@@ -1,170 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Thu Jan 9 11:54:32 2020 | |||||
@author: ljia | |||||
""" | |||||
import numpy as np | |||||
import random | |||||
import csv | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
from gklearn.preimage.test_k_closest_graphs import median_on_k_closest_graphs | |||||
def find_best_k(): | |||||
ds = {'name': 'monoterpenoides', | |||||
'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset']) | |||||
# Gn = Gn[0:50] | |||||
gkernel = 'treeletkernel' | |||||
node_label = 'atom' | |||||
edge_label = 'bond_type' | |||||
ds_name = 'mono' | |||||
dir_output = 'results/test_find_best_k/' | |||||
repeats = 50 | |||||
k_list = range(2, 11) | |||||
fit_method = 'k-graphs' | |||||
# fitted on the whole dataset - treelet - mono | |||||
edit_costs = [0.1268873773592978, 0.004084633224249829, 0.0897581955378986, 0.15328856114451297, 0.3109956881625734, 0.0] | |||||
# create result files. | |||||
fn_output_detail = 'results_detail.' + fit_method + '.csv' | |||||
f_detail = open(dir_output + fn_output_detail, 'a') | |||||
csv.writer(f_detail).writerow(['dataset', 'graph kernel', 'fit method', 'k', | |||||
'repeat', 'median set', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', | |||||
'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', | |||||
'dis_k gi -> GM']) | |||||
f_detail.close() | |||||
fn_output_summary = 'results_summary.csv' | |||||
f_summary = open(dir_output + fn_output_summary, 'a') | |||||
csv.writer(f_summary).writerow(['dataset', 'graph kernel', 'fit method', 'k', | |||||
'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', | |||||
'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', | |||||
'dis_k gi -> GM', '# SOD SM -> GM', '# dis_k SM -> GM', | |||||
'# dis_k gi -> SM', '# dis_k gi -> GM', 'repeats better SOD SM -> GM', | |||||
'repeats better dis_k SM -> GM', 'repeats better dis_k gi -> SM', | |||||
'repeats better dis_k gi -> GM']) | |||||
f_summary.close() | |||||
random.seed(1) | |||||
rdn_seed_list = random.sample(range(0, repeats * 100), repeats) | |||||
for k in k_list: | |||||
print('\n--------- k =', k, '----------') | |||||
sod_sm_list = [] | |||||
sod_gm_list = [] | |||||
dis_k_sm_list = [] | |||||
dis_k_gm_list = [] | |||||
dis_k_gi_min_list = [] | |||||
nb_sod_sm2gm = [0, 0, 0] | |||||
nb_dis_k_sm2gm = [0, 0, 0] | |||||
nb_dis_k_gi2sm = [0, 0, 0] | |||||
nb_dis_k_gi2gm = [0, 0, 0] | |||||
repeats_better_sod_sm2gm = [] | |||||
repeats_better_dis_k_sm2gm = [] | |||||
repeats_better_dis_k_gi2sm = [] | |||||
repeats_better_dis_k_gi2gm = [] | |||||
for repeat in range(repeats): | |||||
print('\nrepeat =', repeat) | |||||
random.seed(rdn_seed_list[repeat]) | |||||
median_set_idx = random.sample(range(0, len(Gn)), k) | |||||
print('median set: ', median_set_idx) | |||||
sod_sm, sod_gm, dis_k_sm, dis_k_gm, dis_k_gi, dis_k_gi_min \ | |||||
= median_on_k_closest_graphs(Gn, node_label, edge_label, gkernel, k, | |||||
fit_method='k-graphs', | |||||
edit_costs=edit_costs, | |||||
group_min=median_set_idx, | |||||
parallel=False) | |||||
# write result detail. | |||||
sod_sm2gm = getRelations(np.sign(sod_gm - sod_sm)) | |||||
dis_k_sm2gm = getRelations(np.sign(dis_k_gm - dis_k_sm)) | |||||
dis_k_gi2sm = getRelations(np.sign(dis_k_sm - dis_k_gi_min)) | |||||
dis_k_gi2gm = getRelations(np.sign(dis_k_gm - dis_k_gi_min)) | |||||
f_detail = open(dir_output + fn_output_detail, 'a') | |||||
csv.writer(f_detail).writerow([ds_name, gkernel, fit_method, k, repeat, | |||||
median_set_idx, sod_sm, sod_gm, dis_k_sm, dis_k_gm, | |||||
dis_k_gi_min, sod_sm2gm, dis_k_sm2gm, dis_k_gi2sm, | |||||
dis_k_gi2gm]) | |||||
f_detail.close() | |||||
# compute result summary. | |||||
sod_sm_list.append(sod_sm) | |||||
sod_gm_list.append(sod_gm) | |||||
dis_k_sm_list.append(dis_k_sm) | |||||
dis_k_gm_list.append(dis_k_gm) | |||||
dis_k_gi_min_list.append(dis_k_gi_min) | |||||
# # SOD SM -> GM | |||||
if sod_sm > sod_gm: | |||||
nb_sod_sm2gm[0] += 1 | |||||
repeats_better_sod_sm2gm.append(repeat) | |||||
elif sod_sm == sod_gm: | |||||
nb_sod_sm2gm[1] += 1 | |||||
elif sod_sm < sod_gm: | |||||
nb_sod_sm2gm[2] += 1 | |||||
# # dis_k SM -> GM | |||||
if dis_k_sm > dis_k_gm: | |||||
nb_dis_k_sm2gm[0] += 1 | |||||
repeats_better_dis_k_sm2gm.append(repeat) | |||||
elif dis_k_sm == dis_k_gm: | |||||
nb_dis_k_sm2gm[1] += 1 | |||||
elif dis_k_sm < dis_k_gm: | |||||
nb_dis_k_sm2gm[2] += 1 | |||||
# # dis_k gi -> SM | |||||
if dis_k_gi_min > dis_k_sm: | |||||
nb_dis_k_gi2sm[0] += 1 | |||||
repeats_better_dis_k_gi2sm.append(repeat) | |||||
elif dis_k_gi_min == dis_k_sm: | |||||
nb_dis_k_gi2sm[1] += 1 | |||||
elif dis_k_gi_min < dis_k_sm: | |||||
nb_dis_k_gi2sm[2] += 1 | |||||
# # dis_k gi -> GM | |||||
if dis_k_gi_min > dis_k_gm: | |||||
nb_dis_k_gi2gm[0] += 1 | |||||
repeats_better_dis_k_gi2gm.append(repeat) | |||||
elif dis_k_gi_min == dis_k_gm: | |||||
nb_dis_k_gi2gm[1] += 1 | |||||
elif dis_k_gi_min < dis_k_gm: | |||||
nb_dis_k_gi2gm[2] += 1 | |||||
# write result summary. | |||||
sod_sm_mean = np.mean(sod_sm_list) | |||||
sod_gm_mean = np.mean(sod_gm_list) | |||||
dis_k_sm_mean = np.mean(dis_k_sm_list) | |||||
dis_k_gm_mean = np.mean(dis_k_gm_list) | |||||
dis_k_gi_min_mean = np.mean(dis_k_gi_min_list) | |||||
sod_sm2gm_mean = getRelations(np.sign(sod_gm_mean - sod_sm_mean)) | |||||
dis_k_sm2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_sm_mean)) | |||||
dis_k_gi2sm_mean = getRelations(np.sign(dis_k_sm_mean - dis_k_gi_min_mean)) | |||||
dis_k_gi2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_gi_min_mean)) | |||||
f_summary = open(dir_output + fn_output_summary, 'a') | |||||
csv.writer(f_summary).writerow([ds_name, gkernel, fit_method, k, | |||||
sod_sm_mean, sod_gm_mean, dis_k_sm_mean, dis_k_gm_mean, | |||||
dis_k_gi_min_mean, sod_sm2gm_mean, dis_k_sm2gm_mean, | |||||
dis_k_gi2sm_mean, dis_k_gi2gm_mean, nb_sod_sm2gm, | |||||
nb_dis_k_sm2gm, nb_dis_k_gi2sm, nb_dis_k_gi2gm, | |||||
repeats_better_sod_sm2gm, repeats_better_dis_k_sm2gm, | |||||
repeats_better_dis_k_gi2sm, repeats_better_dis_k_gi2gm]) | |||||
f_summary.close() | |||||
print('\ncomplete.') | |||||
return | |||||
def getRelations(sign): | |||||
if sign == -1: | |||||
return 'better' | |||||
elif sign == 0: | |||||
return 'same' | |||||
elif sign == 1: | |||||
return 'worse' | |||||
if __name__ == '__main__': | |||||
find_best_k() |
@@ -1,430 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Wed Oct 16 14:20:06 2019 | |||||
@author: ljia | |||||
""" | |||||
import numpy as np | |||||
from tqdm import tqdm | |||||
from itertools import combinations_with_replacement, combinations | |||||
import multiprocessing | |||||
from multiprocessing import Pool | |||||
from functools import partial | |||||
import time | |||||
import random | |||||
import sys | |||||
from scipy import optimize | |||||
from scipy.optimize import minimize | |||||
import cvxpy as cp | |||||
from gklearn.preimage.ged import GED, get_nb_edit_operations, get_nb_edit_operations_letter, get_nb_edit_operations_nonsymbolic | |||||
from gklearn.preimage.utils import kernel_distance_matrix | |||||
def fit_GED_to_kernel_distance(Gn, node_label, edge_label, gkernel, itr_max, | |||||
params_ged={'lib': 'gedlibpy', 'cost': 'CONSTANT', | |||||
'method': 'IPFP', 'stabilizer': None}, | |||||
init_costs=[3, 3, 1, 3, 3, 1], | |||||
dataset='monoterpenoides', Kmatrix=None, | |||||
parallel=True): | |||||
# dataset = dataset.lower() | |||||
# c_vi, c_vr, c_vs, c_ei, c_er, c_es or parts of them. | |||||
# random.seed(1) | |||||
# cost_rdm = random.sample(range(1, 10), 6) | |||||
# init_costs = cost_rdm + [0] | |||||
# init_costs = cost_rdm | |||||
# init_costs = [3, 3, 1, 3, 3, 1] | |||||
# init_costs = [i * 0.01 for i in cost_rdm] + [0] | |||||
# init_costs = [0.2, 0.2, 0.2, 0.2, 0.2, 0] | |||||
# init_costs = [0, 0, 0.9544, 0.026, 0.0196, 0] | |||||
# init_costs = [0.008429912251810438, 0.025461055985319694, 0.2047320869225948, 0.004148727085832133, 0.0, 0] | |||||
# idx_cost_nonzeros = [i for i, item in enumerate(edit_costs) if item != 0] | |||||
# compute distances in feature space. | |||||
dis_k_mat, _, _, _ = kernel_distance_matrix(Gn, node_label, edge_label, | |||||
Kmatrix=Kmatrix, gkernel=gkernel) | |||||
dis_k_vec = [] | |||||
for i in range(len(dis_k_mat)): | |||||
# for j in range(i, len(dis_k_mat)): | |||||
for j in range(i + 1, len(dis_k_mat)): | |||||
dis_k_vec.append(dis_k_mat[i, j]) | |||||
dis_k_vec = np.array(dis_k_vec) | |||||
# init ged. | |||||
print('\ninitial:') | |||||
time0 = time.time() | |||||
params_ged['dataset'] = dataset | |||||
params_ged['edit_cost_constant'] = init_costs | |||||
ged_vec_init, ged_mat, n_edit_operations = compute_geds(Gn, params_ged, | |||||
parallel=parallel) | |||||
residual_list = [np.sqrt(np.sum(np.square(np.array(ged_vec_init) - dis_k_vec)))] | |||||
time_list = [time.time() - time0] | |||||
edit_cost_list = [init_costs] | |||||
nb_cost_mat = np.array(n_edit_operations) | |||||
nb_cost_mat_list = [nb_cost_mat] | |||||
print('edit_costs:', init_costs) | |||||
print('residual_list:', residual_list) | |||||
for itr in range(itr_max): | |||||
print('\niteration', itr) | |||||
time0 = time.time() | |||||
# "fit" geds to distances in feature space by tuning edit costs using the | |||||
# Least Squares Method. | |||||
np.savez('results/xp_fit_method/fit_data_debug' + str(itr) + '.gm', | |||||
nb_cost_mat=nb_cost_mat, dis_k_vec=dis_k_vec, | |||||
n_edit_operations=n_edit_operations, ged_vec_init=ged_vec_init, | |||||
ged_mat=ged_mat) | |||||
edit_costs_new, residual = update_costs(nb_cost_mat, dis_k_vec, | |||||
dataset=dataset, cost=params_ged['cost']) | |||||
for i in range(len(edit_costs_new)): | |||||
if -1e-9 <= edit_costs_new[i] <= 1e-9: | |||||
edit_costs_new[i] = 0 | |||||
if edit_costs_new[i] < 0: | |||||
raise ValueError('The edit cost is negative.') | |||||
# for i in range(len(edit_costs_new)): | |||||
# if edit_costs_new[i] < 0: | |||||
# edit_costs_new[i] = 0 | |||||
# compute new GEDs and numbers of edit operations. | |||||
params_ged['edit_cost_constant'] = edit_costs_new # np.array([edit_costs_new[0], edit_costs_new[1], 0.75]) | |||||
ged_vec, ged_mat, n_edit_operations = compute_geds(Gn, params_ged, | |||||
parallel=parallel) | |||||
residual_list.append(np.sqrt(np.sum(np.square(np.array(ged_vec) - dis_k_vec)))) | |||||
time_list.append(time.time() - time0) | |||||
edit_cost_list.append(edit_costs_new) | |||||
nb_cost_mat = np.array(n_edit_operations) | |||||
nb_cost_mat_list.append(nb_cost_mat) | |||||
print('edit_costs:', edit_costs_new) | |||||
print('residual_list:', residual_list) | |||||
return edit_costs_new, residual_list, edit_cost_list, dis_k_mat, ged_mat, \ | |||||
time_list, nb_cost_mat_list | |||||
def compute_geds(Gn, params_ged, parallel=False): | |||||
edit_cost_name = params_ged['cost'] | |||||
if edit_cost_name == 'LETTER' or edit_cost_name == 'LETTER2': | |||||
get_nb_eo = get_nb_edit_operations_letter | |||||
elif edit_cost_name == 'NON_SYMBOLIC': | |||||
get_nb_eo = get_nb_edit_operations_nonsymbolic | |||||
else: | |||||
get_nb_eo = get_nb_edit_operations | |||||
ged_mat = np.zeros((len(Gn), len(Gn))) | |||||
if parallel: | |||||
# print('parallel') | |||||
# len_itr = int(len(Gn) * (len(Gn) + 1) / 2) | |||||
len_itr = int(len(Gn) * (len(Gn) - 1) / 2) | |||||
ged_vec = [0 for i in range(len_itr)] | |||||
n_edit_operations = [0 for i in range(len_itr)] | |||||
# itr = combinations_with_replacement(range(0, len(Gn)), 2) | |||||
itr = combinations(range(0, len(Gn)), 2) | |||||
n_jobs = multiprocessing.cpu_count() | |||||
if len_itr < 100 * n_jobs: | |||||
chunksize = int(len_itr / n_jobs) + 1 | |||||
else: | |||||
chunksize = 100 | |||||
def init_worker(gn_toshare): | |||||
global G_gn | |||||
G_gn = gn_toshare | |||||
do_partial = partial(_wrapper_compute_ged_parallel, params_ged, get_nb_eo) | |||||
pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(Gn,)) | |||||
iterator = tqdm(pool.imap_unordered(do_partial, itr, chunksize), | |||||
desc='computing GEDs', file=sys.stdout) | |||||
# iterator = pool.imap_unordered(do_partial, itr, chunksize) | |||||
for i, j, dis, n_eo_tmp in iterator: | |||||
idx_itr = int(len(Gn) * i + j - (i + 1) * (i + 2) / 2) | |||||
ged_vec[idx_itr] = dis | |||||
ged_mat[i][j] = dis | |||||
ged_mat[j][i] = dis | |||||
n_edit_operations[idx_itr] = n_eo_tmp | |||||
# print('\n-------------------------------------------') | |||||
# print(i, j, idx_itr, dis) | |||||
pool.close() | |||||
pool.join() | |||||
else: | |||||
ged_vec = [] | |||||
n_edit_operations = [] | |||||
for i in tqdm(range(len(Gn)), desc='computing GEDs', file=sys.stdout): | |||||
# for i in range(len(Gn)): | |||||
for j in range(i + 1, len(Gn)): | |||||
dis, pi_forward, pi_backward = GED(Gn[i], Gn[j], **params_ged) | |||||
ged_vec.append(dis) | |||||
ged_mat[i][j] = dis | |||||
ged_mat[j][i] = dis | |||||
n_eo_tmp = get_nb_eo(Gn[i], Gn[j], pi_forward, pi_backward) | |||||
n_edit_operations.append(n_eo_tmp) | |||||
return ged_vec, ged_mat, n_edit_operations | |||||
def _wrapper_compute_ged_parallel(params_ged, get_nb_eo, itr): | |||||
i = itr[0] | |||||
j = itr[1] | |||||
dis, n_eo_tmp = _compute_ged_parallel(G_gn[i], G_gn[j], params_ged, get_nb_eo) | |||||
return i, j, dis, n_eo_tmp | |||||
def _compute_ged_parallel(g1, g2, params_ged, get_nb_eo): | |||||
