 0: | |||
ke = edge_kernels['nsymb'] | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
ek_temp = ke(e1[2]['attributes'], e2[2]['attributes']) | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = ek_temp | |||
w_times[w_idx[1], w_idx[0]] = w_times[w_idx[0], w_idx[1]] | |||
w_idx2 = (e1[0] * nx.number_of_nodes(g2) + e2[1], | |||
e1[1] * nx.number_of_nodes(g2) + e2[0]) | |||
w_times[w_idx2[0], w_idx2[1]] = w_times[w_idx[0], w_idx[1]] | |||
w_times[w_idx2[1], w_idx2[0]] = w_times[w_idx[0], w_idx[1]] | |||
# edge unlabeled | |||
else: | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
w_idx = (e1[0] * nx.number_of_nodes(g2) + e2[0], | |||
e1[1] * nx.number_of_nodes(g2) + e2[1]) | |||
w_times[w_idx] = 1 | |||
w_times[w_idx[1], w_idx[0]] = w_times[w_idx[0], w_idx[1]] | |||
w_idx2 = (e1[0] * nx.number_of_nodes(g2) + e2[1], | |||
e1[1] * nx.number_of_nodes(g2) + e2[0]) | |||
w_times[w_idx2[0], w_idx2[1]] = w_times[w_idx[0], w_idx[1]] | |||
w_times[w_idx2[1], w_idx2[0]] = w_times[w_idx[0], w_idx[1]] | |||
return w_times, w_dim |
@@ -0,0 +1,200 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Fri Dec 21 18:02:00 2018 | |||
@author: ljia | |||
""" | |||
import sys | |||
import time | |||
from itertools import product | |||
from functools import partial | |||
from multiprocessing import Pool | |||
from tqdm import tqdm | |||
import networkx as nx | |||
import numpy as np | |||
from pygraph.utils.utils import getSPGraph | |||
from pygraph.utils.graphdataset import get_dataset_attributes | |||
from pygraph.utils.parallel import parallel_gm | |||
sys.path.insert(0, "../") | |||
def spkernel(*args, | |||
node_label='atom', | |||
edge_weight=None, | |||
node_kernels=None, | |||
n_jobs=None): | |||
"""Calculate shortest-path kernels between graphs. | |||
Parameters | |||
---------- | |||
Gn : List of NetworkX graph | |||
List of graphs between which the kernels are calculated. | |||
/ | |||
G1, G2 : NetworkX graphs | |||
2 graphs between which the kernel is calculated. | |||
node_label : string | |||
node attribute used as label. The default node label is atom. | |||
edge_weight : string | |||
Edge attribute name corresponding to the edge weight. | |||
node_kernels: dict | |||
A dictionary of kernel functions for nodes, including 3 items: 'symb' | |||
for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix' | |||
for both labels. The first 2 functions take two node labels as | |||
parameters, and the 'mix' function takes 4 parameters, a symbolic and a | |||
non-symbolic label for each the two nodes. Each label is in form of 2-D | |||
dimension array (n_samples, n_features). Each function returns an | |||
number as the kernel value. Ignored when nodes are unlabeled. | |||
Return | |||
------ | |||
Kmatrix : Numpy matrix | |||
Kernel matrix, each element of which is the sp kernel between 2 praphs. | |||
""" | |||
# pre-process | |||
Gn = args[0] if len(args) == 1 else [args[0], args[1]] | |||
weight = None | |||
if edge_weight is None: | |||
print('\n None edge weight specified. Set all weight to 1.\n') | |||
else: | |||
try: | |||
some_weight = list( | |||
nx.get_edge_attributes(Gn[0], edge_weight).values())[0] | |||
if isinstance(some_weight, (float, int)): | |||
weight = edge_weight | |||
else: | |||
print( | |||
'\n Edge weight with name %s is not float or integer. Set all weight to 1.\n' | |||
% edge_weight) | |||
except: | |||
print( | |||
'\n Edge weight with name "%s" is not found in the edge attributes. Set all weight to 1.\n' | |||
% edge_weight) | |||
ds_attrs = get_dataset_attributes( | |||
Gn, | |||
attr_names=['node_labeled', 'node_attr_dim', 'is_directed'], | |||
node_label=node_label) | |||
ds_attrs['node_attr_dim'] = 0 | |||
# remove graphs with no edges, as no sp can be found in their structures, | |||
# so the kernel between such a graph and itself will be zero. | |||
len_gn = len(Gn) | |||
Gn = [(idx, G) for idx, G in enumerate(Gn) if nx.number_of_edges(G) != 0] | |||
