Browse Source

New translations kernel_knn_cv.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
6cb561739f
1 changed files with 418 additions and 0 deletions
  1. +418
    -0
      lang/fr/gklearn/preimage/kernel_knn_cv.py

+ 418
- 0
lang/fr/gklearn/preimage/kernel_knn_cv.py View File

@@ -0,0 +1,418 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue May 12 12:52:15 2020

@author: ljia
"""
import numpy as np
import csv
import os
import os.path
from gklearn.utils import Dataset
from sklearn.model_selection import ShuffleSplit
from gklearn.preimage import MedianPreimageGenerator
from gklearn.utils import normalize_gram_matrix, compute_distance_matrix
from gklearn.preimage.utils import get_same_item_indices
from gklearn.utils.knn import knn_classification
from gklearn.preimage.utils import compute_k_dis

def kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=True, load_gm='auto', dir_save='', irrelevant_labels=None, edge_required=False, cut_range=None):
# 1. get dataset.
print('1. getting dataset...')
dataset_all = Dataset()
dataset_all.load_predefined_dataset(ds_name)
dataset_all.trim_dataset(edge_required=edge_required)
if irrelevant_labels is not None:
dataset_all.remove_labels(**irrelevant_labels)
if cut_range is not None:
dataset_all.cut_graphs(cut_range)

if save_results:
# create result files.
print('creating output files...')
fn_output_detail, fn_output_summary = __init_output_file_knn(ds_name, kernel_options['name'], mpg_options['fit_method'], dir_save)
else:
fn_output_detail, fn_output_summary = None, None
# 2. compute/load Gram matrix a priori.
print('2. computing/loading Gram matrix...')
gram_matrix_unnorm, time_precompute_gm = __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, dataset_all)
# 3. perform k-nn CV.
print('3. performing k-nn CV...')
if train_examples == 'k-graphs' or train_examples == 'expert' or train_examples == 'random':
__kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kernel_options, mge_options, ged_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary)
elif train_examples == 'best-dataset':
__kernel_knn_cv_best_ds(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary)
elif train_examples == 'trainset':
__kernel_knn_cv_trainset(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary)

print('\ncomplete.\n')
def __kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kernel_options, mge_options, ged_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary):
Gn = dataset_all.graphs
y_all = dataset_all.targets
n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size']

# get shuffles.
train_indices, test_indices, train_nums, y_app = __get_shuffles(y_all, n_splits, test_size)
accuracies = [[], [], []]
for trial in range(len(train_indices)):
print('\ntrial =', trial)
train_index = train_indices[trial]
test_index = test_indices[trial]
G_app = [Gn[i] for i in train_index]
G_test = [Gn[i] for i in test_index]
y_test = [y_all[i] for i in test_index]
gm_unnorm_trial = gram_matrix_unnorm[train_index,:][:,train_index].copy()
# compute pre-images for each class.
medians = [[], [], []]
train_nums_tmp = [0] + train_nums
print('\ncomputing pre-image for each class...\n')
for i_class in range(len(train_nums_tmp) - 1):
print(i_class + 1, 'of', len(train_nums_tmp) - 1, 'classes:')
i_start = int(np.sum(train_nums_tmp[0:i_class + 1]))
i_end = i_start + train_nums_tmp[i_class + 1]
median_set = G_app[i_start:i_end]
dataset = dataset_all.copy()
dataset.load_graphs([g.copy() for g in median_set], targets=None)
mge_options['update_order'] = True
mpg_options['gram_matrix_unnorm'] = gm_unnorm_trial[i_start:i_end,i_start:i_end].copy()
mpg_options['runtime_precompute_gm'] = 0
set_median, gen_median_uo = __generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options)
mge_options['update_order'] = False
mpg_options['gram_matrix_unnorm'] = gm_unnorm_trial[i_start:i_end,i_start:i_end].copy()
mpg_options['runtime_precompute_gm'] = 0
_, gen_median = __generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options)
medians[0].append(set_median)
medians[1].append(gen_median)
medians[2].append(gen_median_uo)
# for each set of medians.
print('\nperforming k-nn...')
for i_app, G_app in enumerate(medians):
# compute dis_mat between medians.
dataset = dataset_all.copy()
dataset.load_graphs([g.copy() for g in G_app], targets=None)
gm_app_unnorm, _ = __compute_gram_matrix_unnorm(dataset, kernel_options.copy())
# compute the entire Gram matrix.
graph_kernel = __get_graph_kernel(dataset.copy(), kernel_options.copy())
kernels_to_medians = []
for g in G_app:
kernels_to_median, _ = graph_kernel.compute(g, G_test, **kernel_options.copy())
kernels_to_medians.append(kernels_to_median)
kernels_to_medians = np.array(kernels_to_medians)
gm_all = np.concatenate((gm_app_unnorm, kernels_to_medians), axis=1)
gm_all = np.concatenate((gm_all, np.concatenate((kernels_to_medians.T, gram_matrix_unnorm[test_index,:][:,test_index].copy()), axis=1)), axis=0)
gm_all = normalize_gram_matrix(gm_all.copy())
dis_mat, _, _, _ = compute_distance_matrix(gm_all)
N = len(G_app)
d_app = dis_mat[range(N),:][:,range(N)].copy()
d_test = np.zeros((N, len(test_index)))
for i in range(N):
for j in range(len(test_index)):
d_test[i, j] = dis_mat[i, j]
accuracies[i_app].append(knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=True, text=train_examples))
# write result detail.
if save_results:
f_detail = open(dir_save + fn_output_detail, 'a')
print('writing results to files...')
for i, median_type in enumerate(['set-median', 'gen median', 'gen median uo']):
csv.writer(f_detail).writerow([ds_name, kernel_options['name'],
train_examples + ': ' + median_type, trial,
knn_options['n_neighbors'],
len(gm_all), knn_options['test_size'],
accuracies[i][-1][0], accuracies[i][-1][1]])
f_detail.close()
results = {}
results['ave_perf_train'] = [np.mean([i[0] for i in j], axis=0) for j in accuracies]
results['std_perf_train'] = [np.std([i[0] for i in j], axis=0, ddof=1) for j in accuracies]
results['ave_perf_test'] = [np.mean([i[1] for i in j], axis=0) for j in accuracies]
results['std_perf_test'] = [np.std([i[1] for i in j], axis=0, ddof=1) for j in accuracies]