dis, pi_forward, pi_backward = GED(g1, g2, **params_ged) | |||||
n_eo_tmp = get_nb_eo(g1, g2, pi_forward, pi_backward) # [0,0,0,0,0,0] | |||||
return dis, n_eo_tmp | |||||
def update_costs(nb_cost_mat, dis_k_vec, dataset='monoterpenoides', | |||||
cost='CONSTANT', rw_constraints='inequality'): | |||||
# if dataset == 'Letter-high': | |||||
if cost == 'LETTER': | |||||
pass | |||||
# # method 1: set alpha automatically, just tune c_vir and c_eir by | |||||
# # LMS using cvxpy. | |||||
# alpha = 0.5 | |||||
# coeff = 100 # np.max(alpha * nb_cost_mat[:,4] / dis_k_vec) | |||||
## if np.count_nonzero(nb_cost_mat[:,4]) == 0: | |||||
## alpha = 0.75 | |||||
## else: | |||||
## alpha = np.min([dis_k_vec / c_vs for c_vs in nb_cost_mat[:,4] if c_vs != 0]) | |||||
## alpha = alpha * 0.99 | |||||
# param_vir = alpha * (nb_cost_mat[:,0] + nb_cost_mat[:,1]) | |||||
# param_eir = (1 - alpha) * (nb_cost_mat[:,4] + nb_cost_mat[:,5]) | |||||
# nb_cost_mat_new = np.column_stack((param_vir, param_eir)) | |||||
# dis_new = coeff * dis_k_vec - alpha * nb_cost_mat[:,3] | |||||
# | |||||
# x = cp.Variable(nb_cost_mat_new.shape[1]) | |||||
# cost = cp.sum_squares(nb_cost_mat_new * x - dis_new) | |||||
# constraints = [x >= [0.0 for i in range(nb_cost_mat_new.shape[1])]] | |||||
# prob = cp.Problem(cp.Minimize(cost), constraints) | |||||
# prob.solve() | |||||
# edit_costs_new = x.value | |||||
# edit_costs_new = np.array([edit_costs_new[0], edit_costs_new[1], alpha]) | |||||
# residual = np.sqrt(prob.value) | |||||
# # method 2: tune c_vir, c_eir and alpha by nonlinear programming by | |||||
# # scipy.optimize.minimize. | |||||
# w0 = nb_cost_mat[:,0] + nb_cost_mat[:,1] | |||||
# w1 = nb_cost_mat[:,4] + nb_cost_mat[:,5] | |||||
# w2 = nb_cost_mat[:,3] | |||||
# w3 = dis_k_vec | |||||
# func_min = lambda x: np.sum((w0 * x[0] * x[3] + w1 * x[1] * (1 - x[2]) \ | |||||
# + w2 * x[2] - w3 * x[3]) ** 2) | |||||
# bounds = ((0, None), (0., None), (0.5, 0.5), (0, None)) | |||||
# res = minimize(func_min, [0.9, 1.7, 0.75, 10], bounds=bounds) | |||||
# edit_costs_new = res.x[0:3] | |||||
# residual = res.fun | |||||
# method 3: tune c_vir, c_eir and alpha by nonlinear programming using cvxpy. | |||||
# # method 4: tune c_vir, c_eir and alpha by QP function | |||||
# # scipy.optimize.least_squares. An initial guess is required. | |||||
# w0 = nb_cost_mat[:,0] + nb_cost_mat[:,1] | |||||
# w1 = nb_cost_mat[:,4] + nb_cost_mat[:,5] | |||||
# w2 = nb_cost_mat[:,3] | |||||
# w3 = dis_k_vec | |||||
# func = lambda x: (w0 * x[0] * x[3] + w1 * x[1] * (1 - x[2]) \ | |||||
# + w2 * x[2] - w3 * x[3]) ** 2 | |||||
# res = optimize.root(func, [0.9, 1.7, 0.75, 100]) | |||||
# edit_costs_new = res.x | |||||
# residual = None | |||||
elif cost == 'LETTER2': | |||||
# # 1. if c_vi != c_vr, c_ei != c_er. | |||||
# nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4,5]] | |||||
# x = cp.Variable(nb_cost_mat_new.shape[1]) | |||||
# cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | |||||
## # 1.1 no constraints. | |||||
## constraints = [x >= [0.0 for i in range(nb_cost_mat_new.shape[1])]] | |||||
# # 1.2 c_vs <= c_vi + c_vr. | |||||
# constraints = [x >= [0.0 for i in range(nb_cost_mat_new.shape[1])], | |||||
# np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] | |||||
## # 2. if c_vi == c_vr, c_ei == c_er. | |||||
## nb_cost_mat_new = nb_cost_mat[:,[0,3,4]] | |||||
## nb_cost_mat_new[:,0] += nb_cost_mat[:,1] | |||||
## nb_cost_mat_new[:,2] += nb_cost_mat[:,5] | |||||
## x = cp.Variable(nb_cost_mat_new.shape[1]) | |||||
## cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | |||||
## # 2.1 no constraints. | |||||
## constraints = [x >= [0.0 for i in range(nb_cost_mat_new.shape[1])]] | |||||
### # 2.2 c_vs <= c_vi + c_vr. | |||||
### constraints = [x >= [0.0 for i in range(nb_cost_mat_new.shape[1])], | |||||
### np.array([2.0, -1.0, 0.0]).T@x >= 0.0] | |||||
# | |||||
# prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||||
# prob.solve() | |||||
# edit_costs_new = [x.value[0], x.value[0], x.value[1], x.value[2], x.value[2]] | |||||
# edit_costs_new = np.array(edit_costs_new) | |||||
# residual = np.sqrt(prob.value) | |||||
if rw_constraints == 'inequality': | |||||
# c_vs <= c_vi + c_vr. | |||||
nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4,5]] | |||||
x = cp.Variable(nb_cost_mat_new.shape[1]) | |||||
cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | |||||
constraints = [x >= [0.001 for i in range(nb_cost_mat_new.shape[1])], | |||||
np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] | |||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||||
try: | |||||
prob.solve(verbose=True) | |||||
except MemoryError as error0: | |||||
print('\nUsing solver "OSQP" caused a memory error.') | |||||
print('the original error message is\n', error0) | |||||
print('solver status: ', prob.status) | |||||
print('trying solver "CVXOPT" instead...\n') | |||||
try: | |||||
prob.solve(solver=cp.CVXOPT, verbose=True) | |||||
except Exception as error1: | |||||
print('\nAn error occured when using solver "CVXOPT".') | |||||
print('the original error message is\n', error1) | |||||
print('solver status: ', prob.status) | |||||
print('trying solver "MOSEK" instead. Notice this solver is commercial and a lisence is required.\n') | |||||
prob.solve(solver=cp.MOSEK, verbose=True) | |||||
else: | |||||
print('solver status: ', prob.status) | |||||
else: | |||||
print('solver status: ', prob.status) | |||||
print() | |||||
edit_costs_new = x.value | |||||
residual = np.sqrt(prob.value) | |||||
elif rw_constraints == '2constraints': | |||||
# c_vs <= c_vi + c_vr and c_vi == c_vr, c_ei == c_er. | |||||
nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4,5]] | |||||
x = cp.Variable(nb_cost_mat_new.shape[1]) | |||||
cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | |||||
constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])], | |||||
np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0, | |||||
np.array([1.0, -1.0, 0.0, 0.0, 0.0]).T@x == 0.0, | |||||
np.array([0.0, 0.0, 0.0, 1.0, -1.0]).T@x == 0.0] | |||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||||
prob.solve() | |||||
edit_costs_new = x.value | |||||
residual = np.sqrt(prob.value) | |||||
elif rw_constraints == 'no-constraint': | |||||
# no constraint. | |||||
nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4,5]] | |||||
x = cp.Variable(nb_cost_mat_new.shape[1]) | |||||
cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | |||||
constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])]] | |||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||||
prob.solve() | |||||
edit_costs_new = x.value | |||||
residual = np.sqrt(prob.value) | |||||
# elif method == 'inequality_modified': | |||||
# # c_vs <= c_vi + c_vr. | |||||
# nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4,5]] | |||||
# x = cp.Variable(nb_cost_mat_new.shape[1]) | |||||
# cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | |||||
# constraints = [x >= [0.0 for i in range(nb_cost_mat_new.shape[1])], | |||||
# np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] | |||||
# prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||||
# prob.solve() | |||||
# # use same costs for insertion and removal rather than the fitted costs. | |||||
# edit_costs_new = [x.value[0], x.value[0], x.value[1], x.value[2], x.value[2]] | |||||
# edit_costs_new = np.array(edit_costs_new) | |||||
# residual = np.sqrt(prob.value) | |||||
elif cost == 'NON_SYMBOLIC': | |||||
is_n_attr = np.count_nonzero(nb_cost_mat[:,2]) | |||||
is_e_attr = np.count_nonzero(nb_cost_mat[:,5]) | |||||
if dataset == 'SYNTHETICnew': | |||||
# nb_cost_mat_new = nb_cost_mat[:,[0,1,2,3,4]] | |||||
nb_cost_mat_new = nb_cost_mat[:,[2,3,4]] | |||||
x = cp.Variable(nb_cost_mat_new.shape[1]) | |||||
cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | |||||
# constraints = [x >= [0.0 for i in range(nb_cost_mat_new.shape[1])], | |||||
# np.array([0.0, 0.0, 0.0, 1.0, -1.0]).T@x == 0.0] | |||||
# constraints = [x >= [0.0001 for i in range(nb_cost_mat_new.shape[1])]] | |||||
constraints = [x >= [0.0001 for i in range(nb_cost_mat_new.shape[1])], | |||||
np.array([0.0, 1.0, -1.0]).T@x == 0.0] | |||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||||
prob.solve() | |||||
# print(x.value) | |||||
edit_costs_new = np.concatenate((np.array([0.0, 0.0]), x.value, | |||||
np.array([0.0]))) | |||||
residual = np.sqrt(prob.value) | |||||
elif rw_constraints == 'inequality': | |||||
# c_vs <= c_vi + c_vr. | |||||
if is_n_attr and is_e_attr: | |||||
nb_cost_mat_new = nb_cost_mat[:,[0,1,2,3,4,5]] | |||||
x = cp.Variable(nb_cost_mat_new.shape[1]) | |||||
cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | |||||
constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])], | |||||
np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0]).T@x >= 0.0, | |||||
np.array([0.0, 0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] | |||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||||
prob.solve() | |||||
edit_costs_new = x.value | |||||
residual = np.sqrt(prob.value) | |||||
elif is_n_attr and not is_e_attr: | |||||
nb_cost_mat_new = nb_cost_mat[:,[0,1,2,3,4]] | |||||
x = cp.Variable(nb_cost_mat_new.shape[1]) | |||||
cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | |||||
constraints = [x >= [0.001 for i in range(nb_cost_mat_new.shape[1])], | |||||
np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] | |||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||||
prob.solve() | |||||
print(x.value) | |||||
edit_costs_new = np.concatenate((x.value, np.array([0.0]))) | |||||
residual = np.sqrt(prob.value) | |||||
elif not is_n_attr and is_e_attr: | |||||
nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4,5]] | |||||
x = cp.Variable(nb_cost_mat_new.shape[1]) | |||||
cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | |||||
constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])], | |||||
np.array([0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] | |||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||||
prob.solve() | |||||
edit_costs_new = np.concatenate((x.value[0:2], np.array([0.0]), x.value[2:])) | |||||
residual = np.sqrt(prob.value) | |||||
else: | |||||
nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4]] | |||||
x = cp.Variable(nb_cost_mat_new.shape[1]) | |||||
cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | |||||
constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])]] | |||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||||
prob.solve() | |||||
edit_costs_new = np.concatenate((x.value[0:2], np.array([0.0]), | |||||
x.value[2:], np.array([0.0]))) | |||||
residual = np.sqrt(prob.value) | |||||
else: | |||||
# # method 1: simple least square method. | |||||
# edit_costs_new, residual, _, _ = np.linalg.lstsq(nb_cost_mat, dis_k_vec, | |||||
# rcond=None) | |||||
# # method 2: least square method with x_i >= 0. | |||||
# edit_costs_new, residual = optimize.nnls(nb_cost_mat, dis_k_vec) | |||||
# method 3: solve as a quadratic program with constraints. | |||||
# P = np.dot(nb_cost_mat.T, nb_cost_mat) | |||||
# q_T = -2 * np.dot(dis_k_vec.T, nb_cost_mat) | |||||
# G = -1 * np.identity(nb_cost_mat.shape[1]) | |||||
# h = np.array([0 for i in range(nb_cost_mat.shape[1])]) | |||||
# A = np.array([1 for i in range(nb_cost_mat.shape[1])]) | |||||
# b = 1 | |||||
# x = cp.Variable(nb_cost_mat.shape[1]) | |||||
# prob = cp.Problem(cp.Minimize(cp.quad_form(x, P) + q_T@x), | |||||
# [G@x <= h]) | |||||
# prob.solve() | |||||
# edit_costs_new = x.value | |||||
# residual = prob.value - np.dot(dis_k_vec.T, dis_k_vec) | |||||
# G = -1 * np.identity(nb_cost_mat.shape[1]) | |||||
# h = np.array([0 for i in range(nb_cost_mat.shape[1])]) | |||||
x = cp.Variable(nb_cost_mat.shape[1]) | |||||
cost_fun = cp.sum_squares(nb_cost_mat * x - dis_k_vec) | |||||
constraints = [x >= [0.0 for i in range(nb_cost_mat.shape[1])], | |||||
# np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] | |||||
np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0]).T@x >= 0.0, | |||||
np.array([0.0, 0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] | |||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||||
prob.solve() | |||||
edit_costs_new = x.value | |||||
residual = np.sqrt(prob.value) | |||||
# method 4: | |||||
return edit_costs_new, residual | |||||
if __name__ == '__main__': | |||||
print('check test_fitDistance.py') |
@@ -1,467 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Thu Oct 17 18:44:59 2019 | |||||
@author: ljia | |||||
""" | |||||
import numpy as np | |||||
import networkx as nx | |||||
from tqdm import tqdm | |||||
import sys | |||||
import multiprocessing | |||||
from multiprocessing import Pool | |||||
from functools import partial | |||||
#from gedlibpy_linlin import librariesImport, gedlibpy | |||||
from gklearn.gedlib import librariesImport, gedlibpy | |||||
def GED(g1, g2, dataset='monoterpenoides', lib='gedlibpy', cost='CHEM_1', method='IPFP', | |||||
edit_cost_constant=[], algo_options='', stabilizer='min', repeat=50): | |||||
""" | |||||
Compute GED for 2 graphs. | |||||
""" | |||||
# dataset = dataset.lower() | |||||
if lib == 'gedlibpy': | |||||
gedlibpy.restart_env() | |||||
gedlibpy.add_nx_graph(convertGraph(g1, cost), "") | |||||
gedlibpy.add_nx_graph(convertGraph(g2, cost), "") | |||||