idx = [G[0] for G in Gn] | |||
Gn = [G[1] for G in Gn] | |||
if len(Gn) != len_gn: | |||
print('\n %d graphs are removed as they don\'t contain edges.\n' % | |||
(len_gn - len(Gn))) | |||
start_time = time.time() | |||
pool = Pool(n_jobs) | |||
# get shortest path graphs of Gn | |||
getsp_partial = partial(wrapper_getSPGraph, weight) | |||
itr = zip(Gn, range(0, len(Gn))) | |||
if len(Gn) < 100 * n_jobs: | |||
# # use default chunksize as pool.map when iterable is less than 100 | |||
# chunksize, extra = divmod(len(Gn), n_jobs * 4) | |||
# if extra: | |||
# chunksize += 1 | |||
chunksize = int(len(Gn) / n_jobs) + 1 | |||
else: | |||
chunksize = 100 | |||
for i, g in tqdm( | |||
pool.imap_unordered(getsp_partial, itr, chunksize), | |||
desc='getting sp graphs', file=sys.stdout): | |||
Gn[i] = g | |||
pool.close() | |||
pool.join() | |||
Kmatrix = np.zeros((len(Gn), len(Gn))) | |||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||
def init_worker(gn_toshare): | |||
global G_gn | |||
G_gn = gn_toshare | |||
do_partial = partial(wrapper_sp_do, ds_attrs, node_label, node_kernels) | |||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
glbv=(Gn,), n_jobs=n_jobs) | |||
run_time = time.time() - start_time | |||
print( | |||
"\n --- shortest path kernel matrix of size %d built in %s seconds ---" | |||
% (len(Gn), run_time)) | |||
return Kmatrix, run_time, idx | |||
def spkernel_do(g1, g2, ds_attrs, node_label, node_kernels): | |||
kernel = 0 | |||
# compute shortest path matrices first, method borrowed from FCSP. | |||
vk_dict = {} # shortest path matrices dict | |||
if ds_attrs['node_labeled']: | |||
# node symb and non-synb labeled | |||
if ds_attrs['node_attr_dim'] > 0: | |||
kn = node_kernels['mix'] | |||
for n1, n2 in product( | |||
g1.nodes(data=True), g2.nodes(data=True)): | |||
vk_dict[(n1[0], n2[0])] = kn( | |||
n1[1][node_label], n2[1][node_label], | |||
n1[1]['attributes'], n2[1]['attributes']) | |||
# node symb labeled | |||
else: | |||
kn = node_kernels['symb'] | |||
for n1 in g1.nodes(data=True): | |||
for n2 in g2.nodes(data=True): | |||
vk_dict[(n1[0], n2[0])] = kn(n1[1][node_label], | |||
n2[1][node_label]) | |||
else: | |||
# node non-synb labeled | |||
if ds_attrs['node_attr_dim'] > 0: | |||
kn = node_kernels['nsymb'] | |||
for n1 in g1.nodes(data=True): | |||
for n2 in g2.nodes(data=True): | |||
vk_dict[(n1[0], n2[0])] = kn(n1[1]['attributes'], | |||
n2[1]['attributes']) | |||
# node unlabeled | |||
else: | |||
for e1, e2 in product( | |||
g1.edges(data=True), g2.edges(data=True)): | |||
if e1[2]['cost'] == e2[2]['cost']: | |||
kernel += 1 | |||
return kernel | |||
# compute graph kernels | |||
if ds_attrs['is_directed']: | |||
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||
if e1[2]['cost'] == e2[2]['cost']: | |||
nk11, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(e1[1], | |||
e2[1])] | |||
kn1 = nk11 * nk22 | |||
kernel += kn1 | |||
else: | |||
for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||
if e1[2]['cost'] == e2[2]['cost']: | |||
# each edge walk is counted twice, starting from both its extreme nodes. | |||
nk11, nk12, nk21, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[( | |||
e1[0], e2[1])], vk_dict[(e1[1], | |||
e2[0])], vk_dict[(e1[1], | |||
e2[1])] | |||
kn1 = nk11 * nk22 | |||
kn2 = nk12 * nk21 | |||
kernel += kn1 + kn2 | |||
return kernel | |||
def wrapper_sp_do(ds_attrs, node_label, node_kernels, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, spkernel_do(G_gn[i], G_gn[j], ds_attrs, node_label, node_kernels) | |||
def wrapper_getSPGraph(weight, itr_item): | |||
g = itr_item[0] | |||
i = itr_item[1] | |||
return i, getSPGraph(g, edge_weight=weight) |
@@ -0,0 +1,464 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Sun Dec 23 16:42:48 2018 | |||
@author: ljia | |||
""" | |||
import sys | |||
import time | |||
from itertools import combinations, product | |||
from functools import partial | |||
from multiprocessing import Pool | |||