# write result summary for each letter.
if save_results:
f_summary = open(dir_save + fn_output_summary, 'a')
for i, median_type in enumerate(['set-median', 'gen median', 'gen median uo']):
csv.writer(f_summary).writerow([ds_name, kernel_options['name'],
train_examples + ': ' + median_type,
knn_options['n_neighbors'],
knn_options['test_size'], results['ave_perf_train'][i],
results['ave_perf_test'][i], results['std_perf_train'][i],
results['std_perf_test'][i], time_precompute_gm])
f_summary.close()
def __kernel_knn_cv_best_ds(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary):
Gn = dataset_all.graphs
y_all = dataset_all.targets
n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size']

# get shuffles.
train_indices, test_indices, train_nums, y_app = __get_shuffles(y_all, n_splits, test_size)
accuracies = []
for trial in range(len(train_indices)):
print('\ntrial =', trial)
train_index = train_indices[trial]
test_index = test_indices[trial]
G_app = [Gn[i] for i in train_index]
G_test = [Gn[i] for i in test_index]
y_test = [y_all[i] for i in test_index]
gm_unnorm_trial = gram_matrix_unnorm[train_index,:][:,train_index].copy()
# get best graph from trainset according to distance in kernel space for each class.
best_graphs = []
train_nums_tmp = [0] + train_nums
print('\ngetting best graph from trainset for each class...')
for i_class in range(len(train_nums_tmp) - 1):
print(i_class + 1, 'of', len(train_nums_tmp) - 1, 'classes.')
i_start = int(np.sum(train_nums_tmp[0:i_class + 1]))
i_end = i_start + train_nums_tmp[i_class + 1]
G_class = G_app[i_start:i_end]
gm_unnorm_class = gm_unnorm_trial[i_start:i_end,i_start:i_end]
gm_class = normalize_gram_matrix(gm_unnorm_class.copy())
k_dis_list = []
for idx in range(len(G_class)):
k_dis_list.append(compute_k_dis(idx, range(0, len(G_class)), [1 / len(G_class)] * len(G_class), gm_class, withterm3=False))
idx_k_dis_min = np.argmin(k_dis_list)
best_graphs.append(G_class[idx_k_dis_min].copy())
# perform k-nn.
print('\nperforming k-nn...')
# compute dis_mat between medians.
dataset = dataset_all.copy()
dataset.load_graphs([g.copy() for g in best_graphs], targets=None)
gm_app_unnorm, _ = __compute_gram_matrix_unnorm(dataset, kernel_options.copy())
# compute the entire Gram matrix.
graph_kernel = __get_graph_kernel(dataset.copy(), kernel_options.copy())
kernels_to_best_graphs = []
for g in best_graphs:
kernels_to_best_graph, _ = graph_kernel.compute(g, G_test, **kernel_options.copy())
kernels_to_best_graphs.append(kernels_to_best_graph)
kernels_to_best_graphs = np.array(kernels_to_best_graphs)
gm_all = np.concatenate((gm_app_unnorm, kernels_to_best_graphs), axis=1)
gm_all = np.concatenate((gm_all, np.concatenate((kernels_to_best_graphs.T, gram_matrix_unnorm[test_index,:][:,test_index].copy()), axis=1)), axis=0)
gm_all = normalize_gram_matrix(gm_all.copy())
dis_mat, _, _, _ = compute_distance_matrix(gm_all)
N = len(best_graphs)