listID = gedlibpy.get_all_graph_ids() | |||||
gedlibpy.set_edit_cost(cost, edit_cost_constant=edit_cost_constant) | |||||
gedlibpy.init() | |||||
gedlibpy.set_method(method, algo_options) | |||||
gedlibpy.init_method() | |||||
g = listID[0] | |||||
h = listID[1] | |||||
if stabilizer is None: | |||||
gedlibpy.run_method(g, h) | |||||
pi_forward = gedlibpy.get_forward_map(g, h) | |||||
pi_backward = gedlibpy.get_backward_map(g, h) | |||||
upper = gedlibpy.get_upper_bound(g, h) | |||||
lower = gedlibpy.get_lower_bound(g, h) | |||||
elif stabilizer == 'mean': | |||||
# @todo: to be finished... | |||||
upper_list = [np.inf] * repeat | |||||
for itr in range(repeat): | |||||
gedlibpy.run_method(g, h) | |||||
upper_list[itr] = gedlibpy.get_upper_bound(g, h) | |||||
pi_forward = gedlibpy.get_forward_map(g, h) | |||||
pi_backward = gedlibpy.get_backward_map(g, h) | |||||
lower = gedlibpy.get_lower_bound(g, h) | |||||
upper = np.mean(upper_list) | |||||
elif stabilizer == 'median': | |||||
if repeat % 2 == 0: | |||||
repeat += 1 | |||||
upper_list = [np.inf] * repeat | |||||
pi_forward_list = [0] * repeat | |||||
pi_backward_list = [0] * repeat | |||||
for itr in range(repeat): | |||||
gedlibpy.run_method(g, h) | |||||
upper_list[itr] = gedlibpy.get_upper_bound(g, h) | |||||
pi_forward_list[itr] = gedlibpy.get_forward_map(g, h) | |||||
pi_backward_list[itr] = gedlibpy.get_backward_map(g, h) | |||||
lower = gedlibpy.get_lower_bound(g, h) | |||||
upper = np.median(upper_list) | |||||
idx_median = upper_list.index(upper) | |||||
pi_forward = pi_forward_list[idx_median] | |||||
pi_backward = pi_backward_list[idx_median] | |||||
elif stabilizer == 'min': | |||||
upper = np.inf | |||||
for itr in range(repeat): | |||||
gedlibpy.run_method(g, h) | |||||
upper_tmp = gedlibpy.get_upper_bound(g, h) | |||||
if upper_tmp < upper: | |||||
upper = upper_tmp | |||||
pi_forward = gedlibpy.get_forward_map(g, h) | |||||
pi_backward = gedlibpy.get_backward_map(g, h) | |||||
lower = gedlibpy.get_lower_bound(g, h) | |||||
if upper == 0: | |||||
break | |||||
elif stabilizer == 'max': | |||||
upper = 0 | |||||
for itr in range(repeat): | |||||
gedlibpy.run_method(g, h) | |||||
upper_tmp = gedlibpy.get_upper_bound(g, h) | |||||
if upper_tmp > upper: | |||||
upper = upper_tmp | |||||
pi_forward = gedlibpy.get_forward_map(g, h) | |||||
pi_backward = gedlibpy.get_backward_map(g, h) | |||||
lower = gedlibpy.get_lower_bound(g, h) | |||||
elif stabilizer == 'gaussian': | |||||
pass | |||||
dis = upper | |||||
elif lib == 'gedlib-bash': | |||||
import time | |||||
import random | |||||
import os | |||||
from gklearn.utils.graphfiles import saveDataset | |||||
tmp_dir = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/' | |||||
if not os.path.exists(tmp_dir): | |||||
os.makedirs(tmp_dir) | |||||
fn_collection = tmp_dir + 'collection.' + str(time.time()) + str(random.randint(0, 1e9)) | |||||
xparams = {'method': 'gedlib', 'graph_dir': fn_collection} | |||||
saveDataset([g1, g2], ['dummy', 'dummy'], gformat='gxl', group='xml', | |||||
filename=fn_collection, xparams=xparams) | |||||
command = 'GEDLIB_HOME=\'/media/ljia/DATA/research-repo/codes/others/gedlib/gedlib2\'\n' | |||||
command += 'LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$GEDLIB_HOME/lib\n' | |||||
command += 'export LD_LIBRARY_PATH\n' | |||||
command += 'cd \'' + os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/bin\'\n' | |||||
command += './ged_for_python_bash monoterpenoides ' + fn_collection \ | |||||
+ ' \'' + algo_options + '\' ' | |||||
for ec in edit_cost_constant: | |||||
command += str(ec) + ' ' | |||||
# output = os.system(command) | |||||
stream = os.popen(command) | |||||
output = stream.readlines() | |||||
# print(output) | |||||
dis = float(output[0].strip()) | |||||
runtime = float(output[1].strip()) | |||||
size_forward = int(output[2].strip()) | |||||
pi_forward = [int(item.strip()) for item in output[3:3+size_forward]] | |||||
pi_backward = [int(item.strip()) for item in output[3+size_forward:]] | |||||
# print(dis) | |||||
# print(runtime) | |||||
# print(size_forward) | |||||
# print(pi_forward) | |||||
# print(pi_backward) | |||||
# make the map label correct (label remove map as np.inf) | |||||
nodes1 = [n for n in g1.nodes()] | |||||
nodes2 = [n for n in g2.nodes()] | |||||
nb1 = nx.number_of_nodes(g1) | |||||
nb2 = nx.number_of_nodes(g2) | |||||
pi_forward = [nodes2[pi] if pi < nb2 else np.inf for pi in pi_forward] | |||||
pi_backward = [nodes1[pi] if pi < nb1 else np.inf for pi in pi_backward] | |||||
# print(pi_forward) | |||||
return dis, pi_forward, pi_backward | |||||
def convertGraph(G, cost): | |||||
"""Convert a graph to the proper NetworkX format that can be | |||||
recognized by library gedlibpy. | |||||
""" | |||||
G_new = nx.Graph() | |||||
if cost == 'LETTER' or cost == 'LETTER2': | |||||
for nd, attrs in G.nodes(data=True): | |||||
G_new.add_node(str(nd), x=str(attrs['attributes'][0]), | |||||
y=str(attrs['attributes'][1])) | |||||
for nd1, nd2, attrs in G.edges(data=True): | |||||
G_new.add_edge(str(nd1), str(nd2)) | |||||
elif cost == 'NON_SYMBOLIC': | |||||
for nd, attrs in G.nodes(data=True): | |||||
G_new.add_node(str(nd)) | |||||
for a_name in G.graph['node_attrs']: | |||||
G_new.nodes[str(nd)][a_name] = str(attrs[a_name]) | |||||
for nd1, nd2, attrs in G.edges(data=True): | |||||
G_new.add_edge(str(nd1), str(nd2)) | |||||
for a_name in G.graph['edge_attrs']: | |||||
G_new.edges[str(nd1), str(nd2)][a_name] = str(attrs[a_name]) | |||||
else: | |||||
for nd, attrs in G.nodes(data=True): | |||||
G_new.add_node(str(nd), chem=attrs['atom']) | |||||
for nd1, nd2, attrs in G.edges(data=True): | |||||
G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type']) | |||||
# G_new.add_edge(str(nd1), str(nd2)) | |||||
return G_new | |||||
def GED_n(Gn, lib='gedlibpy', cost='CHEM_1', method='IPFP', | |||||
edit_cost_constant=[], stabilizer='min', repeat=50): | |||||
""" | |||||
Compute GEDs for a group of graphs. | |||||
""" | |||||
if lib == 'gedlibpy': | |||||
def convertGraph(G): | |||||
"""Convert a graph to the proper NetworkX format that can be | |||||
recognized by library gedlibpy. | |||||
""" | |||||
G_new = nx.Graph() | |||||
for nd, attrs in G.nodes(data=True): | |||||
G_new.add_node(str(nd), chem=attrs['atom']) | |||||
for nd1, nd2, attrs in G.edges(data=True): | |||||
# G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type']) | |||||
G_new.add_edge(str(nd1), str(nd2)) | |||||
return G_new | |||||
gedlibpy.restart_env() | |||||
gedlibpy.add_nx_graph(convertGraph(g1), "") | |||||
gedlibpy.add_nx_graph(convertGraph(g2), "") | |||||
listID = gedlibpy.get_all_graph_ids() | |||||
gedlibpy.set_edit_cost(cost, edit_cost_constant=edit_cost_constant) | |||||
gedlibpy.init() | |||||
gedlibpy.set_method(method, "") | |||||
gedlibpy.init_method() | |||||
g = listID[0] | |||||
h = listID[1] | |||||
if stabilizer is None: | |||||
gedlibpy.run_method(g, h) | |||||
pi_forward = gedlibpy.get_forward_map(g, h) | |||||
pi_backward = gedlibpy.get_backward_map(g, h) | |||||
upper = gedlibpy.get_upper_bound(g, h) | |||||
lower = gedlibpy.get_lower_bound(g, h) | |||||
elif stabilizer == 'min': | |||||
upper = np.inf | |||||
for itr in range(repeat): | |||||
gedlibpy.run_method(g, h) | |||||
upper_tmp = gedlibpy.get_upper_bound(g, h) | |||||
if upper_tmp < upper: | |||||
upper = upper_tmp | |||||
pi_forward = gedlibpy.get_forward_map(g, h) | |||||
pi_backward = gedlibpy.get_backward_map(g, h) | |||||
lower = gedlibpy.get_lower_bound(g, h) | |||||
if upper == 0: | |||||
break | |||||
dis = upper | |||||
# make the map label correct (label remove map as np.inf) | |||||
nodes1 = [n for n in g1.nodes()] | |||||
nodes2 = [n for n in g2.nodes()] | |||||
nb1 = nx.number_of_nodes(g1) | |||||
nb2 = nx.number_of_nodes(g2) | |||||
pi_forward = [nodes2[pi] if pi < nb2 else np.inf for pi in pi_forward] | |||||
pi_backward = [nodes1[pi] if pi < nb1 else np.inf for pi in pi_backward] | |||||
return dis, pi_forward, pi_backward | |||||
def ged_median(Gn, Gn_median, verbose=False, params_ged={'lib': 'gedlibpy', | |||||
'cost': 'CHEM_1', 'method': 'IPFP', 'edit_cost_constant': [], | |||||
'algo_options': '--threads 8 --initial-solutions 40 --ratio-runs-from-initial-solutions 1', | |||||
'stabilizer': None}, parallel=False): | |||||
if parallel: | |||||
len_itr = int(len(Gn)) | |||||
pi_forward_list = [[] for i in range(len_itr)] | |||||
dis_list = [0 for i in range(len_itr)] | |||||
itr = range(0, len_itr) | |||||
n_jobs = multiprocessing.cpu_count() | |||||
if len_itr < 100 * n_jobs: | |||||
chunksize = int(len_itr / n_jobs) + 1 | |||||
else: | |||||
chunksize = 100 | |||||
def init_worker(gn_toshare, gn_median_toshare): | |||||
global G_gn, G_gn_median | |||||
G_gn = gn_toshare | |||||
G_gn_median = gn_median_toshare | |||||
do_partial = partial(_compute_ged_median, params_ged) | |||||
pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(Gn, Gn_median)) | |||||
if verbose: | |||||
iterator = tqdm(pool.imap_unordered(do_partial, itr, chunksize), | |||||
desc='computing GEDs', file=sys.stdout) | |||||
else: | |||||
iterator = pool.imap_unordered(do_partial, itr, chunksize) | |||||
for i, dis_sum, pi_forward in iterator: | |||||
pi_forward_list[i] = pi_forward | |||||
dis_list[i] = dis_sum | |||||
# print('\n-------------------------------------------') | |||||
# print(i, j, idx_itr, dis) | |||||
pool.close() | |||||
pool.join() | |||||
else: | |||||
dis_list = [] | |||||
pi_forward_list = [] | |||||
for idx, G in tqdm(enumerate(Gn), desc='computing median distances', | |||||
file=sys.stdout) if verbose else enumerate(Gn): | |||||
dis_sum = 0 | |||||
pi_forward_list.append([]) | |||||
for G_p in Gn_median: | |||||
dis_tmp, pi_tmp_forward, pi_tmp_backward = GED(G, G_p, | |||||
**params_ged) | |||||
pi_forward_list[idx].append(pi_tmp_forward) | |||||
dis_sum += dis_tmp | |||||
dis_list.append(dis_sum) | |||||
return dis_list, pi_forward_list | |||||
def _compute_ged_median(params_ged, itr): | |||||
# print(itr) | |||||
dis_sum = 0 | |||||
pi_forward = [] | |||||
for G_p in G_gn_median: | |||||
dis_tmp, pi_tmp_forward, pi_tmp_backward = GED(G_gn[itr], G_p, | |||||
**params_ged) | |||||
pi_forward.append(pi_tmp_forward) | |||||
dis_sum += dis_tmp | |||||
return itr, dis_sum, pi_forward | |||||
def get_nb_edit_operations(g1, g2, forward_map, backward_map): | |||||
"""Compute the number of each edit operations. | |||||
""" | |||||
n_vi = 0 | |||||
n_vr = 0 | |||||
n_vs = 0 | |||||
n_ei = 0 | |||||
n_er = 0 | |||||
n_es = 0 | |||||
nodes1 = [n for n in g1.nodes()] | |||||
for i, map_i in enumerate(forward_map): | |||||
if map_i == np.inf: | |||||
n_vr += 1 | |||||
elif g1.node[nodes1[i]]['atom'] != g2.node[map_i]['atom']: | |||||
n_vs += 1 | |||||
for map_i in backward_map: | |||||
if map_i == np.inf: | |||||
n_vi += 1 | |||||
# idx_nodes1 = range(0, len(node1)) | |||||
edges1 = [e for e in g1.edges()] | |||||
nb_edges2_cnted = 0 | |||||
for n1, n2 in edges1: | |||||
idx1 = nodes1.index(n1) | |||||
idx2 = nodes1.index(n2) | |||||
# one of the nodes is removed, thus the edge is removed. | |||||
if forward_map[idx1] == np.inf or forward_map[idx2] == np.inf: | |||||
n_er += 1 | |||||
# corresponding edge is in g2. | |||||
elif (forward_map[idx1], forward_map[idx2]) in g2.edges(): | |||||
nb_edges2_cnted += 1 | |||||
# edge labels are different. | |||||
if g2.edges[((forward_map[idx1], forward_map[idx2]))]['bond_type'] \ | |||||
!= g1.edges[(n1, n2)]['bond_type']: | |||||
n_es += 1 | |||||
elif (forward_map[idx2], forward_map[idx1]) in g2.edges(): | |||||
nb_edges2_cnted += 1 | |||||
# edge labels are different. | |||||
if g2.edges[((forward_map[idx2], forward_map[idx1]))]['bond_type'] \ | |||||
!= g1.edges[(n1, n2)]['bond_type']: | |||||
n_es += 1 | |||||
# corresponding nodes are in g2, however the edge is removed. | |||||
else: | |||||
n_er += 1 | |||||
n_ei = nx.number_of_edges(g2) - nb_edges2_cnted | |||||
return n_vi, n_vr, n_vs, n_ei, n_er, n_es | |||||
def get_nb_edit_operations_letter(g1, g2, forward_map, backward_map): | |||||
"""Compute the number of each edit operations. | |||||
""" | |||||
n_vi = 0 | |||||
n_vr = 0 | |||||
n_vs = 0 | |||||
sod_vs = 0 | |||||
n_ei = 0 | |||||
n_er = 0 | |||||
nodes1 = [n for n in g1.nodes()] | |||||
for i, map_i in enumerate(forward_map): | |||||
if map_i == np.inf: | |||||
n_vr += 1 | |||||
else: | |||||
n_vs += 1 | |||||
diff_x = float(g1.nodes[nodes1[i]]['x']) - float(g2.nodes[map_i]['x']) | |||||
diff_y = float(g1.nodes[nodes1[i]]['y']) - float(g2.nodes[map_i]['y']) | |||||
sod_vs += np.sqrt(np.square(diff_x) + np.square(diff_y)) | |||||
for map_i in backward_map: | |||||
if map_i == np.inf: | |||||
n_vi += 1 | |||||
# idx_nodes1 = range(0, len(node1)) | |||||
edges1 = [e for e in g1.edges()] | |||||
nb_edges2_cnted = 0 | |||||
for n1, n2 in edges1: | |||||
idx1 = nodes1.index(n1) | |||||
idx2 = nodes1.index(n2) | |||||
# one of the nodes is removed, thus the edge is removed. | |||||
if forward_map[idx1] == np.inf or forward_map[idx2] == np.inf: | |||||
n_er += 1 | |||||
# corresponding edge is in g2. Edge label is not considered. | |||||
elif (forward_map[idx1], forward_map[idx2]) in g2.edges() or \ | |||||
(forward_map[idx2], forward_map[idx1]) in g2.edges(): | |||||
nb_edges2_cnted += 1 | |||||
# corresponding nodes are in g2, however the edge is removed. | |||||
else: | |||||