from tqdm import tqdm | |||
import networkx as nx | |||
import numpy as np | |||
from pygraph.utils.graphdataset import get_dataset_attributes | |||
from pygraph.utils.parallel import parallel_gm | |||
sys.path.insert(0, "../") | |||
def structuralspkernel(*args, | |||
node_label='atom', | |||
edge_weight=None, | |||
edge_label='bond_type', | |||
node_kernels=None, | |||
edge_kernels=None, | |||
n_jobs=None): | |||
"""Calculate mean average structural shortest path kernels between graphs. | |||
Parameters | |||
---------- | |||
Gn : List of NetworkX graph | |||
List of graphs between which the kernels are calculated. | |||
/ | |||
G1, G2 : NetworkX graphs | |||
2 graphs between which the kernel is calculated. | |||
node_label : string | |||
node attribute used as label. The default node label is atom. | |||
edge_weight : string | |||
Edge attribute name corresponding to the edge weight. | |||
edge_label : string | |||
edge attribute used as label. The default edge label is bond_type. | |||
node_kernels: dict | |||
A dictionary of kernel functions for nodes, including 3 items: 'symb' | |||
for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix' | |||
for both labels. The first 2 functions take two node labels as | |||
parameters, and the 'mix' function takes 4 parameters, a symbolic and a | |||
non-symbolic label for each the two nodes. Each label is in form of 2-D | |||
dimension array (n_samples, n_features). Each function returns a number | |||
as the kernel value. Ignored when nodes are unlabeled. | |||
edge_kernels: dict | |||
A dictionary of kernel functions for edges, including 3 items: 'symb' | |||
for symbolic edge labels, 'nsymb' for non-symbolic edge labels, 'mix' | |||
for both labels. The first 2 functions take two edge labels as | |||
parameters, and the 'mix' function takes 4 parameters, a symbolic and a | |||
non-symbolic label for each the two edges. Each label is in form of 2-D | |||
dimension array (n_samples, n_features). Each function returns a number | |||
as the kernel value. Ignored when edges are unlabeled. | |||
Return | |||
------ | |||
Kmatrix : Numpy matrix | |||
Kernel matrix, each element of which is the mean average structural | |||
shortest path kernel between 2 praphs. | |||
""" | |||
# pre-process | |||
Gn = args[0] if len(args) == 1 else [args[0], args[1]] | |||
weight = None | |||
if edge_weight is None: | |||
print('\n None edge weight specified. Set all weight to 1.\n') | |||
else: | |||
try: | |||
some_weight = list( | |||
nx.get_edge_attributes(Gn[0], edge_weight).values())[0] | |||
if isinstance(some_weight, (float, int)): | |||
weight = edge_weight | |||
else: | |||
print( | |||
'\n Edge weight with name %s is not float or integer. Set all weight to 1.\n' | |||
% edge_weight) | |||
except: | |||
print( | |||
'\n Edge weight with name "%s" is not found in the edge attributes. Set all weight to 1.\n' | |||
% edge_weight) | |||
ds_attrs = get_dataset_attributes( | |||
Gn, | |||
attr_names=['node_labeled', 'node_attr_dim', 'edge_labeled', | |||
'edge_attr_dim', 'is_directed'], | |||
node_label=node_label, edge_label=edge_label) | |||
ds_attrs['node_attr_dim'] = 0 | |||
ds_attrs['edge_attr_dim'] = 0 | |||
start_time = time.time() | |||
# get shortest paths of each graph in Gn | |||
splist = [None] * len(Gn) | |||
pool = Pool(n_jobs) | |||
# get shortest path graphs of Gn | |||
getsp_partial = partial(wrapper_getSP, weight, ds_attrs['is_directed']) | |||
itr = zip(Gn, range(0, len(Gn))) | |||
if len(Gn) < 100 * n_jobs: | |||
chunksize = int(len(Gn) / n_jobs) + 1 | |||
else: | |||
chunksize = 100 | |||
# chunksize = 300 # int(len(list(itr)) / n_jobs) | |||
for i, sp in tqdm( | |||
pool.imap_unordered(getsp_partial, itr, chunksize), | |||
desc='getting shortest paths', | |||
file=sys.stdout): | |||
splist[i] = sp | |||
# time.sleep(10) | |||
pool.close() | |||
pool.join() | |||