d_app = dis_mat[range(N),:][:,range(N)].copy()
d_test = np.zeros((N, len(test_index)))
for i in range(N):
for j in range(len(test_index)):
d_test[i, j] = dis_mat[i, j]
accuracies.append(knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=True, text=train_examples))
# write result detail.
if save_results:
f_detail = open(dir_save + fn_output_detail, 'a')
print('writing results to files...')
csv.writer(f_detail).writerow([ds_name, kernel_options['name'],
train_examples, trial,
knn_options['n_neighbors'],
len(gm_all), knn_options['test_size'],
accuracies[-1][0], accuracies[-1][1]])
f_detail.close()
results = {}
results['ave_perf_train'] = np.mean([i[0] for i in accuracies], axis=0)
results['std_perf_train'] = np.std([i[0] for i in accuracies], axis=0, ddof=1)
results['ave_perf_test'] = np.mean([i[1] for i in accuracies], axis=0)
results['std_perf_test'] = np.std([i[1] for i in accuracies], axis=0, ddof=1)
# write result summary for each letter.
if save_results:
f_summary = open(dir_save + fn_output_summary, 'a')
csv.writer(f_summary).writerow([ds_name, kernel_options['name'],
train_examples,
knn_options['n_neighbors'],
knn_options['test_size'], results['ave_perf_train'],
results['ave_perf_test'], results['std_perf_train'],
results['std_perf_test'], time_precompute_gm])
f_summary.close()
def __kernel_knn_cv_trainset(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary):
y_all = dataset_all.targets
n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size']
# compute distance matrix.
gram_matrix = normalize_gram_matrix(gram_matrix_unnorm.copy())
dis_mat, _, _, _ = compute_distance_matrix(gram_matrix)

# get shuffles.
train_indices, test_indices, _, _ = __get_shuffles(y_all, n_splits, test_size)
accuracies = []
for trial in range(len(train_indices)):
print('\ntrial =', trial)
train_index = train_indices[trial]
test_index = test_indices[trial]
y_app = [y_all[i] for i in train_index]
y_test = [y_all[i] for i in test_index]
N = len(train_index)
d_app = dis_mat[train_index,:][:,train_index].copy()
d_test = np.zeros((N, len(test_index)))
for i in range(N):
for j in range(len(test_index)):
d_test[i, j] = dis_mat[train_index[i], test_index[j]]
accuracies.append(knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=True, text=train_examples))
# write result detail.
if save_results:
print('writing results to files...')
f_detail = open(dir_save + fn_output_detail, 'a')
csv.writer(f_detail).writerow([ds_name, kernel_options['name'],
train_examples, trial, knn_options['n_neighbors'],
len(gram_matrix), knn_options['test_size'],
accuracies[-1][0], accuracies[-1][1]])
f_detail.close()
results = {}
results['ave_perf_train'] = np.mean([i[0] for i in accuracies], axis=0)
results['std_perf_train'] = np.std([i[0] for i in accuracies], axis=0, ddof=1)
results['ave_perf_test'] = np.mean([i[1] for i in accuracies], axis=0)
results['std_perf_test'] = np.std([i[1] for i in accuracies], axis=0, ddof=1)