n_er += 1 | |||||
n_ei = nx.number_of_edges(g2) - nb_edges2_cnted | |||||
return n_vi, n_vr, n_vs, sod_vs, n_ei, n_er | |||||
def get_nb_edit_operations_nonsymbolic(g1, g2, forward_map, backward_map): | |||||
"""Compute the number of each edit operations. | |||||
""" | |||||
n_vi = 0 | |||||
n_vr = 0 | |||||
n_vs = 0 | |||||
sod_vs = 0 | |||||
n_ei = 0 | |||||
n_er = 0 | |||||
n_es = 0 | |||||
sod_es = 0 | |||||
nodes1 = [n for n in g1.nodes()] | |||||
for i, map_i in enumerate(forward_map): | |||||
if map_i == np.inf: | |||||
n_vr += 1 | |||||
else: | |||||
n_vs += 1 | |||||
sum_squares = 0 | |||||
for a_name in g1.graph['node_attrs']: | |||||
diff = float(g1.nodes[nodes1[i]][a_name]) - float(g2.nodes[map_i][a_name]) | |||||
sum_squares += np.square(diff) | |||||
sod_vs += np.sqrt(sum_squares) | |||||
for map_i in backward_map: | |||||
if map_i == np.inf: | |||||
n_vi += 1 | |||||
# idx_nodes1 = range(0, len(node1)) | |||||
edges1 = [e for e in g1.edges()] | |||||
for n1, n2 in edges1: | |||||
idx1 = nodes1.index(n1) | |||||
idx2 = nodes1.index(n2) | |||||
n1_g2 = forward_map[idx1] | |||||
n2_g2 = forward_map[idx2] | |||||
# one of the nodes is removed, thus the edge is removed. | |||||
if n1_g2 == np.inf or n2_g2 == np.inf: | |||||
n_er += 1 | |||||
# corresponding edge is in g2. | |||||
elif (n1_g2, n2_g2) in g2.edges(): | |||||
n_es += 1 | |||||
sum_squares = 0 | |||||
for a_name in g1.graph['edge_attrs']: | |||||
diff = float(g1.edges[n1, n2][a_name]) - float(g2.nodes[n1_g2, n2_g2][a_name]) | |||||
sum_squares += np.square(diff) | |||||
sod_es += np.sqrt(sum_squares) | |||||
elif (n2_g2, n1_g2) in g2.edges(): | |||||
n_es += 1 | |||||
sum_squares = 0 | |||||
for a_name in g1.graph['edge_attrs']: | |||||
diff = float(g1.edges[n2, n1][a_name]) - float(g2.nodes[n2_g2, n1_g2][a_name]) | |||||
sum_squares += np.square(diff) | |||||
sod_es += np.sqrt(sum_squares) | |||||
# corresponding nodes are in g2, however the edge is removed. | |||||
else: | |||||
n_er += 1 | |||||
n_ei = nx.number_of_edges(g2) - n_es | |||||
return n_vi, n_vr, sod_vs, n_ei, n_er, sod_es | |||||
if __name__ == '__main__': | |||||
print('check test_ged.py') |
@@ -1,775 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Fri Apr 26 11:49:12 2019 | |||||
Iterative alternate minimizations using GED. | |||||
@author: ljia | |||||
""" | |||||
import numpy as np | |||||
import random | |||||
import networkx as nx | |||||
from tqdm import tqdm | |||||
from gklearn.utils.graphdataset import get_dataset_attributes | |||||
from gklearn.utils.utils import graph_isIdentical, get_node_labels, get_edge_labels | |||||
from gklearn.preimage.ged import GED, ged_median | |||||
def iam_upgraded(Gn_median, Gn_candidate, c_ei=3, c_er=3, c_es=1, ite_max=50, | |||||
epsilon=0.001, node_label='atom', edge_label='bond_type', | |||||
connected=False, removeNodes=True, allBestInit=False, allBestNodes=False, | |||||
allBestEdges=False, allBestOutput=False, | |||||
params_ged={'lib': 'gedlibpy', 'cost': 'CHEM_1', 'method': 'IPFP', | |||||
'edit_cost_constant': [], 'stabilizer': None, | |||||
'algo_options': '--threads 8 --initial-solutions 40 --ratio-runs-from-initial-solutions 1'}): | |||||
"""See my name, then you know what I do. | |||||
""" | |||||
# Gn_median = Gn_median[0:10] | |||||
# Gn_median = [nx.convert_node_labels_to_integers(g) for g in Gn_median] | |||||
node_ir = np.inf # corresponding to the node remove and insertion. | |||||
label_r = 'thanksdanny' # the label for node remove. # @todo: make this label unrepeatable. | |||||
ds_attrs = get_dataset_attributes(Gn_median + Gn_candidate, | |||||
attr_names=['edge_labeled', 'node_attr_dim', 'edge_attr_dim'], | |||||
edge_label=edge_label) | |||||
node_label_set = get_node_labels(Gn_median, node_label) | |||||
edge_label_set = get_edge_labels(Gn_median, edge_label) | |||||
def generate_graph(G, pi_p_forward): | |||||
G_new_list = [G.copy()] # all "best" graphs generated in this iteration. | |||||
# nx.draw_networkx(G) | |||||
# import matplotlib.pyplot as plt | |||||
# plt.show() | |||||
# print(pi_p_forward) | |||||
# update vertex labels. | |||||
# pre-compute h_i0 for each label. | |||||
# for label in get_node_labels(Gn, node_label): | |||||
# print(label) | |||||
# for nd in G.nodes(data=True): | |||||
# pass | |||||
if not ds_attrs['node_attr_dim']: # labels are symbolic | |||||
for ndi, (nd, _) in enumerate(G.nodes(data=True)): | |||||
h_i0_list = [] | |||||
label_list = [] | |||||
for label in node_label_set: | |||||
h_i0 = 0 | |||||
for idx, g in enumerate(Gn_median): | |||||
pi_i = pi_p_forward[idx][ndi] | |||||
if pi_i != node_ir and g.nodes[pi_i][node_label] == label: | |||||
h_i0 += 1 | |||||
h_i0_list.append(h_i0) | |||||
label_list.append(label) | |||||
# case when the node is to be removed. | |||||
if removeNodes: | |||||
h_i0_remove = 0 # @todo: maybe this can be added to the node_label_set above. | |||||
for idx, g in enumerate(Gn_median): | |||||
pi_i = pi_p_forward[idx][ndi] | |||||
if pi_i == node_ir: | |||||
h_i0_remove += 1 | |||||
h_i0_list.append(h_i0_remove) | |||||
label_list.append(label_r) | |||||
# get the best labels. | |||||
idx_max = np.argwhere(h_i0_list == np.max(h_i0_list)).flatten().tolist() | |||||
if allBestNodes: # choose all best graphs. | |||||
nlabel_best = [label_list[idx] for idx in idx_max] | |||||
# generate "best" graphs with regard to "best" node labels. | |||||
G_new_list_nd = [] | |||||
for g in G_new_list: # @todo: seems it can be simplified. The G_new_list will only contain 1 graph for now. | |||||
for nl in nlabel_best: | |||||
g_tmp = g.copy() | |||||
if nl == label_r: | |||||
g_tmp.remove_node(nd) | |||||
else: | |||||
g_tmp.nodes[nd][node_label] = nl | |||||
G_new_list_nd.append(g_tmp) | |||||
# nx.draw_networkx(g_tmp) | |||||
# import matplotlib.pyplot as plt | |||||
# plt.show() | |||||
# print(g_tmp.nodes(data=True)) | |||||
# print(g_tmp.edges(data=True)) | |||||
G_new_list = [ggg.copy() for ggg in G_new_list_nd] | |||||
else: | |||||
# choose one of the best randomly. | |||||
idx_rdm = random.randint(0, len(idx_max) - 1) | |||||
best_label = label_list[idx_max[idx_rdm]] | |||||
h_i0_max = h_i0_list[idx_max[idx_rdm]] | |||||
g_new = G_new_list[0] | |||||
if best_label == label_r: | |||||
g_new.remove_node(nd) | |||||
else: | |||||
g_new.nodes[nd][node_label] = best_label | |||||
G_new_list = [g_new] | |||||
else: # labels are non-symbolic | |||||
for ndi, (nd, _) in enumerate(G.nodes(data=True)): | |||||
Si_norm = 0 | |||||
phi_i_bar = np.array([0.0 for _ in range(ds_attrs['node_attr_dim'])]) | |||||
for idx, g in enumerate(Gn_median): | |||||
pi_i = pi_p_forward[idx][ndi] | |||||
if g.has_node(pi_i): #@todo: what if no g has node? phi_i_bar = 0? | |||||
Si_norm += 1 | |||||
phi_i_bar += np.array([float(itm) for itm in g.nodes[pi_i]['attributes']]) | |||||
phi_i_bar /= Si_norm | |||||
G_new_list[0].nodes[nd]['attributes'] = phi_i_bar | |||||
# for g in G_new_list: | |||||
# import matplotlib.pyplot as plt | |||||
# nx.draw(g, labels=nx.get_node_attributes(g, 'atom'), with_labels=True) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# update edge labels and adjacency matrix. | |||||
if ds_attrs['edge_labeled']: | |||||
G_new_list_edge = [] | |||||
for g_new in G_new_list: | |||||
nd_list = [n for n in g_new.nodes()] | |||||
g_tmp_list = [g_new.copy()] | |||||
for nd1i in range(nx.number_of_nodes(g_new)): | |||||
nd1 = nd_list[nd1i]# @todo: not just edges, but all pairs of nodes | |||||
for nd2i in range(nd1i + 1, nx.number_of_nodes(g_new)): | |||||
nd2 = nd_list[nd2i] | |||||
# for nd1, nd2, _ in g_new.edges(data=True): | |||||
h_ij0_list = [] | |||||
label_list = [] | |||||
for label in edge_label_set: | |||||
h_ij0 = 0 | |||||
for idx, g in enumerate(Gn_median): | |||||
pi_i = pi_p_forward[idx][nd1i] | |||||
pi_j = pi_p_forward[idx][nd2i] | |||||
h_ij0_p = (g.has_node(pi_i) and g.has_node(pi_j) and | |||||
g.has_edge(pi_i, pi_j) and | |||||
g.edges[pi_i, pi_j][edge_label] == label) | |||||
h_ij0 += h_ij0_p | |||||
h_ij0_list.append(h_ij0) | |||||
label_list.append(label) | |||||
# get the best labels. | |||||
idx_max = np.argwhere(h_ij0_list == np.max(h_ij0_list)).flatten().tolist() | |||||
if allBestEdges: # choose all best graphs. | |||||
elabel_best = [label_list[idx] for idx in idx_max] | |||||
h_ij0_max = [h_ij0_list[idx] for idx in idx_max] | |||||
# generate "best" graphs with regard to "best" node labels. | |||||
G_new_list_ed = [] | |||||
for g_tmp in g_tmp_list: # @todo: seems it can be simplified. The G_new_list will only contain 1 graph for now. | |||||
for idxl, el in enumerate(elabel_best): | |||||
g_tmp_copy = g_tmp.copy() | |||||
# check whether a_ij is 0 or 1. | |||||
sij_norm = 0 | |||||
for idx, g in enumerate(Gn_median): | |||||
pi_i = pi_p_forward[idx][nd1i] | |||||
pi_j = pi_p_forward[idx][nd2i] | |||||
if g.has_node(pi_i) and g.has_node(pi_j) and \ | |||||
g.has_edge(pi_i, pi_j): | |||||
sij_norm += 1 | |||||
if h_ij0_max[idxl] > len(Gn_median) * c_er / c_es + \ | |||||
sij_norm * (1 - (c_er + c_ei) / c_es): | |||||
if not g_tmp_copy.has_edge(nd1, nd2): | |||||
g_tmp_copy.add_edge(nd1, nd2) | |||||
g_tmp_copy.edges[nd1, nd2][edge_label] = elabel_best[idxl] | |||||
else: | |||||
if g_tmp_copy.has_edge(nd1, nd2): | |||||
g_tmp_copy.remove_edge(nd1, nd2) | |||||
G_new_list_ed.append(g_tmp_copy) | |||||
g_tmp_list = [ggg.copy() for ggg in G_new_list_ed] | |||||
else: # choose one of the best randomly. | |||||
idx_rdm = random.randint(0, len(idx_max) - 1) | |||||
best_label = label_list[idx_max[idx_rdm]] | |||||
h_ij0_max = h_ij0_list[idx_max[idx_rdm]] | |||||
# check whether a_ij is 0 or 1. | |||||
sij_norm = 0 | |||||
for idx, g in enumerate(Gn_median): | |||||
pi_i = pi_p_forward[idx][nd1i] | |||||
pi_j = pi_p_forward[idx][nd2i] | |||||
if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): | |||||
sij_norm += 1 | |||||
if h_ij0_max > len(Gn_median) * c_er / c_es + sij_norm * (1 - (c_er + c_ei) / c_es): | |||||
if not g_new.has_edge(nd1, nd2): | |||||
g_new.add_edge(nd1, nd2) | |||||
g_new.edges[nd1, nd2][edge_label] = best_label | |||||
else: | |||||
# elif h_ij0_max < len(Gn_median) * c_er / c_es + sij_norm * (1 - (c_er + c_ei) / c_es): | |||||
if g_new.has_edge(nd1, nd2): | |||||
g_new.remove_edge(nd1, nd2) | |||||
g_tmp_list = [g_new] | |||||
G_new_list_edge += g_tmp_list | |||||
G_new_list = [ggg.copy() for ggg in G_new_list_edge] | |||||
else: # if edges are unlabeled | |||||
# @todo: is this even right? G or g_tmp? check if the new one is right | |||||
# @todo: works only for undirected graphs. | |||||
for g_tmp in G_new_list: | |||||
nd_list = [n for n in g_tmp.nodes()] | |||||
for nd1i in range(nx.number_of_nodes(g_tmp)): | |||||
nd1 = nd_list[nd1i] | |||||
for nd2i in range(nd1i + 1, nx.number_of_nodes(g_tmp)): | |||||
nd2 = nd_list[nd2i] | |||||
sij_norm = 0 | |||||
for idx, g in enumerate(Gn_median): | |||||
pi_i = pi_p_forward[idx][nd1i] | |||||
pi_j = pi_p_forward[idx][nd2i] | |||||
if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): | |||||
sij_norm += 1 | |||||
if sij_norm > len(Gn_median) * c_er / (c_er + c_ei): | |||||
# @todo: should we consider if nd1 and nd2 in g_tmp? | |||||
# or just add the edge anyway? | |||||
if g_tmp.has_node(nd1) and g_tmp.has_node(nd2) \ | |||||
and not g_tmp.has_edge(nd1, nd2): | |||||
g_tmp.add_edge(nd1, nd2) | |||||
else: # @todo: which to use? | |||||
# elif sij_norm < len(Gn_median) * c_er / (c_er + c_ei): | |||||
if g_tmp.has_edge(nd1, nd2): | |||||
g_tmp.remove_edge(nd1, nd2) | |||||
# do not change anything when equal. | |||||
# for i, g in enumerate(G_new_list): | |||||
# import matplotlib.pyplot as plt | |||||
# nx.draw(g, labels=nx.get_node_attributes(g, 'atom'), with_labels=True) | |||||
## plt.savefig("results/gk_iam/simple_two/xx" + str(i) + ".png", format="PNG") | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# # find the best graph generated in this iteration and update pi_p. | |||||
# @todo: should we update all graphs generated or just the best ones? | |||||
dis_list, pi_forward_list = ged_median(G_new_list, Gn_median, | |||||
params_ged=params_ged) | |||||
# @todo: should we remove the identical and connectivity check? | |||||
# Don't know which is faster. | |||||
if ds_attrs['node_attr_dim'] == 0 and ds_attrs['edge_attr_dim'] == 0: | |||||
G_new_list, idx_list = remove_duplicates(G_new_list) | |||||
pi_forward_list = [pi_forward_list[idx] for idx in idx_list] | |||||
dis_list = [dis_list[idx] for idx in idx_list] | |||||
# if connected == True: | |||||
# G_new_list, idx_list = remove_disconnected(G_new_list) | |||||
# pi_forward_list = [pi_forward_list[idx] for idx in idx_list] | |||||
# idx_min_list = np.argwhere(dis_list == np.min(dis_list)).flatten().tolist() | |||||
# dis_min = dis_list[idx_min_tmp_list[0]] | |||||
# pi_forward_list = [pi_forward_list[idx] for idx in idx_min_list] | |||||
# G_new_list = [G_new_list[idx] for idx in idx_min_list] | |||||
# for g in G_new_list: | |||||
# import matplotlib.pyplot as plt | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
return G_new_list, pi_forward_list, dis_list | |||||
def best_median_graphs(Gn_candidate, pi_all_forward, dis_all): | |||||
idx_min_list = np.argwhere(dis_all == np.min(dis_all)).flatten().tolist() | |||||
dis_min = dis_all[idx_min_list[0]] | |||||