# # get shortest paths of each graph in Gn | |||
# splist = [[] for _ in range(len(Gn))] | |||
# # get shortest path graphs of Gn | |||
# getsp_partial = partial(wrapper_getSP, weight, ds_attrs['is_directed']) | |||
# itr = zip(Gn, range(0, len(Gn))) | |||
# if len(Gn) < 1000 * n_jobs: | |||
# chunksize = int(len(Gn) / n_jobs) + 1 | |||
# else: | |||
# chunksize = 1000 | |||
# # chunksize = 300 # int(len(list(itr)) / n_jobs) | |||
# from contextlib import closing | |||
# with closing(Pool(n_jobs)) as pool: | |||
## for i, sp in tqdm( | |||
# res = pool.imap_unordered(getsp_partial, itr, 10) | |||
## desc='getting shortest paths', | |||
## file=sys.stdout): | |||
## splist[i] = sp | |||
## time.sleep(10) | |||
# pool.close() | |||
# pool.join() | |||
# ss = 0 | |||
# ss += sys.getsizeof(splist) | |||
# for spss in splist: | |||
# ss += sys.getsizeof(spss) | |||
# for spp in spss: | |||
# ss += sys.getsizeof(spp) | |||
# time.sleep(20) | |||
# # ---- direct running, normally use single CPU core. ---- | |||
# splist = [] | |||
# for g in tqdm(Gn, desc='getting sp graphs', file=sys.stdout): | |||
# splist.append(get_shortest_paths(g, weight, ds_attrs['is_directed'])) | |||
# # ---- only for the Fast Computation of Shortest Path Kernel (FCSP) | |||
# sp_ml = [0] * len(Gn) # shortest path matrices | |||
# for i in result_sp: | |||
# sp_ml[i[0]] = i[1] | |||
# edge_x_g = [[] for i in range(len(sp_ml))] | |||
# edge_y_g = [[] for i in range(len(sp_ml))] | |||
# edge_w_g = [[] for i in range(len(sp_ml))] | |||
# for idx, item in enumerate(sp_ml): | |||
# for i1 in range(len(item)): | |||
# for i2 in range(i1 + 1, len(item)): | |||
# if item[i1, i2] != np.inf: | |||
# edge_x_g[idx].append(i1) | |||
# edge_y_g[idx].append(i2) | |||
# edge_w_g[idx].append(item[i1, i2]) | |||
# print(len(edge_x_g[0])) | |||
# print(len(edge_y_g[0])) | |||
# print(len(edge_w_g[0])) | |||
Kmatrix = np.zeros((len(Gn), len(Gn))) | |||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||
def init_worker(spl_toshare, gs_toshare): | |||
global G_spl, G_gs | |||
G_spl = spl_toshare | |||
G_gs = gs_toshare | |||
do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||
node_kernels, edge_kernels) | |||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
glbv=(splist, Gn), n_jobs=n_jobs) | |||
# # ---- use pool.imap_unordered to parallel and track progress. ---- | |||
# pool = Pool(n_jobs) | |||
# do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||
# node_kernels, edge_kernels) | |||
# itr = zip(combinations_with_replacement(Gn, 2), | |||
# combinations_with_replacement(splist, 2), | |||
# combinations_with_replacement(range(0, len(Gn)), 2)) | |||
# len_itr = int(len(Gn) * (len(Gn) + 1) / 2) | |||
# if len_itr < 1000 * n_jobs: | |||
# chunksize = int(len_itr / n_jobs) + 1 | |||
# else: | |||
# chunksize = 1000 | |||
# for i, j, kernel in tqdm( | |||
# pool.imap_unordered(do_partial, itr, chunksize), | |||
# desc='calculating kernels', | |||
# file=sys.stdout): | |||
# Kmatrix[i][j] = kernel | |||
# Kmatrix[j][i] = kernel | |||
# pool.close() | |||
# pool.join() | |||
# # ---- use pool.map to parallel. ---- | |||
# pool = Pool(n_jobs) | |||
# do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||
# node_kernels, edge_kernels) | |||
# itr = zip(combinations_with_replacement(Gn, 2), | |||
# combinations_with_replacement(splist, 2), | |||
# combinations_with_replacement(range(0, len(Gn)), 2)) | |||
# for i, j, kernel in tqdm( | |||
# pool.map(do_partial, itr), desc='calculating kernels', | |||
# file=sys.stdout): | |||
# Kmatrix[i][j] = kernel | |||
# Kmatrix[j][i] = kernel | |||
# pool.close() | |||
# pool.join() | |||
# # ---- use pool.imap_unordered to parallel and track progress. ---- | |||
# do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label, | |||
# node_kernels, edge_kernels) | |||
# itr = zip(combinations_with_replacement(Gn, 2), | |||
# combinations_with_replacement(splist, 2), | |||
# combinations_with_replacement(range(0, len(Gn)), 2)) | |||
# len_itr = int(len(Gn) * (len(Gn) + 1) / 2) | |||
# if len_itr < 1000 * n_jobs: | |||
# chunksize = int(len_itr / n_jobs) + 1 | |||
# else: | |||
# chunksize = 1000 | |||
# from contextlib import closing | |||
# with closing(Pool(n_jobs)) as pool: | |||
# for i, j, kernel in tqdm( | |||
# pool.imap_unordered(do_partial, itr, 1000), | |||
# desc='calculating kernels', | |||
# file=sys.stdout): | |||
# Kmatrix[i][j] = kernel | |||
# Kmatrix[j][i] = kernel | |||
# pool.close() | |||
# pool.join() | |||
# # ---- direct running, normally use single CPU core. ---- | |||
# from itertools import combinations_with_replacement | |||
# itr = combinations_with_replacement(range(0, len(Gn)), 2) | |||
# for i, j in tqdm(itr, desc='calculating kernels', file=sys.stdout): | |||
# kernel = structuralspkernel_do(Gn[i], Gn[j], splist[i], splist[j], | |||
# ds_attrs, node_label, edge_label, node_kernels, edge_kernels) | |||
## if(kernel > 1): | |||
## print("error here ") | |||
# Kmatrix[i][j] = kernel | |||
# Kmatrix[j][i] = kernel | |||
run_time = time.time() - start_time | |||
print( | |||
"\n --- shortest path kernel matrix of size %d built in %s seconds ---" | |||
% (len(Gn), run_time)) | |||
return Kmatrix, run_time | |||
def structuralspkernel_do(g1, g2, spl1, spl2, ds_attrs, node_label, edge_label, | |||
node_kernels, edge_kernels): | |||
kernel = 0 | |||
# First, compute shortest path matrices, method borrowed from FCSP. | |||
vk_dict = {} # shortest path matrices dict | |||
if ds_attrs['node_labeled']: | |||
# node symb and non-synb labeled | |||
if ds_attrs['node_attr_dim'] > 0: | |||
kn = node_kernels['mix'] | |||
for n1, n2 in product( | |||
g1.nodes(data=True), g2.nodes(data=True)): | |||
vk_dict[(n1[0], n2[0])] = kn( | |||
n1[1][node_label], n2[1][node_label], | |||
n1[1]['attributes'], n2[1]['attributes']) | |||
# node symb labeled | |||
else: | |||
kn = node_kernels['symb'] | |||
for n1 in g1.nodes(data=True): | |||
for n2 in g2.nodes(data=True): | |||
vk_dict[(n1[0], n2[0])] = kn(n1[1][node_label], | |||
n2[1][node_label]) | |||
else: | |||
# node non-synb labeled | |||
if ds_attrs['node_attr_dim'] > 0: | |||
kn = node_kernels['nsymb'] | |||
for n1 in g1.nodes(data=True): | |||
for n2 in g2.nodes(data=True): | |||
vk_dict[(n1[0], n2[0])] = kn(n1[1]['attributes'], | |||
n2[1]['attributes']) | |||
# node unlabeled | |||
else: | |||
pass | |||
# Then, compute kernels between all pairs of edges, which idea is an | |||
# extension of FCSP. It suits sparse graphs, which is the most case we | |||
# went though. For dense graphs, this would be slow. | |||
ek_dict = {} # dict of edge kernels | |||
if ds_attrs['edge_labeled']: | |||
# edge symb and non-synb labeled | |||
if ds_attrs['edge_attr_dim'] > 0: | |||
ke = edge_kernels['mix'] | |||
for e1, e2 in product( | |||
g1.edges(data=True), g2.edges(data=True)): | |||
ek_temp = ke(e1[2][edge_label], e2[2][edge_label], | |||
e1[2]['attributes'], e2[2]['attributes']) | |||
ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp | |||
ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp | |||
ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp | |||
ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp | |||
# edge symb labeled | |||
else: | |||
ke = edge_kernels['symb'] | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
ek_temp = ke(e1[2][edge_label], e2[2][edge_label]) | |||
ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp | |||
ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp | |||
ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp | |||
ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp | |||
else: | |||
# edge non-synb labeled | |||
if ds_attrs['edge_attr_dim'] > 0: | |||
ke = edge_kernels['nsymb'] | |||
for e1 in g1.edges(data=True): | |||
for e2 in g2.edges(data=True): | |||
ek_temp = kn(e1[2]['attributes'], e2[2]['attributes']) | |||
ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp | |||
ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp | |||
ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp | |||
ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp | |||
# edge unlabeled | |||
else: | |||
pass | |||
# compute graph kernels | |||
if vk_dict: | |||
if ek_dict: | |||
for p1, p2 in product(spl1, spl2): | |||
if len(p1) == len(p2): | |||
kpath = vk_dict[(p1[0], p2[0])] | |||
if kpath: | |||
for idx in range(1, len(p1)): | |||
kpath *= vk_dict[(p1[idx], p2[idx])] * \ | |||
ek_dict[((p1[idx-1], p1[idx]), | |||
(p2[idx-1], p2[idx]))] | |||
if not kpath: | |||
break | |||
kernel += kpath # add up kernels of all paths | |||
else: | |||
for p1, p2 in product(spl1, spl2): | |||
if len(p1) == len(p2): | |||
kpath = vk_dict[(p1[0], p2[0])] | |||
if kpath: | |||
for idx in range(1, len(p1)): | |||
kpath *= vk_dict[(p1[idx], p2[idx])] | |||
if not kpath: | |||
break | |||
kernel += kpath # add up kernels of all paths | |||
else: | |||
if ek_dict: | |||
for p1, p2 in product(spl1, spl2): | |||
if len(p1) == len(p2): | |||
if len(p1) == 0: | |||
kernel += 1 | |||
else: | |||
kpath = 1 | |||
for idx in range(0, len(p1) - 1): | |||
kpath *= ek_dict[((p1[idx], p1[idx+1]), | |||
(p2[idx], p2[idx+1]))] | |||
if not kpath: | |||
break | |||
kernel += kpath # add up kernels of all paths | |||
else: | |||
for p1, p2 in product(spl1, spl2): | |||
if len(p1) == len(p2): | |||
kernel += 1 | |||
kernel = kernel / (len(spl1) * len(spl2)) # calculate mean average | |||
# # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation | |||
# # compute vertex kernel matrix | |||
# try: | |||
# vk_mat = np.zeros((nx.number_of_nodes(g1), | |||
# nx.number_of_nodes(g2))) | |||
# g1nl = enumerate(g1.nodes(data=True)) | |||
# g2nl = enumerate(g2.nodes(data=True)) | |||
# for i1, n1 in g1nl: | |||
# for i2, n2 in g2nl: | |||
# vk_mat[i1][i2] = kn( | |||
# n1[1][node_label], n2[1][node_label], | |||
# [n1[1]['attributes']], [n2[1]['attributes']]) | |||
# range1 = range(0, len(edge_w_g[i])) | |||
# range2 = range(0, len(edge_w_g[j])) | |||
# for i1 in range1: | |||
# x1 = edge_x_g[i][i1] | |||
# y1 = edge_y_g[i][i1] | |||
# w1 = edge_w_g[i][i1] | |||
# for i2 in range2: | |||
# x2 = edge_x_g[j][i2] | |||
# y2 = edge_y_g[j][i2] | |||
# w2 = edge_w_g[j][i2] | |||
# ke = (w1 == w2) | |||
# if ke > 0: | |||
# kn1 = vk_mat[x1][x2] * vk_mat[y1][y2] | |||
# kn2 = vk_mat[x1][y2] * vk_mat[y1][x2] | |||
# Kmatrix += kn1 + kn2 | |||
return kernel | |||
def wrapper_ssp_do(ds_attrs, node_label, edge_label, node_kernels, | |||
edge_kernels, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, structuralspkernel_do(G_gs[i], G_gs[j], G_spl[i], G_spl[j], | |||
ds_attrs, node_label, edge_label, | |||
node_kernels, edge_kernels) | |||
def get_shortest_paths(G, weight, directed): | |||
"""Get all shortest paths of a graph. | |||
Parameters | |||
---------- | |||
G : NetworkX graphs | |||
The graphs whose paths are calculated. | |||
weight : string/None | |||
edge attribute used as weight to calculate the shortest path. | |||
directed: boolean | |||
Whether graph is directed. | |||
Return | |||
------ | |||
sp : list of list | |||
List of shortest paths of the graph, where each path is represented by a list of nodes. | |||
""" | |||
sp = [] | |||
for n1, n2 in combinations(G.nodes(), 2): | |||
try: | |||
spltemp = list(nx.all_shortest_paths(G, n1, n2, weight=weight)) | |||
except nx.NetworkXNoPath: # nodes not connected | |||
# sp.append([]) | |||
pass | |||
else: | |||
sp += spltemp | |||
# each edge walk is counted twice, starting from both its extreme nodes. | |||
if not directed: | |||
sp += [sptemp[::-1] for sptemp in spltemp] | |||
# add single nodes as length 0 paths. | |||
sp += [[n] for n in G.nodes()] | |||
return sp | |||
def wrapper_getSP(weight, directed, itr_item): | |||
g = itr_item[0] | |||
i = itr_item[1] | |||
return i, get_shortest_paths(g, weight, directed) |
@@ -33,8 +33,9 @@ def marginalizedkernel(*args, | |||
edge_label='bond_type', | |||