# write result summary for each letter.
if save_results:
f_summary = open(dir_save + fn_output_summary, 'a')
csv.writer(f_summary).writerow([ds_name, kernel_options['name'],
train_examples, knn_options['n_neighbors'],
knn_options['test_size'], results['ave_perf_train'],
results['ave_perf_test'], results['std_perf_train'],
results['std_perf_test'], time_precompute_gm])
f_summary.close()
def __get_shuffles(y_all, n_splits, test_size):
rs = ShuffleSplit(n_splits=n_splits, test_size=test_size, random_state=0)
train_indices = [[] for _ in range(n_splits)]
test_indices = [[] for _ in range(n_splits)]
idx_targets = get_same_item_indices(y_all)
train_nums = []
keys = []
for key, item in idx_targets.items():
i = 0
for train_i, test_i in rs.split(item): # @todo: careful when parallel.
train_indices[i] += [item[idx] for idx in train_i]
test_indices[i] += [item[idx] for idx in test_i]
i += 1
train_nums.append(len(train_i))
keys.append(key)
return train_indices, test_indices, train_nums, keys
def __generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options):
mpg = MedianPreimageGenerator()
mpg.dataset = dataset.copy()
mpg.set_options(**mpg_options.copy())
mpg.kernel_options = kernel_options.copy()
mpg.ged_options = ged_options.copy()
mpg.mge_options = mge_options.copy()
mpg.run()
return mpg.set_median, mpg.gen_median


def __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, dataset_all):
if load_gm == 'auto':
gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz'
gmfile_exist = os.path.isfile(os.path.abspath(gm_fname))
if gmfile_exist:
gmfile = np.load(gm_fname, allow_pickle=True) # @todo: may not be safe.
gram_matrix_unnorm = gmfile['gram_matrix_unnorm']
time_precompute_gm = float(gmfile['run_time'])
else:
gram_matrix_unnorm, time_precompute_gm = __compute_gram_matrix_unnorm(dataset_all, kernel_options)
np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm=gram_matrix_unnorm, run_time=time_precompute_gm)
elif not load_gm:
gram_matrix_unnorm, time_precompute_gm = __compute_gram_matrix_unnorm(dataset_all, kernel_options)
np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm=gram_matrix_unnorm, run_time=time_precompute_gm)
else:
gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz'
gmfile = np.load(gm_fname, allow_pickle=True)
gram_matrix_unnorm = gmfile['gram_matrix_unnorm']
time_precompute_gm = float(gmfile['run_time'])
return gram_matrix_unnorm, time_precompute_gm


def __get_graph_kernel(dataset, kernel_options):
from gklearn.utils.utils import get_graph_kernel_by_name
graph_kernel = get_graph_kernel_by_name(kernel_options['name'],
node_labels=dataset.node_labels,
edge_labels=dataset.edge_labels,
node_attrs=dataset.node_attrs,
edge_attrs=dataset.edge_attrs,
ds_infos=dataset.get_dataset_infos(keys=['directed']),
kernel_options=kernel_options)
return graph_kernel
def __compute_gram_matrix_unnorm(dataset, kernel_options):
from gklearn.utils.utils import get_graph_kernel_by_name
graph_kernel = get_graph_kernel_by_name(kernel_options['name'],
node_labels=dataset.node_labels,
edge_labels=dataset.edge_labels,
node_attrs=dataset.node_attrs,
edge_attrs=dataset.edge_attrs,
ds_infos=dataset.get_dataset_infos(keys=['directed']),
kernel_options=kernel_options)
gram_matrix, run_time = graph_kernel.compute(dataset.graphs, **kernel_options)
gram_matrix_unnorm = graph_kernel.gram_matrix_unnorm
return gram_matrix_unnorm, run_time
def __init_output_file_knn(ds_name, gkernel, fit_method, dir_output):
if not os.path.exists(dir_output):
os.makedirs(dir_output)
fn_output_detail = 'results_detail_knn.' + ds_name + '.' + gkernel + '.csv'
f_detail = open(dir_output + fn_output_detail, 'a')
csv.writer(f_detail).writerow(['dataset', 'graph kernel',
'train examples', 'trial', 'num neighbors', 'num graphs', 'test size',
'perf train', 'perf test'])
f_detail.close()
fn_output_summary = 'results_summary_knn.' + ds_name + '.' + gkernel + '.csv'
f_summary = open(dir_output + fn_output_summary, 'a')
csv.writer(f_summary).writerow(['dataset', 'graph kernel',
'train examples', 'num neighbors', 'test size',
'ave perf train', 'ave perf test',
'std perf train', 'std perf test', 'time precompute gm'])
f_summary.close()
return fn_output_detail, fn_output_summary

Loading…
Cancel
Save