pi_forward_min_list = [pi_all_forward[idx] for idx in idx_min_list] | |||||
G_min_list = [Gn_candidate[idx] for idx in idx_min_list] | |||||
return G_min_list, pi_forward_min_list, dis_min | |||||
def iteration_proc(G, pi_p_forward, cur_sod): | |||||
G_list = [G] | |||||
pi_forward_list = [pi_p_forward] | |||||
old_sod = cur_sod * 2 | |||||
sod_list = [cur_sod] | |||||
dis_list = [cur_sod] | |||||
# iterations. | |||||
itr = 0 | |||||
# @todo: what if difference == 0? | |||||
# while itr < ite_max and (np.abs(old_sod - cur_sod) > epsilon or | |||||
# np.abs(old_sod - cur_sod) == 0): | |||||
while itr < ite_max and np.abs(old_sod - cur_sod) > epsilon: | |||||
# while itr < ite_max: | |||||
# for itr in range(0, 5): # the convergence condition? | |||||
print('itr_iam is', itr) | |||||
G_new_list = [] | |||||
pi_forward_new_list = [] | |||||
dis_new_list = [] | |||||
for idx, g in enumerate(G_list): | |||||
# label_set = get_node_labels(Gn_median + [g], node_label) | |||||
G_tmp_list, pi_forward_tmp_list, dis_tmp_list = generate_graph( | |||||
g, pi_forward_list[idx]) | |||||
G_new_list += G_tmp_list | |||||
pi_forward_new_list += pi_forward_tmp_list | |||||
dis_new_list += dis_tmp_list | |||||
# @todo: need to remove duplicates here? | |||||
G_list = [ggg.copy() for ggg in G_new_list] | |||||
pi_forward_list = [pitem.copy() for pitem in pi_forward_new_list] | |||||
dis_list = dis_new_list[:] | |||||
old_sod = cur_sod | |||||
cur_sod = np.min(dis_list) | |||||
sod_list.append(cur_sod) | |||||
itr += 1 | |||||
# @todo: do we return all graphs or the best ones? | |||||
# get the best ones of the generated graphs. | |||||
G_list, pi_forward_list, dis_min = best_median_graphs( | |||||
G_list, pi_forward_list, dis_list) | |||||
if ds_attrs['node_attr_dim'] == 0 and ds_attrs['edge_attr_dim'] == 0: | |||||
G_list, idx_list = remove_duplicates(G_list) | |||||
pi_forward_list = [pi_forward_list[idx] for idx in idx_list] | |||||
# dis_list = [dis_list[idx] for idx in idx_list] | |||||
# import matplotlib.pyplot as plt | |||||
# for g in G_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
print('\nsods:', sod_list, '\n') | |||||
return G_list, pi_forward_list, dis_min, sod_list | |||||
def remove_duplicates(Gn): | |||||
"""Remove duplicate graphs from list. | |||||
""" | |||||
Gn_new = [] | |||||
idx_list = [] | |||||
for idx, g in enumerate(Gn): | |||||
dupl = False | |||||
for g_new in Gn_new: | |||||
if graph_isIdentical(g_new, g): | |||||
dupl = True | |||||
break | |||||
if not dupl: | |||||
Gn_new.append(g) | |||||
idx_list.append(idx) | |||||
return Gn_new, idx_list | |||||
def remove_disconnected(Gn): | |||||
"""Remove disconnected graphs from list. | |||||
""" | |||||
Gn_new = [] | |||||
idx_list = [] | |||||
for idx, g in enumerate(Gn): | |||||
if nx.is_connected(g): | |||||
Gn_new.append(g) | |||||
idx_list.append(idx) | |||||
return Gn_new, idx_list | |||||
########################################################################### | |||||
# phase 1: initilize. | |||||
# compute set-median. | |||||
dis_min = np.inf | |||||
dis_list, pi_forward_all = ged_median(Gn_candidate, Gn_median, | |||||
params_ged=params_ged, parallel=True) | |||||
print('finish computing GEDs.') | |||||
# find all smallest distances. | |||||
if allBestInit: # try all best init graphs. | |||||
idx_min_list = range(len(dis_list)) | |||||
dis_min = dis_list | |||||
else: | |||||
idx_min_list = np.argwhere(dis_list == np.min(dis_list)).flatten().tolist() | |||||
dis_min = [dis_list[idx_min_list[0]]] * len(idx_min_list) | |||||
idx_min_rdm = random.randint(0, len(idx_min_list) - 1) | |||||
idx_min_list = [idx_min_list[idx_min_rdm]] | |||||
sod_set_median = np.min(dis_min) | |||||
# phase 2: iteration. | |||||
G_list = [] | |||||
dis_list = [] | |||||
pi_forward_list = [] | |||||
G_set_median_list = [] | |||||
# sod_list = [] | |||||
for idx_tmp, idx_min in enumerate(idx_min_list): | |||||
# print('idx_min is', idx_min) | |||||
G = Gn_candidate[idx_min].copy() | |||||
G_set_median_list.append(G.copy()) | |||||
# list of edit operations. | |||||
pi_p_forward = pi_forward_all[idx_min] | |||||
# pi_p_backward = pi_all_backward[idx_min] | |||||
Gi_list, pi_i_forward_list, dis_i_min, sod_list = iteration_proc(G, | |||||
pi_p_forward, dis_min[idx_tmp]) | |||||
G_list += Gi_list | |||||
dis_list += [dis_i_min] * len(Gi_list) | |||||
pi_forward_list += pi_i_forward_list | |||||
if ds_attrs['node_attr_dim'] == 0 and ds_attrs['edge_attr_dim'] == 0: | |||||
G_list, idx_list = remove_duplicates(G_list) | |||||
dis_list = [dis_list[idx] for idx in idx_list] | |||||
pi_forward_list = [pi_forward_list[idx] for idx in idx_list] | |||||
if connected == True: | |||||
G_list_con, idx_list = remove_disconnected(G_list) | |||||
# if there is no connected graphs at all, then remain the disconnected ones. | |||||
if len(G_list_con) > 0: # @todo: ?????????????????????????? | |||||
G_list = G_list_con | |||||
dis_list = [dis_list[idx] for idx in idx_list] | |||||
pi_forward_list = [pi_forward_list[idx] for idx in idx_list] | |||||
# import matplotlib.pyplot as plt | |||||
# for g in G_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# get the best median graphs | |||||
G_gen_median_list, pi_forward_min_list, sod_gen_median = best_median_graphs( | |||||
G_list, pi_forward_list, dis_list) | |||||
# for g in G_gen_median_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
if not allBestOutput: | |||||
# randomly choose one graph. | |||||
idx_rdm = random.randint(0, len(G_gen_median_list) - 1) | |||||
G_gen_median_list = [G_gen_median_list[idx_rdm]] | |||||
return G_gen_median_list, sod_gen_median, sod_list, G_set_median_list, sod_set_median | |||||
def iam_bash(Gn_names, edit_cost_constant, cost='CONSTANT', initial_solutions=1, | |||||
dataset='monoterpenoides', | |||||
graph_dir=''): | |||||
"""Compute the iam by c++ implementation (gedlib) through bash. | |||||
""" | |||||
import os | |||||
import time | |||||
def createCollectionFile(Gn_names, y, filename): | |||||
"""Create collection file. | |||||
""" | |||||
dirname_ds = os.path.dirname(filename) | |||||
if dirname_ds != '': | |||||
dirname_ds += '/' | |||||
if not os.path.exists(dirname_ds) : | |||||
os.makedirs(dirname_ds) | |||||
with open(filename + '.xml', 'w') as fgroup: | |||||
fgroup.write("<?xml version=\"1.0\"?>") | |||||
fgroup.write("\n<!DOCTYPE GraphCollection SYSTEM \"http://www.inf.unibz.it/~blumenthal/dtd/GraphCollection.dtd\">") | |||||
fgroup.write("\n<GraphCollection>") | |||||
for idx, fname in enumerate(Gn_names): | |||||
fgroup.write("\n\t<graph file=\"" + fname + "\" class=\"" + str(y[idx]) + "\"/>") | |||||
fgroup.write("\n</GraphCollection>") | |||||
fgroup.close() | |||||
tmp_dir = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/' | |||||
fn_collection = tmp_dir + 'collection.' + str(time.time()) + str(random.randint(0, 1e9)) | |||||
createCollectionFile(Gn_names, ['dummy'] * len(Gn_names), fn_collection) | |||||
# fn_collection = tmp_dir + 'collection_for_debug' | |||||
# graph_dir = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/generated_datsets/monoterpenoides/gxl' | |||||
# if dataset == 'Letter-high' or dataset == 'Fingerprint': | |||||
# dataset = 'letter' | |||||
command = 'GEDLIB_HOME=\'/media/ljia/DATA/research-repo/codes/Linlin/gedlib\'\n' | |||||
command += 'LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$GEDLIB_HOME/lib\n' | |||||
command += 'export LD_LIBRARY_PATH\n' | |||||
command += 'cd \'' + os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/bin\'\n' | |||||
command += './iam_for_python_bash ' + dataset + ' ' + fn_collection \ | |||||
+ ' \'' + graph_dir + '\' ' + ' ' + cost + ' ' + str(initial_solutions) + ' ' | |||||
if edit_cost_constant is None: | |||||
command += 'None' | |||||
else: | |||||
for ec in edit_cost_constant: | |||||
command += str(ec) + ' ' | |||||
# output = os.system(command) | |||||
stream = os.popen(command) | |||||
output = stream.readlines() | |||||
# print(output) | |||||
sod_sm = float(output[0].strip()) | |||||
sod_gm = float(output[1].strip()) | |||||
fname_sm = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/set_median.gxl' | |||||
fname_gm = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/gen_median.gxl' | |||||
return sod_sm, sod_gm, fname_sm, fname_gm | |||||
############################################################################### | |||||
# Old implementations. | |||||
def iam(Gn, c_ei=3, c_er=3, c_es=1, node_label='atom', edge_label='bond_type', | |||||
connected=True): | |||||
"""See my name, then you know what I do. | |||||
""" | |||||
# Gn = Gn[0:10] | |||||
Gn = [nx.convert_node_labels_to_integers(g) for g in Gn] | |||||
# phase 1: initilize. | |||||
# compute set-median. | |||||
dis_min = np.inf | |||||
pi_p = [] | |||||
pi_all = [] | |||||
for idx1, G_p in enumerate(Gn): | |||||
dist_sum = 0 | |||||
pi_all.append([]) | |||||
for idx2, G_p_prime in enumerate(Gn): | |||||
dist_tmp, pi_tmp, _ = GED(G_p, G_p_prime) | |||||
pi_all[idx1].append(pi_tmp) | |||||
dist_sum += dist_tmp | |||||
if dist_sum < dis_min: | |||||
dis_min = dist_sum | |||||
G = G_p.copy() | |||||
idx_min = idx1 | |||||
# list of edit operations. | |||||
pi_p = pi_all[idx_min] | |||||
# phase 2: iteration. | |||||
ds_attrs = get_dataset_attributes(Gn, attr_names=['edge_labeled', 'node_attr_dim'], | |||||
edge_label=edge_label) | |||||
for itr in range(0, 10): # @todo: the convergence condition? | |||||
G_new = G.copy() | |||||
# update vertex labels. | |||||
# pre-compute h_i0 for each label. | |||||
# for label in get_node_labels(Gn, node_label): | |||||
# print(label) | |||||
# for nd in G.nodes(data=True): | |||||
# pass | |||||
if not ds_attrs['node_attr_dim']: # labels are symbolic | |||||
for nd, _ in G.nodes(data=True): | |||||
h_i0_list = [] | |||||
label_list = [] | |||||
for label in get_node_labels(Gn, node_label): | |||||
h_i0 = 0 | |||||
for idx, g in enumerate(Gn): | |||||
pi_i = pi_p[idx][nd] | |||||
if g.has_node(pi_i) and g.nodes[pi_i][node_label] == label: | |||||
h_i0 += 1 | |||||
h_i0_list.append(h_i0) | |||||
label_list.append(label) | |||||
# choose one of the best randomly. | |||||
idx_max = np.argwhere(h_i0_list == np.max(h_i0_list)).flatten().tolist() | |||||
idx_rdm = random.randint(0, len(idx_max) - 1) | |||||
G_new.nodes[nd][node_label] = label_list[idx_max[idx_rdm]] | |||||
else: # labels are non-symbolic | |||||
for nd, _ in G.nodes(data=True): | |||||
Si_norm = 0 | |||||
phi_i_bar = np.array([0.0 for _ in range(ds_attrs['node_attr_dim'])]) | |||||
for idx, g in enumerate(Gn): | |||||
pi_i = pi_p[idx][nd] | |||||
if g.has_node(pi_i): #@todo: what if no g has node? phi_i_bar = 0? | |||||
Si_norm += 1 | |||||
phi_i_bar += np.array([float(itm) for itm in g.nodes[pi_i]['attributes']]) | |||||
phi_i_bar /= Si_norm | |||||
G_new.nodes[nd]['attributes'] = phi_i_bar | |||||
# update edge labels and adjacency matrix. | |||||
if ds_attrs['edge_labeled']: | |||||
for nd1, nd2, _ in G.edges(data=True): | |||||
h_ij0_list = [] | |||||
label_list = [] | |||||
for label in get_edge_labels(Gn, edge_label): | |||||
h_ij0 = 0 | |||||
for idx, g in enumerate(Gn): | |||||
pi_i = pi_p[idx][nd1] | |||||
pi_j = pi_p[idx][nd2] | |||||
h_ij0_p = (g.has_node(pi_i) and g.has_node(pi_j) and | |||||
g.has_edge(pi_i, pi_j) and | |||||
g.edges[pi_i, pi_j][edge_label] == label) | |||||
h_ij0 += h_ij0_p | |||||
h_ij0_list.append(h_ij0) | |||||
label_list.append(label) | |||||
# choose one of the best randomly. | |||||
idx_max = np.argwhere(h_ij0_list == np.max(h_ij0_list)).flatten().tolist() | |||||
h_ij0_max = h_ij0_list[idx_max[0]] | |||||
idx_rdm = random.randint(0, len(idx_max) - 1) | |||||
best_label = label_list[idx_max[idx_rdm]] | |||||
# check whether a_ij is 0 or 1. | |||||
sij_norm = 0 | |||||
for idx, g in enumerate(Gn): | |||||
pi_i = pi_p[idx][nd1] | |||||
pi_j = pi_p[idx][nd2] | |||||
if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): | |||||
sij_norm += 1 | |||||
if h_ij0_max > len(Gn) * c_er / c_es + sij_norm * (1 - (c_er + c_ei) / c_es): | |||||
if not G_new.has_edge(nd1, nd2): | |||||
G_new.add_edge(nd1, nd2) | |||||
G_new.edges[nd1, nd2][edge_label] = best_label | |||||
else: | |||||
if G_new.has_edge(nd1, nd2): | |||||
G_new.remove_edge(nd1, nd2) | |||||
else: # if edges are unlabeled | |||||
for nd1, nd2, _ in G.edges(data=True): | |||||
sij_norm = 0 | |||||
for idx, g in enumerate(Gn): | |||||
pi_i = pi_p[idx][nd1] | |||||
pi_j = pi_p[idx][nd2] | |||||
if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): | |||||
sij_norm += 1 | |||||
if sij_norm > len(Gn) * c_er / (c_er + c_ei): | |||||
if not G_new.has_edge(nd1, nd2): | |||||
G_new.add_edge(nd1, nd2) | |||||
else: | |||||
if G_new.has_edge(nd1, nd2): | |||||
G_new.remove_edge(nd1, nd2) | |||||
G = G_new.copy() | |||||
# update pi_p | |||||
pi_p = [] | |||||
for idx1, G_p in enumerate(Gn): | |||||
dist_tmp, pi_tmp, _ = GED(G, G_p) | |||||
pi_p.append(pi_tmp) | |||||
return G | |||||
# --------------------------- These are tests --------------------------------# | |||||
def test_iam_with_more_graphs_as_init(Gn, G_candidate, c_ei=3, c_er=3, c_es=1, | |||||
node_label='atom', edge_label='bond_type'): | |||||
"""See my name, then you know what I do. | |||||
""" | |||||
# Gn = Gn[0:10] | |||||
Gn = [nx.convert_node_labels_to_integers(g) for g in Gn] | |||||