p_quit=0.5, | |||
n_iteration=20, | |||
remove_totters=True, | |||
n_jobs=None): | |||
remove_totters=False, | |||
n_jobs=None, | |||
verbose=True): | |||
"""Calculate marginalized graph kernels between graphs. | |||
Parameters | |||
@@ -63,16 +64,18 @@ def marginalizedkernel(*args, | |||
""" | |||
# pre-process | |||
n_iteration = int(n_iteration) | |||
Gn = args[0] if len(args) == 1 else [args[0], args[1]] | |||
Gn = args[0][:] if len(args) == 1 else [args[0].copy(), args[1].copy()] | |||
ds_attrs = get_dataset_attributes( | |||
Gn, | |||
attr_names=['node_labeled', 'edge_labeled', 'is_directed'], | |||
node_label=node_label, edge_label=edge_label) | |||
if not ds_attrs['node_labeled']: | |||
if not ds_attrs['node_labeled'] or node_label == None: | |||
node_label = 'atom' | |||
for G in Gn: | |||
nx.set_node_attributes(G, '0', 'atom') | |||
if not ds_attrs['edge_labeled']: | |||
if not ds_attrs['edge_labeled'] or edge_label == None: | |||
edge_label = 'bond_type' | |||
for G in Gn: | |||
nx.set_edge_attributes(G, '0', 'bond_type') | |||
@@ -110,26 +113,26 @@ def marginalizedkernel(*args, | |||
do_partial = partial(wrapper_marg_do, node_label, edge_label, | |||
p_quit, n_iteration) | |||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
glbv=(Gn,), n_jobs=n_jobs) | |||
glbv=(Gn,), n_jobs=n_jobs, verbose=verbose) | |||
# # ---- direct running, normally use single CPU core. ---- | |||
# pbar = tqdm( | |||
# total=(1 + len(Gn)) * len(Gn) / 2, | |||
# desc='calculating kernels', | |||
# file=sys.stdout) | |||
## pbar = tqdm( | |||
## total=(1 + len(Gn)) * len(Gn) / 2, | |||
## desc='calculating kernels', | |||
## file=sys.stdout) | |||
# for i in range(0, len(Gn)): | |||
# for j in range(i, len(Gn)): | |||
# print(i, j) | |||
## print(i, j) | |||
# Kmatrix[i][j] = _marginalizedkernel_do(Gn[i], Gn[j], node_label, | |||
# edge_label, p_quit, n_iteration) | |||
# Kmatrix[j][i] = Kmatrix[i][j] | |||
# pbar.update(1) | |||
## pbar.update(1) | |||
run_time = time.time() - start_time | |||
print( | |||
"\n --- marginalized kernel matrix of size %d built in %s seconds ---" | |||
% (len(Gn), run_time)) | |||
if verbose: | |||
print("\n --- marginalized kernel matrix of size %d built in %s seconds ---" | |||
% (len(Gn), run_time)) | |||
return Kmatrix, run_time | |||
@@ -23,7 +23,8 @@ def spkernel(*args, | |||
node_label='atom', | |||
edge_weight=None, | |||
node_kernels=None, | |||
n_jobs=None): | |||
n_jobs=None, | |||
verbose=True): | |||
"""Calculate shortest-path kernels between graphs. | |||
Parameters | |||
@@ -148,7 +149,7 @@ def spkernel(*args, | |||
G_gn = gn_toshare | |||
do_partial = partial(wrapper_sp_do, ds_attrs, node_label, node_kernels) | |||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
glbv=(Gn,), n_jobs=n_jobs) | |||
glbv=(Gn,), n_jobs=n_jobs, verbose=verbose) | |||
# # ---- use pool.map to parallel. ---- | |||
@@ -31,7 +31,7 @@ def structuralspkernel(*args, | |||
edge_label='bond_type', | |||
node_kernels=None, | |||
edge_kernels=None, | |||
compute_method='trie', | |||
compute_method='naive', | |||
n_jobs=None): | |||
"""Calculate mean average structural shortest path kernels between graphs. | |||
@@ -242,7 +242,7 @@ def model_selection_for_precomputed_kernel(datafile, | |||
# gms_array = Array('d', np.reshape(gram_matrices.copy(), -1, order='C')) | |||
# pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(gms_array, gms_shape)) | |||
pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(gram_matrices,)) | |||
trial_do_partial = partial(trial_do, param_list_pre_revised, param_list, y, model_type) | |||
trial_do_partial = partial(parallel_trial_do, param_list_pre_revised, param_list, y, model_type) | |||
train_pref = [] | |||
val_pref = [] | |||
test_pref = [] | |||
@@ -473,7 +473,7 @@ def model_selection_for_precomputed_kernel(datafile, | |||
G_gms = gms_toshare | |||
pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(gram_matrices,)) | |||