# phase 1: initilize. | |||||
# compute set-median. | |||||
dis_min = np.inf | |||||
# pi_p = [] | |||||
pi_all_forward = [] | |||||
pi_all_backward = [] | |||||
for idx1, G_p in tqdm(enumerate(G_candidate), desc='computing GEDs', file=sys.stdout): | |||||
dist_sum = 0 | |||||
pi_all_forward.append([]) | |||||
pi_all_backward.append([]) | |||||
for idx2, G_p_prime in enumerate(Gn): | |||||
dist_tmp, pi_tmp_forward, pi_tmp_backward = GED(G_p, G_p_prime) | |||||
pi_all_forward[idx1].append(pi_tmp_forward) | |||||
pi_all_backward[idx1].append(pi_tmp_backward) | |||||
dist_sum += dist_tmp | |||||
if dist_sum <= dis_min: | |||||
dis_min = dist_sum | |||||
G = G_p.copy() | |||||
idx_min = idx1 | |||||
# list of edit operations. | |||||
pi_p_forward = pi_all_forward[idx_min] | |||||
pi_p_backward = pi_all_backward[idx_min] | |||||
# phase 2: iteration. | |||||
ds_attrs = get_dataset_attributes(Gn + [G], attr_names=['edge_labeled', 'node_attr_dim'], | |||||
edge_label=edge_label) | |||||
label_set = get_node_labels(Gn + [G], node_label) | |||||
for itr in range(0, 10): # @todo: the convergence condition? | |||||
G_new = G.copy() | |||||
# update vertex labels. | |||||
# pre-compute h_i0 for each label. | |||||
# for label in get_node_labels(Gn, node_label): | |||||
# print(label) | |||||
# for nd in G.nodes(data=True): | |||||
# pass | |||||
if not ds_attrs['node_attr_dim']: # labels are symbolic | |||||
for nd in G.nodes(): | |||||
h_i0_list = [] | |||||
label_list = [] | |||||
for label in label_set: | |||||
h_i0 = 0 | |||||
for idx, g in enumerate(Gn): | |||||
pi_i = pi_p_forward[idx][nd] | |||||
if g.has_node(pi_i) and g.nodes[pi_i][node_label] == label: | |||||
h_i0 += 1 | |||||
h_i0_list.append(h_i0) | |||||
label_list.append(label) | |||||
# choose one of the best randomly. | |||||
idx_max = np.argwhere(h_i0_list == np.max(h_i0_list)).flatten().tolist() | |||||
idx_rdm = random.randint(0, len(idx_max) - 1) | |||||
G_new.nodes[nd][node_label] = label_list[idx_max[idx_rdm]] | |||||
else: # labels are non-symbolic | |||||
for nd in G.nodes(): | |||||
Si_norm = 0 | |||||
phi_i_bar = np.array([0.0 for _ in range(ds_attrs['node_attr_dim'])]) | |||||
for idx, g in enumerate(Gn): | |||||
pi_i = pi_p_forward[idx][nd] | |||||
if g.has_node(pi_i): #@todo: what if no g has node? phi_i_bar = 0? | |||||
Si_norm += 1 | |||||
phi_i_bar += np.array([float(itm) for itm in g.nodes[pi_i]['attributes']]) | |||||
phi_i_bar /= Si_norm | |||||
G_new.nodes[nd]['attributes'] = phi_i_bar | |||||
# update edge labels and adjacency matrix. | |||||
if ds_attrs['edge_labeled']: | |||||
for nd1, nd2, _ in G.edges(data=True): | |||||
h_ij0_list = [] | |||||
label_list = [] | |||||
for label in get_edge_labels(Gn, edge_label): | |||||
h_ij0 = 0 | |||||
for idx, g in enumerate(Gn): | |||||
pi_i = pi_p_forward[idx][nd1] | |||||
pi_j = pi_p_forward[idx][nd2] | |||||
h_ij0_p = (g.has_node(pi_i) and g.has_node(pi_j) and | |||||
g.has_edge(pi_i, pi_j) and | |||||
g.edges[pi_i, pi_j][edge_label] == label) | |||||
h_ij0 += h_ij0_p | |||||
h_ij0_list.append(h_ij0) | |||||
label_list.append(label) | |||||
# choose one of the best randomly. | |||||
idx_max = np.argwhere(h_ij0_list == np.max(h_ij0_list)).flatten().tolist() | |||||
h_ij0_max = h_ij0_list[idx_max[0]] | |||||
idx_rdm = random.randint(0, len(idx_max) - 1) | |||||
best_label = label_list[idx_max[idx_rdm]] | |||||
# check whether a_ij is 0 or 1. | |||||
sij_norm = 0 | |||||
for idx, g in enumerate(Gn): | |||||
pi_i = pi_p_forward[idx][nd1] | |||||
pi_j = pi_p_forward[idx][nd2] | |||||
if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): | |||||
sij_norm += 1 | |||||
if h_ij0_max > len(Gn) * c_er / c_es + sij_norm * (1 - (c_er + c_ei) / c_es): | |||||
if not G_new.has_edge(nd1, nd2): | |||||
G_new.add_edge(nd1, nd2) | |||||
G_new.edges[nd1, nd2][edge_label] = best_label | |||||
else: | |||||
if G_new.has_edge(nd1, nd2): | |||||
G_new.remove_edge(nd1, nd2) | |||||
else: # if edges are unlabeled | |||||
# @todo: works only for undirected graphs. | |||||
for nd1 in range(nx.number_of_nodes(G)): | |||||
for nd2 in range(nd1 + 1, nx.number_of_nodes(G)): | |||||
sij_norm = 0 | |||||
for idx, g in enumerate(Gn): | |||||
pi_i = pi_p_forward[idx][nd1] | |||||
pi_j = pi_p_forward[idx][nd2] | |||||
if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): | |||||
sij_norm += 1 | |||||
if sij_norm > len(Gn) * c_er / (c_er + c_ei): | |||||
if not G_new.has_edge(nd1, nd2): | |||||
G_new.add_edge(nd1, nd2) | |||||
elif sij_norm < len(Gn) * c_er / (c_er + c_ei): | |||||
if G_new.has_edge(nd1, nd2): | |||||
G_new.remove_edge(nd1, nd2) | |||||
# do not change anything when equal. | |||||
G = G_new.copy() | |||||
# update pi_p | |||||
pi_p_forward = [] | |||||
for G_p in Gn: | |||||
dist_tmp, pi_tmp_forward, pi_tmp_backward = GED(G, G_p) | |||||
pi_p_forward.append(pi_tmp_forward) | |||||
return G | |||||
############################################################################### | |||||
if __name__ == '__main__': | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat', | |||||
'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb | |||||
# ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', | |||||
# 'extra_params': {}} # node nsymb | |||||
# ds = {'name': 'Acyclic', 'dataset': '../datasets/monoterpenoides/trainset_9.ds', | |||||
# 'extra_params': {}} | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
iam(Gn) |
@@ -1,114 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Fri Jan 10 13:22:04 2020 | |||||
@author: ljia | |||||
""" | |||||
import numpy as np | |||||
#import matplotlib.pyplot as plt | |||||
from tqdm import tqdm | |||||
import random | |||||
#import csv | |||||
from shutil import copyfile | |||||
import os | |||||
from gklearn.preimage.iam import iam_bash | |||||
from gklearn.utils.graphfiles import loadDataset, loadGXL | |||||
from gklearn.preimage.ged import GED | |||||
from gklearn.preimage.utils import get_same_item_indices | |||||
def test_knn(): | |||||
ds = {'name': 'monoterpenoides', | |||||
'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset']) | |||||
# Gn = Gn[0:50] | |||||
# gkernel = 'treeletkernel' | |||||
# node_label = 'atom' | |||||
# edge_label = 'bond_type' | |||||
# ds_name = 'mono' | |||||
dir_output = 'results/knn/' | |||||
graph_dir = os.path.dirname(os.path.realpath(__file__)) + '../../datasets/monoterpenoides/' | |||||
k_nn = 1 | |||||
percent = 0.1 | |||||
repeats = 50 | |||||
edit_cost_constant = [3, 3, 1, 3, 3, 1] | |||||
# get indices by classes. | |||||
y_idx = get_same_item_indices(y_all) | |||||
sod_sm_list_list | |||||
for repeat in range(0, repeats): | |||||
print('\n---------------------------------') | |||||
print('repeat =', repeat) | |||||
accuracy_sm_list = [] | |||||
accuracy_gm_list = [] | |||||
sod_sm_list = [] | |||||
sod_gm_list = [] | |||||
random.seed(repeat) | |||||
set_median_list = [] | |||||
gen_median_list = [] | |||||
train_y_set = [] | |||||
for y, values in y_idx.items(): | |||||
print('\ny =', y) | |||||
size_median_set = int(len(values) * percent) | |||||
median_set_idx = random.sample(values, size_median_set) | |||||
print('median set: ', median_set_idx) | |||||
# compute set median and gen median using IAM (C++ through bash). | |||||
# Gn_median = [Gn[idx] for idx in median_set_idx] | |||||
group_fnames = [Gn[g].graph['filename'] for g in median_set_idx] | |||||
sod_sm, sod_gm, fname_sm, fname_gm = iam_bash(group_fnames, edit_cost_constant, | |||||
graph_dir=graph_dir) | |||||
print('sod_sm, sod_gm:', sod_sm, sod_gm) | |||||
sod_sm_list.append(sod_sm) | |||||
sod_gm_list.append(sod_gm) | |||||
fname_sm_new = dir_output + 'medians/set_median.y' + str(int(y)) + '.repeat' + str(repeat) + '.gxl' | |||||
copyfile(fname_sm, fname_sm_new) | |||||
fname_gm_new = dir_output + 'medians/gen_median.y' + str(int(y)) + '.repeat' + str(repeat) + '.gxl' | |||||
copyfile(fname_gm, fname_gm_new) | |||||
set_median_list.append(loadGXL(fname_sm_new)) | |||||
gen_median_list.append(loadGXL(fname_gm_new)) | |||||
train_y_set.append(int(y)) | |||||
print(sod_sm, sod_gm) | |||||
# do 1-nn. | |||||
test_y_set = [int(y) for y in y_all] | |||||
accuracy_sm = knn(set_median_list, train_y_set, Gn, test_y_set, k=k_nn, distance='ged') | |||||
accuracy_gm = knn(set_median_list, train_y_set, Gn, test_y_set, k=k_nn, distance='ged') | |||||
accuracy_sm_list.append(accuracy_sm) | |||||
accuracy_gm_list.append(accuracy_gm) | |||||
print('current accuracy sm and gm:', accuracy_sm, accuracy_gm) | |||||
# output | |||||
accuracy_sm_mean = np.mean(accuracy_sm_list) | |||||
accuracy_gm_mean = np.mean(accuracy_gm_list) | |||||
print('\ntotal average accuracy sm and gm:', accuracy_sm_mean, accuracy_gm_mean) | |||||
def knn(train_set, train_y_set, test_set, test_y_set, k=1, distance='ged'): | |||||
if k == 1 and distance == 'ged': | |||||
algo_options = '--threads 8 --initial-solutions 40 --ratio-runs-from-initial-solutions 1' | |||||
params_ged = {'lib': 'gedlibpy', 'cost': 'CONSTANT', 'method': 'IPFP', | |||||
'algo_options': algo_options, 'stabilizer': None} | |||||
accuracy = 0 | |||||
for idx_test, g_test in tqdm(enumerate(test_set), desc='computing 1-nn', | |||||
file=sys.stdout): | |||||
dis = np.inf | |||||
for idx_train, g_train in enumerate(train_set): | |||||
dis_cur, _, _ = GED(g_test, g_train, **params_ged) | |||||
if dis_cur < dis: | |||||
dis = dis_cur | |||||
test_y_cur = train_y_set[idx_train] | |||||
if test_y_cur == test_y_set[idx_test]: | |||||
accuracy += 1 | |||||
accuracy = accuracy / len(test_set) | |||||
return accuracy | |||||
if __name__ == '__main__': | |||||
test_knn() |
@@ -1,6 +0,0 @@ | |||||
import sys | |||||
import pathlib | |||||
# insert gedlibpy library. | |||||
sys.path.insert(0, "../../../") | |||||
from gedlibpy import librariesImport, gedlibpy |
@@ -1,218 +0,0 @@ | |||||
import sys | |||||
sys.path.insert(0, "../") | |||||
#import pathlib | |||||
import numpy as np | |||||
import networkx as nx | |||||
import time | |||||
from gedlibpy import librariesImport, gedlibpy | |||||
#import script | |||||
sys.path.insert(0, "/home/bgauzere/dev/optim-graphes/") | |||||
import gklearn | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
def replace_graph_in_env(script, graph, old_id, label='median'): | |||||
""" | |||||
Replace a graph in script | |||||
If old_id is -1, add a new graph to the environnemt | |||||
""" | |||||
if(old_id > -1): | |||||
script.PyClearGraph(old_id) | |||||
new_id = script.PyAddGraph(label) | |||||
for i in graph.nodes(): | |||||
script.PyAddNode(new_id,str(i),graph.node[i]) # !! strings are required bt gedlib | |||||
for e in graph.edges: | |||||
script.PyAddEdge(new_id, str(e[0]),str(e[1]), {}) | |||||
script.PyInitEnv() | |||||
script.PySetMethod("IPFP", "") | |||||
script.PyInitMethod() | |||||
return new_id | |||||
#Dessin median courrant | |||||
def draw_Letter_graph(graph, savepath=''): | |||||
import numpy as np | |||||
import networkx as nx | |||||
import matplotlib.pyplot as plt | |||||
plt.figure() | |||||
pos = {} | |||||
for n in graph.nodes: | |||||
pos[n] = np.array([float(graph.node[n]['attributes'][0]), | |||||
float(graph.node[n]['attributes'][1])]) | |||||
nx.draw_networkx(graph, pos) | |||||
if savepath != '': | |||||
plt.savefig(savepath + str(time.time()) + '.eps', format='eps', dpi=300) | |||||
plt.show() | |||||
plt.clf() | |||||
#compute new mappings | |||||
def update_mappings(script,median_id,listID): | |||||
med_distances = {} | |||||
med_mappings = {} | |||||
sod = 0 | |||||
for i in range(0,len(listID)): | |||||
script.PyRunMethod(median_id,listID[i]) | |||||
med_distances[i] = script.PyGetUpperBound(median_id,listID[i]) | |||||
med_mappings[i] = script.PyGetForwardMap(median_id,listID[i]) | |||||
sod += med_distances[i] | |||||
return med_distances, med_mappings, sod | |||||
def calcul_Sij(all_mappings, all_graphs,i,j): | |||||
s_ij = 0 | |||||
for k in range(0,len(all_mappings)): | |||||
cur_graph = all_graphs[k] | |||||
cur_mapping = all_mappings[k] | |||||
size_graph = cur_graph.order() | |||||
if ((cur_mapping[i] < size_graph) and | |||||
(cur_mapping[j] < size_graph) and | |||||
(cur_graph.has_edge(cur_mapping[i], cur_mapping[j]) == True)): | |||||
s_ij += 1 | |||||
return s_ij | |||||
# def update_median_nodes_L1(median,listIdSet,median_id,dataset, mappings): | |||||
# from scipy.stats.mstats import gmean | |||||
# for i in median.nodes(): | |||||
# for k in listIdSet: | |||||
# vectors = [] #np.zeros((len(listIdSet),2)) | |||||
# if(k != median_id): | |||||
# phi_i = mappings[k][i] | |||||
# if(phi_i < dataset[k].order()): | |||||
# vectors.append([float(dataset[k].node[phi_i]['x']),float(dataset[k].node[phi_i]['y'])]) | |||||
# new_labels = gmean(vectors) | |||||
# median.node[i]['x'] = str(new_labels[0]) | |||||
# median.node[i]['y'] = str(new_labels[1]) | |||||
# return median | |||||
def update_median_nodes(median,dataset,mappings): | |||||
#update node attributes | |||||
for i in median.nodes(): | |||||
nb_sub=0 | |||||
mean_label = {'x' : 0, 'y' : 0} | |||||
for k in range(0,len(mappings)): | |||||
phi_i = mappings[k][i] | |||||
if ( phi_i < dataset[k].order() ): | |||||
nb_sub += 1 | |||||
mean_label['x'] += 0.75*float(dataset[k].node[phi_i]['x']) | |||||
mean_label['y'] += 0.75*float(dataset[k].node[phi_i]['y']) | |||||
median.node[i]['x'] = str((1/0.75)*(mean_label['x']/nb_sub)) | |||||