trial_do_partial = partial(trial_do, param_list_pre_revised, param_list, y, model_type) | |||
trial_do_partial = partial(parallel_trial_do, param_list_pre_revised, param_list, y, model_type) | |||
train_pref = [] | |||
val_pref = [] | |||
test_pref = [] | |||
@@ -656,7 +656,7 @@ def model_selection_for_precomputed_kernel(datafile, | |||
f.write(str_fw + '\n\n\n' + content) | |||
def trial_do(param_list_pre_revised, param_list, y, model_type, trial): # Test set level | |||
def trial_do(param_list_pre_revised, param_list, gram_matrices, y, model_type, trial): # Test set level | |||
# # get gram matrices from global variables. | |||
# gram_matrices = np.reshape(G_gms.copy(), G_gms_shape, order='C') | |||
@@ -679,7 +679,7 @@ def trial_do(param_list_pre_revised, param_list, y, model_type, trial): # Test s | |||
# get gram matrices from global variables. | |||
# gm_now = G_gms[index_out * G_gms_shape[1] * G_gms_shape[2]:(index_out + 1) * G_gms_shape[1] * G_gms_shape[2]] | |||
# gm_now = np.reshape(gm_now.copy(), (G_gms_shape[1], G_gms_shape[2]), order='C') | |||
gm_now = G_gms[index_out].copy() | |||
gm_now = gram_matrices[index_out].copy() | |||
# split gram matrix and y to app and test sets. | |||
indices = range(len(y)) | |||
@@ -822,6 +822,12 @@ def trial_do(param_list_pre_revised, param_list, y, model_type, trial): # Test s | |||
return train_pref, val_pref, test_pref | |||
def parallel_trial_do(param_list_pre_revised, param_list, y, model_type, trial): | |||
train_pref, val_pref, test_pref = trial_do(param_list_pre_revised, | |||
param_list, G_gms, y, | |||
model_type, trial) | |||
return train_pref, val_pref, test_pref | |||
def compute_gram_matrices(dataset, y, estimator, param_list_precomputed, | |||
results_dir, ds_name, | |||
@@ -11,7 +11,8 @@ from tqdm import tqdm | |||
import sys | |||
def parallel_me(func, func_assign, var_to_assign, itr, len_itr=None, init_worker=None, | |||
glbv=None, method=None, n_jobs=None, chunksize=None, itr_desc=''): | |||
glbv=None, method=None, n_jobs=None, chunksize=None, itr_desc='', | |||
verbose=True): | |||
''' | |||
''' | |||
if method == 'imap_unordered': | |||
@@ -29,8 +30,9 @@ def parallel_me(func, func_assign, var_to_assign, itr, len_itr=None, init_worker | |||
chunksize = int(len_itr / n_jobs) + 1 | |||
else: | |||
chunksize = 100 | |||
for result in tqdm(pool.imap_unordered(func, itr, chunksize), | |||
desc=itr_desc, file=sys.stdout): | |||
for result in (tqdm(pool.imap_unordered(func, itr, chunksize), | |||
desc=itr_desc, file=sys.stdout) if verbose else | |||
pool.imap_unordered(func, itr, chunksize)): | |||
func_assign(result, var_to_assign) | |||
else: | |||
with Pool(processes=n_jobs) as pool: | |||
@@ -41,14 +43,16 @@ def parallel_me(func, func_assign, var_to_assign, itr, len_itr=None, init_worker | |||
chunksize = int(len_itr / n_jobs) + 1 | |||
else: | |||
chunksize = 100 | |||
for result in tqdm(pool.imap_unordered(func, itr, chunksize), | |||
desc=itr_desc, file=sys.stdout): | |||
for result in (tqdm(pool.imap_unordered(func, itr, chunksize), | |||
desc=itr_desc, file=sys.stdout) if verbose else | |||
pool.imap_unordered(func, itr, chunksize)): | |||
func_assign(result, var_to_assign) | |||
def parallel_gm(func, Kmatrix, Gn, init_worker=None, glbv=None, | |||
method='imap_unordered', n_jobs=None, chunksize=None): | |||
method='imap_unordered', n_jobs=None, chunksize=None, | |||
verbose=True): | |||
from itertools import combinations_with_replacement | |||
def func_assign(result, var_to_assign): | |||
var_to_assign[result[0]][result[1]] = result[2] | |||
@@ -57,4 +61,4 @@ def parallel_gm(func, Kmatrix, Gn, init_worker=None, glbv=None, | |||
len_itr = int(len(Gn) * (len(Gn) + 1) / 2) | |||
parallel_me(func, func_assign, Kmatrix, itr, len_itr=len_itr, | |||
init_worker=init_worker, glbv=glbv, method=method, n_jobs=n_jobs, | |||
chunksize=chunksize, itr_desc='calculating kernels') | |||
chunksize=chunksize, itr_desc='calculating kernels', verbose=verbose) |