median.node[i]['y'] = str((1/0.75)*(mean_label['y']/nb_sub)) | |||||
return median | |||||
def update_median_edges(dataset, mappings, median, cei=0.425,cer=0.425): | |||||
#for letter high, ceir = 1.7, alpha = 0.75 | |||||
size_dataset = len(dataset) | |||||
ratio_cei_cer = cer/(cei + cer) | |||||
threshold = size_dataset*ratio_cei_cer | |||||
order_graph_median = median.order() | |||||
for i in range(0,order_graph_median): | |||||
for j in range(i+1,order_graph_median): | |||||
s_ij = calcul_Sij(mappings,dataset,i,j) | |||||
if(s_ij > threshold): | |||||
median.add_edge(i,j) | |||||
else: | |||||
if(median.has_edge(i,j)): | |||||
median.remove_edge(i,j) | |||||
return median | |||||
def compute_median(script, listID, dataset,verbose=False): | |||||
"""Compute a graph median of a dataset according to an environment | |||||
Parameters | |||||
script : An gedlib initialized environnement | |||||
listID (list): a list of ID in script: encodes the dataset | |||||
dataset (list): corresponding graphs in networkX format. We assume that graph | |||||
listID[i] corresponds to dataset[i] | |||||
Returns: | |||||
A networkX graph, which is the median, with corresponding sod | |||||
""" | |||||
print(len(listID)) | |||||
median_set_index, median_set_sod = compute_median_set(script, listID) | |||||
print(median_set_index) | |||||
print(median_set_sod) | |||||
sods = [] | |||||
#Ajout median dans environnement | |||||
set_median = dataset[median_set_index].copy() | |||||
median = dataset[median_set_index].copy() | |||||
cur_med_id = replace_graph_in_env(script,median,-1) | |||||
med_distances, med_mappings, cur_sod = update_mappings(script,cur_med_id,listID) | |||||
sods.append(cur_sod) | |||||
if(verbose): | |||||
print(cur_sod) | |||||
ite_max = 50 | |||||
old_sod = cur_sod * 2 | |||||
ite = 0 | |||||
epsilon = 0.001 | |||||
best_median | |||||
while((ite < ite_max) and (np.abs(old_sod - cur_sod) > epsilon )): | |||||
median = update_median_nodes(median,dataset, med_mappings) | |||||
median = update_median_edges(dataset,med_mappings,median) | |||||
cur_med_id = replace_graph_in_env(script,median,cur_med_id) | |||||
med_distances, med_mappings, cur_sod = update_mappings(script,cur_med_id,listID) | |||||
sods.append(cur_sod) | |||||
if(verbose): | |||||
print(cur_sod) | |||||
ite += 1 | |||||
return median, cur_sod, sods, set_median | |||||
draw_Letter_graph(median) | |||||
def compute_median_set(script,listID): | |||||
'Returns the id in listID corresponding to median set' | |||||
#Calcul median set | |||||
N=len(listID) | |||||
map_id_to_index = {} | |||||
map_index_to_id = {} | |||||
for i in range(0,len(listID)): | |||||
map_id_to_index[listID[i]] = i | |||||
map_index_to_id[i] = listID[i] | |||||
distances = np.zeros((N,N)) | |||||
for i in listID: | |||||
for j in listID: | |||||
script.PyRunMethod(i,j) | |||||
distances[map_id_to_index[i],map_id_to_index[j]] = script.PyGetUpperBound(i,j) | |||||
median_set_index = np.argmin(np.sum(distances,0)) | |||||
sod = np.min(np.sum(distances,0)) | |||||
return median_set_index, sod | |||||
if __name__ == "__main__": | |||||
#Chargement du dataset | |||||
script.PyLoadGXLGraph('/home/bgauzere/dev/gedlib/data/datasets/Letter/HIGH/', '/home/bgauzere/dev/gedlib/data/collections/Letter_Z.xml') | |||||
script.PySetEditCost("LETTER") | |||||
script.PyInitEnv() | |||||
script.PySetMethod("IPFP", "") | |||||
script.PyInitMethod() | |||||
dataset,my_y = gklearn.utils.graphfiles.loadDataset("/home/bgauzere/dev/gedlib/data/datasets/Letter/HIGH/Letter_Z.cxl") | |||||
listID = script.PyGetAllGraphIds() | |||||
median, sod = compute_median(script,listID,dataset,verbose=True) | |||||
print(sod) | |||||
draw_Letter_graph(median) | |||||
#if __name__ == '__main__': | |||||
# # test draw_Letter_graph | |||||
# ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', | |||||
# 'extra_params': {}} # node nsymb | |||||
# Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# print(y_all) | |||||
# for g in Gn: | |||||
# draw_Letter_graph(g) |
@@ -1,201 +0,0 @@ | |||||
import sys | |||||
import pathlib | |||||
import numpy as np | |||||
import networkx as nx | |||||
import librariesImport | |||||
import script | |||||
sys.path.insert(0, "/home/bgauzere/dev/optim-graphes/") | |||||
import gklearn | |||||
def replace_graph_in_env(script, graph, old_id, label='median'): | |||||
""" | |||||
Replace a graph in script | |||||
If old_id is -1, add a new graph to the environnemt | |||||
""" | |||||
if(old_id > -1): | |||||
script.PyClearGraph(old_id) | |||||
new_id = script.PyAddGraph(label) | |||||
for i in graph.nodes(): | |||||
script.PyAddNode(new_id,str(i),graph.node[i]) # !! strings are required bt gedlib | |||||
for e in graph.edges: | |||||
script.PyAddEdge(new_id, str(e[0]),str(e[1]), {}) | |||||
script.PyInitEnv() | |||||
script.PySetMethod("IPFP", "") | |||||
script.PyInitMethod() | |||||
return new_id | |||||
#Dessin median courrant | |||||
def draw_Letter_graph(graph): | |||||
import numpy as np | |||||
import networkx as nx | |||||
import matplotlib.pyplot as plt | |||||
plt.figure() | |||||
pos = {} | |||||
for n in graph.nodes: | |||||
pos[n] = np.array([float(graph.node[n]['x']),float(graph.node[n]['y'])]) | |||||
nx.draw_networkx(graph,pos) | |||||
plt.show() | |||||
#compute new mappings | |||||
def update_mappings(script,median_id,listID): | |||||
med_distances = {} | |||||
med_mappings = {} | |||||
sod = 0 | |||||
for i in range(0,len(listID)): | |||||
script.PyRunMethod(median_id,listID[i]) | |||||
med_distances[i] = script.PyGetUpperBound(median_id,listID[i]) | |||||
med_mappings[i] = script.PyGetForwardMap(median_id,listID[i]) | |||||
sod += med_distances[i] | |||||
return med_distances, med_mappings, sod | |||||
def calcul_Sij(all_mappings, all_graphs,i,j): | |||||
s_ij = 0 | |||||
for k in range(0,len(all_mappings)): | |||||
cur_graph = all_graphs[k] | |||||
cur_mapping = all_mappings[k] | |||||
size_graph = cur_graph.order() | |||||
if ((cur_mapping[i] < size_graph) and | |||||
(cur_mapping[j] < size_graph) and | |||||
(cur_graph.has_edge(cur_mapping[i], cur_mapping[j]) == True)): | |||||
s_ij += 1 | |||||
return s_ij | |||||
# def update_median_nodes_L1(median,listIdSet,median_id,dataset, mappings): | |||||
# from scipy.stats.mstats import gmean | |||||
# for i in median.nodes(): | |||||
# for k in listIdSet: | |||||
# vectors = [] #np.zeros((len(listIdSet),2)) | |||||
# if(k != median_id): | |||||
# phi_i = mappings[k][i] | |||||
# if(phi_i < dataset[k].order()): | |||||
# vectors.append([float(dataset[k].node[phi_i]['x']),float(dataset[k].node[phi_i]['y'])]) | |||||
# new_labels = gmean(vectors) | |||||
# median.node[i]['x'] = str(new_labels[0]) | |||||
# median.node[i]['y'] = str(new_labels[1]) | |||||
# return median | |||||
def update_median_nodes(median,dataset,mappings): | |||||
#update node attributes | |||||
for i in median.nodes(): | |||||
nb_sub=0 | |||||
mean_label = {'x' : 0, 'y' : 0} | |||||
for k in range(0,len(mappings)): | |||||
phi_i = mappings[k][i] | |||||
if ( phi_i < dataset[k].order() ): | |||||
nb_sub += 1 | |||||
mean_label['x'] += 0.75*float(dataset[k].node[phi_i]['x']) | |||||
mean_label['y'] += 0.75*float(dataset[k].node[phi_i]['y']) | |||||
median.node[i]['x'] = str((1/0.75)*(mean_label['x']/nb_sub)) | |||||
median.node[i]['y'] = str((1/0.75)*(mean_label['y']/nb_sub)) | |||||
return median | |||||
def update_median_edges(dataset, mappings, median, cei=0.425,cer=0.425): | |||||
#for letter high, ceir = 1.7, alpha = 0.75 | |||||
size_dataset = len(dataset) | |||||
ratio_cei_cer = cer/(cei + cer) | |||||
threshold = size_dataset*ratio_cei_cer | |||||
order_graph_median = median.order() | |||||
for i in range(0,order_graph_median): | |||||
for j in range(i+1,order_graph_median): | |||||
s_ij = calcul_Sij(mappings,dataset,i,j) | |||||
if(s_ij > threshold): | |||||
median.add_edge(i,j) | |||||
else: | |||||
if(median.has_edge(i,j)): | |||||
median.remove_edge(i,j) | |||||
return median | |||||
def compute_median(script, listID, dataset,verbose=False): | |||||
"""Compute a graph median of a dataset according to an environment | |||||
Parameters | |||||
script : An gedlib initialized environnement | |||||
listID (list): a list of ID in script: encodes the dataset | |||||
dataset (list): corresponding graphs in networkX format. We assume that graph | |||||
listID[i] corresponds to dataset[i] | |||||
Returns: | |||||
A networkX graph, which is the median, with corresponding sod | |||||
""" | |||||
print(len(listID)) | |||||
median_set_index, median_set_sod = compute_median_set(script, listID) | |||||
print(median_set_index) | |||||
print(median_set_sod) | |||||
sods = [] | |||||
#Ajout median dans environnement | |||||
set_median = dataset[median_set_index].copy() | |||||
median = dataset[median_set_index].copy() | |||||
cur_med_id = replace_graph_in_env(script,median,-1) | |||||
med_distances, med_mappings, cur_sod = update_mappings(script,cur_med_id,listID) | |||||
sods.append(cur_sod) | |||||
if(verbose): | |||||
print(cur_sod) | |||||
ite_max = 50 | |||||
old_sod = cur_sod * 2 | |||||
ite = 0 | |||||
epsilon = 0.001 | |||||
best_median | |||||
while((ite < ite_max) and (np.abs(old_sod - cur_sod) > epsilon )): | |||||
median = update_median_nodes(median,dataset, med_mappings) | |||||
median = update_median_edges(dataset,med_mappings,median) | |||||
cur_med_id = replace_graph_in_env(script,median,cur_med_id) | |||||
med_distances, med_mappings, cur_sod = update_mappings(script,cur_med_id,listID) | |||||
sods.append(cur_sod) | |||||
if(verbose): | |||||
print(cur_sod) | |||||
ite += 1 | |||||
return median, cur_sod, sods, set_median | |||||
draw_Letter_graph(median) | |||||
def compute_median_set(script,listID): | |||||
'Returns the id in listID corresponding to median set' | |||||
#Calcul median set | |||||
N=len(listID) | |||||
map_id_to_index = {} | |||||
map_index_to_id = {} | |||||
for i in range(0,len(listID)): | |||||
map_id_to_index[listID[i]] = i | |||||
map_index_to_id[i] = listID[i] | |||||
distances = np.zeros((N,N)) | |||||
for i in listID: | |||||
for j in listID: | |||||
script.PyRunMethod(i,j) | |||||
distances[map_id_to_index[i],map_id_to_index[j]] = script.PyGetUpperBound(i,j) | |||||
median_set_index = np.argmin(np.sum(distances,0)) | |||||
sod = np.min(np.sum(distances,0)) | |||||
return median_set_index, sod | |||||
if __name__ == "__main__": | |||||
#Chargement du dataset | |||||
script.PyLoadGXLGraph('/home/bgauzere/dev/gedlib/data/datasets/Letter/HIGH/', '/home/bgauzere/dev/gedlib/data/collections/Letter_Z.xml') | |||||
script.PySetEditCost("LETTER") | |||||
script.PyInitEnv() | |||||
script.PySetMethod("IPFP", "") | |||||
script.PyInitMethod() | |||||
dataset,my_y = gklearn.utils.graphfiles.loadDataset("/home/bgauzere/dev/gedlib/data/datasets/Letter/HIGH/Letter_Z.cxl") | |||||
listID = script.PyGetAllGraphIds() | |||||
median, sod = compute_median(script,listID,dataset,verbose=True) | |||||
print(sod) | |||||
draw_Letter_graph(median) |
@@ -1,215 +0,0 @@ | |||||
import sys | |||||
import pathlib | |||||
import numpy as np | |||||
import networkx as nx | |||||
from gedlibpy import librariesImport, gedlibpy | |||||
sys.path.insert(0, "/home/bgauzere/dev/optim-graphes/") | |||||
import gklearn | |||||
def replace_graph_in_env(script, graph, old_id, label='median'): | |||||
""" | |||||
Replace a graph in script | |||||
If old_id is -1, add a new graph to the environnemt | |||||
""" | |||||
if(old_id > -1): | |||||
script.PyClearGraph(old_id) | |||||
new_id = script.PyAddGraph(label) | |||||
for i in graph.nodes(): | |||||
script.PyAddNode(new_id,str(i),graph.node[i]) # !! strings are required bt gedlib | |||||
for e in graph.edges: | |||||
script.PyAddEdge(new_id, str(e[0]),str(e[1]), {}) | |||||
script.PyInitEnv() | |||||
script.PySetMethod("IPFP", "") | |||||
script.PyInitMethod() | |||||
return new_id | |||||
#Dessin median courrant | |||||
def draw_Letter_graph(graph): | |||||
import numpy as np | |||||
import networkx as nx | |||||
import matplotlib.pyplot as plt | |||||
plt.figure() | |||||
pos = {} | |||||
for n in graph.nodes: | |||||
pos[n] = np.array([float(graph.node[n]['x']),float(graph.node[n]['y'])]) | |||||
nx.draw_networkx(graph,pos) | |||||
plt.show() | |||||
#compute new mappings | |||||
def update_mappings(script,median_id,listID): | |||||
med_distances = {} | |||||
med_mappings = {} | |||||
sod = 0 | |||||
for i in range(0,len(listID)): | |||||
script.PyRunMethod(median_id,listID[i]) | |||||
med_distances[i] = script.PyGetUpperBound(median_id,listID[i]) | |||||
med_mappings[i] = script.PyGetForwardMap(median_id,listID[i]) | |||||
sod += med_distances[i] | |||||
return med_distances, med_mappings, sod | |||||
def calcul_Sij(all_mappings, all_graphs,i,j): | |||||
s_ij = 0 | |||||
for k in range(0,len(all_mappings)): | |||||
cur_graph = all_graphs[k] | |||||
cur_mapping = all_mappings[k] | |||||
size_graph = cur_graph.order() | |||||
if ((cur_mapping[i] < size_graph) and | |||||
(cur_mapping[j] < size_graph) and | |||||
(cur_graph.has_edge(cur_mapping[i], cur_mapping[j]) == True)): | |||||
s_ij += 1 | |||||
return s_ij | |||||
# def update_median_nodes_L1(median,listIdSet,median_id,dataset, mappings): | |||||
# from scipy.stats.mstats import gmean | |||||
# for i in median.nodes(): | |||||
# for k in listIdSet: | |||||
# vectors = [] #np.zeros((len(listIdSet),2)) | |||||
# if(k != median_id): | |||||
# phi_i = mappings[k][i] | |||||
# if(phi_i < dataset[k].order()): | |||||
# vectors.append([float(dataset[k].node[phi_i]['x']),float(dataset[k].node[phi_i]['y'])]) | |||||
# new_labels = gmean(vectors) | |||||
# median.node[i]['x'] = str(new_labels[0]) | |||||
# median.node[i]['y'] = str(new_labels[1]) | |||||
# return median | |||||
def update_median_nodes(median,dataset,mappings): | |||||
#update node attributes | |||||
for i in median.nodes(): | |||||
nb_sub=0 | |||||
mean_label = {'x' : 0, 'y' : 0} | |||||
for k in range(0,len(mappings)): | |||||
phi_i = mappings[k][i] | |||||
if ( phi_i < dataset[k].order() ): | |||||
nb_sub += 1 | |||||
mean_label['x'] += 0.75*float(dataset[k].node[phi_i]['x']) | |||||
mean_label['y'] += 0.75*float(dataset[k].node[phi_i]['y']) | |||||
median.node[i]['x'] = str((1/0.75)*(mean_label['x']/nb_sub)) | |||||
median.node[i]['y'] = str((1/0.75)*(mean_label['y']/nb_sub)) | |||||
return median | |||||
def update_median_edges(dataset, mappings, median, cei=0.425,cer=0.425): | |||||
#for letter high, ceir = 1.7, alpha = 0.75 | |||||
size_dataset = len(dataset) | |||||
ratio_cei_cer = cer/(cei + cer) | |||||
threshold = size_dataset*ratio_cei_cer | |||||
order_graph_median = median.order() | |||||
for i in range(0,order_graph_median): | |||||
for j in range(i+1,order_graph_median): | |||||
s_ij = calcul_Sij(mappings,dataset,i,j) | |||||
if(s_ij > threshold): | |||||
median.add_edge(i,j) | |||||
else: | |||||
if(median.has_edge(i,j)): | |||||
median.remove_edge(i,j) | |||||
return median | |||||
def compute_median(script, listID, dataset,verbose=False): | |||||
"""Compute a graph median of a dataset according to an environment | |||||
Parameters | |||||
script : An gedlib initialized environnement | |||||
listID (list): a list of ID in script: encodes the dataset | |||||
dataset (list): corresponding graphs in networkX format. We assume that graph | |||||
listID[i] corresponds to dataset[i] | |||||
Returns: | |||||
A networkX graph, which is the median, with corresponding sod | |||||
""" | |||||
print(len(listID)) | |||||
median_set_index, median_set_sod = compute_median_set(script, listID) | |||||
print(median_set_index) | |||||
print(median_set_sod) | |||||
sods = [] | |||||
#Ajout median dans environnement | |||||
set_median = dataset[median_set_index].copy() | |||||
median = dataset[median_set_index].copy() | |||||
cur_med_id = replace_graph_in_env(script,median,-1) | |||||
med_distances, med_mappings, cur_sod = update_mappings(script,cur_med_id,listID) | |||||
sods.append(cur_sod) | |||||
if(verbose): | |||||
print(cur_sod) | |||||
ite_max = 50 | |||||
old_sod = cur_sod * 2 | |||||
ite = 0 | |||||
epsilon = 0.001 | |||||
best_median | |||||
while((ite < ite_max) and (np.abs(old_sod - cur_sod) > epsilon )): | |||||
median = update_median_nodes(median,dataset, med_mappings) | |||||
median = update_median_edges(dataset,med_mappings,median) | |||||
cur_med_id = replace_graph_in_env(script,median,cur_med_id) | |||||
med_distances, med_mappings, cur_sod = update_mappings(script,cur_med_id,listID) | |||||
sods.append(cur_sod) | |||||
if(verbose): | |||||
print(cur_sod) | |||||
ite += 1 | |||||
return median, cur_sod, sods, set_median | |||||
draw_Letter_graph(median) | |||||
def compute_median_set(script,listID): | |||||
'Returns the id in listID corresponding to median set' | |||||
#Calcul median set | |||||
N=len(listID) | |||||
map_id_to_index = {} | |||||
map_index_to_id = {} | |||||
for i in range(0,len(listID)): | |||||
map_id_to_index[listID[i]] = i | |||||
map_index_to_id[i] = listID[i] | |||||
distances = np.zeros((N,N)) | |||||
for i in listID: | |||||
for j in listID: | |||||
script.PyRunMethod(i,j) | |||||
distances[map_id_to_index[i],map_id_to_index[j]] = script.PyGetUpperBound(i,j) | |||||
median_set_index = np.argmin(np.sum(distances,0)) | |||||
sod = np.min(np.sum(distances,0)) | |||||
return median_set_index, sod | |||||
def _convertGraph(G): | |||||
"""Convert a graph to the proper NetworkX format that can be | |||||
recognized by library gedlibpy. | |||||
""" | |||||
G_new = nx.Graph() | |||||
for nd, attrs in G.nodes(data=True): | |||||
G_new.add_node(str(nd), chem=attrs['atom']) | |||||
# G_new.add_node(str(nd), x=str(attrs['attributes'][0]), | |||||
# y=str(attrs['attributes'][1])) | |||||
for nd1, nd2, attrs in G.edges(data=True): | |||||
G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type']) | |||||
# G_new.add_edge(str(nd1), str(nd2)) | |||||
return G_new | |||||
if __name__ == "__main__": | |||||
#Chargement du dataset | |||||
gedlibpy.PyLoadGXLGraph('/home/bgauzere/dev/gedlib/data/datasets/Letter/HIGH/', '/home/bgauzere/dev/gedlib/data/collections/Letter_Z.xml') | |||||
gedlibpy.PySetEditCost("LETTER") | |||||
gedlibpy.PyInitEnv() | |||||
gedlibpy.PySetMethod("IPFP", "") | |||||
gedlibpy.PyInitMethod() | |||||
dataset,my_y = gklearn.utils.graphfiles.loadDataset("/home/bgauzere/dev/gedlib/data/datasets/Letter/HIGH/Letter_Z.cxl") | |||||
listID = gedlibpy.PyGetAllGraphIds() | |||||
median, sod = compute_median(gedlibpy,listID,dataset,verbose=True) | |||||
print(sod) | |||||
draw_Letter_graph(median) |
@@ -1,201 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Wed Mar 20 10:12:15 2019 | |||||
inferring a graph grom path frequency. | |||||
@author: ljia | |||||
""" | |||||
#import numpy as np | |||||
import networkx as nx | |||||
from scipy.spatial.distance import hamming | |||||
import itertools | |||||
def SISF(K, v): | |||||
if output: | |||||
return output | |||||
else: | |||||
return 'no solution' | |||||
def SISF_M(K, v): | |||||
return output | |||||
def GIPF_tree(v_obj, K=1, alphabet=[0, 1]): | |||||
if K == 1: | |||||
n_graph = v_obj[0] + v_obj[1] | |||||
D_T, father_idx = getDynamicTable(n_graph, alphabet) | |||||
# get the vector the closest to v_obj. | |||||
if v_obj not in D_T: | |||||
print('no exact solution') | |||||
dis_lim = 1 / len(v_obj) # the possible shortest distance. | |||||
dis_min = 1.0 # minimum proportional distance | |||||
v_min = v_obj | |||||
for vc in D_T: | |||||
if vc[0] + vc[1] == n_graph: | |||||
# print(vc) | |||||
dis = hamming(vc, v_obj) | |||||
if dis < dis_min: | |||||
dis_min = dis | |||||
v_min = vc | |||||
if dis_min <= dis_lim: | |||||
break | |||||
v_obj = v_min | |||||
# obtain required graph by traceback procedure. | |||||
return getObjectGraph(v_obj, D_T, father_idx, alphabet), v_obj | |||||
def GIPF_M(K, v): | |||||
return G | |||||
def getDynamicTable(n_graph, alphabet=[0, 1]): | |||||
# init. When only one node exists. | |||||
D_T = {(1, 0, 0, 0, 0, 0): 1, (0, 1, 0, 0, 0, 0): 1, (0, 0, 1, 0, 0, 0): 0, | |||||
(0, 0, 0, 1, 0, 0): 0, (0, 0, 0, 0, 1, 0): 0, (0, 0, 0, 0, 0, 1): 0,} | |||||
D_T = [(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0)] | |||||
father_idx = [-1, -1] # index of each vector's father | |||||
# add possible vectors. | |||||
for idx, v in enumerate(D_T): | |||||
if v[0] + v[1] < n_graph: | |||||
D_T.append((v[0] + 1, v[1], v[2] + 2, v[3], v[4], v[5])) | |||||
D_T.append((v[0] + 1, v[1], v[2], v[3] + 1, v[4] + 1, v[5])) | |||||
D_T.append((v[0], v[1] + 1, v[2], v[3] + 1, v[4] + 1, v[5])) | |||||
D_T.append((v[0], v[1] + 1, v[2], v[3], v[4], v[5] + 2)) | |||||
father_idx += [idx, idx, idx, idx] | |||||
# D_T = itertools.chain([(1, 0, 0, 0, 0, 0)], [(0, 1, 0, 0, 0, 0)]) | |||||
# father_idx = itertools.chain([-1], [-1]) # index of each vector's father | |||||
# # add possible vectors. | |||||
# for idx, v in enumerate(D_T): | |||||
# if v[0] + v[1] < n_graph: | |||||
# D_T = itertools.chain(D_T, [(v[0] + 1, v[1], v[2] + 2, v[3], v[4], v[5])]) | |||||
# D_T = itertools.chain(D_T, [(v[0] + 1, v[1], v[2], v[3] + 1, v[4] + 1, v[5])]) | |||||
# D_T = itertools.chain(D_T, [(v[0], v[1] + 1, v[2], v[3] + 1, v[4] + 1, v[5])]) | |||||
# D_T = itertools.chain(D_T, [(v[0], v[1] + 1, v[2], v[3], v[4], v[5] + 2)]) | |||||
# father_idx = itertools.chain(father_idx, [idx, idx, idx, idx]) | |||||
return D_T, father_idx | |||||
def getObjectGraph(v_obj, D_T, father_idx, alphabet=[0, 1]): | |||||
g_obj = nx.Graph() | |||||
# do vector traceback. | |||||
v_tb = [list(v_obj)] # traceback vectors. | |||||
v_tb_idx = [D_T.index(v_obj)] # indices of traceback vectors. | |||||
while v_tb_idx[-1] > 1: | |||||
idx_pre = father_idx[v_tb_idx[-1]] | |||||
v_tb_idx.append(idx_pre) | |||||
v_tb.append(list(D_T[idx_pre])) | |||||
v_tb = v_tb[::-1] # reverse | |||||
# v_tb_idx = v_tb_idx[::-1] | |||||
# construct tree. | |||||
v_c = v_tb[0] # current vector. | |||||
if v_c[0] == 1: | |||||
g_obj.add_node(0, node_label=alphabet[0]) | |||||
else: | |||||
g_obj.add_node(0, node_label=alphabet[1]) | |||||
for vct in v_tb[1:]: | |||||
if vct[0] - v_c[0] == 1: | |||||
if vct[2] - v_c[2] == 2: # transfer 1 | |||||
label1 = alphabet[0] | |||||
label2 = alphabet[0] | |||||
else: # transfer 2 | |||||
label1 = alphabet[1] | |||||
label2 = alphabet[0] | |||||
else: | |||||
if vct[3] - v_c[3] == 1: # transfer 3 | |||||
label1 = alphabet[0] | |||||
label2 = alphabet[1] | |||||
else: # transfer 4 | |||||
label1 = alphabet[1] | |||||
label2 = alphabet[1] | |||||
for nd, attr in g_obj.nodes(data=True): | |||||
if attr['node_label'] == label1: | |||||
nb_node = nx.number_of_nodes(g_obj) | |||||
g_obj.add_node(nb_node, node_label=label2) | |||||
g_obj.add_edge(nd, nb_node) | |||||
break | |||||
v_c = vct | |||||
return g_obj | |||||
import random | |||||
def hierarchy_pos(G, root=None, width=1., vert_gap = 0.2, vert_loc = 0, xcenter = 0.5): | |||||
''' | |||||
From Joel's answer at https://stackoverflow.com/a/29597209/2966723. | |||||
Licensed under Creative Commons Attribution-Share Alike | |||||
If the graph is a tree this will return the positions to plot this in a | |||||
hierarchical layout. | |||||
G: the graph (must be a tree) | |||||
root: the root node of current branch | |||||
- if the tree is directed and this is not given, | |||||
the root will be found and used | |||||
- if the tree is directed and this is given, then | |||||
the positions will be just for the descendants of this node. | |||||
- if the tree is undirected and not given, | |||||
then a random choice will be used. | |||||
width: horizontal space allocated for this branch - avoids overlap with other branches | |||||
vert_gap: gap between levels of hierarchy | |||||
vert_loc: vertical location of root | |||||
xcenter: horizontal location of root | |||||
''' | |||||
if not nx.is_tree(G): | |||||
raise TypeError('cannot use hierarchy_pos on a graph that is not a tree') | |||||
if root is None: | |||||
if isinstance(G, nx.DiGraph): | |||||
root = next(iter(nx.topological_sort(G))) #allows back compatibility with nx version 1.11 | |||||
else: | |||||
root = random.choice(list(G.nodes)) | |||||
def _hierarchy_pos(G, root, width=1., vert_gap = 0.2, vert_loc = 0, xcenter = 0.5, pos = None, parent = None): | |||||
''' | |||||
see hierarchy_pos docstring for most arguments | |||||
pos: a dict saying where all nodes go if they have been assigned | |||||
parent: parent of this branch. - only affects it if non-directed | |||||
''' | |||||
if pos is None: | |||||
pos = {root:(xcenter,vert_loc)} | |||||
else: | |||||
pos[root] = (xcenter, vert_loc) | |||||
children = list(G.neighbors(root)) | |||||
if not isinstance(G, nx.DiGraph) and parent is not None: | |||||
children.remove(parent) | |||||
if len(children)!=0: | |||||
dx = width/len(children) | |||||
nextx = xcenter - width/2 - dx/2 | |||||
for child in children: | |||||
nextx += dx | |||||
pos = _hierarchy_pos(G,child, width = dx, vert_gap = vert_gap, | |||||
vert_loc = vert_loc-vert_gap, xcenter=nextx, | |||||
pos=pos, parent = root) | |||||
return pos | |||||
return _hierarchy_pos(G, root, width, vert_gap, vert_loc, xcenter) | |||||
if __name__ == '__main__': | |||||
v_obj = (6, 4, 10, 3, 3, 2) | |||||
# v_obj = (6, 5, 10, 3, 3, 2) | |||||
tree_obj, v_obj = GIPF_tree(v_obj) | |||||
print('One closest vector is', v_obj) | |||||
# plot | |||||
pos = hierarchy_pos(tree_obj, 0) | |||||
node_labels = nx.get_node_attributes(tree_obj, 'node_label') | |||||
nx.draw(tree_obj, pos=pos, labels=node_labels, with_labels=True) |
@@ -1,705 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Tue Apr 30 17:07:43 2019 | |||||
A graph pre-image method combining iterative pre-image method in reference [1] | |||||
and the iterative alternate minimizations (IAM) in reference [2]. | |||||
@author: ljia | |||||
@references: | |||||
[1] Gökhan H Bakir, Alexander Zien, and Koji Tsuda. Learning to and graph | |||||
pre-images. In Joint Pattern Re ognition Symposium , pages 253-261. Springer, 2004. | |||||
[2] Generalized median graph via iterative alternate minimization. | |||||
""" | |||||
import sys | |||||
import numpy as np | |||||
from tqdm import tqdm | |||||
import networkx as nx | |||||
import matplotlib.pyplot as plt | |||||
import random | |||||
from iam import iam_upgraded | |||||
from utils import dis_gstar, compute_kernel | |||||
def preimage_iam(Gn_init, Gn_median, alpha, idx_gi, Kmatrix, k, r_max, | |||||
gkernel, epsilon=0.001, InitIAMWithAllDk=False, | |||||
params_iam={'c_ei': 1, 'c_er': 1, 'c_es': 1, | |||||
'ite_max': 50, 'epsilon': 0.001, | |||||
'removeNodes': True, 'connected': False}, | |||||
params_ged={'lib': 'gedlibpy', 'cost': 'CHEM_1', 'method': 'IPFP', | |||||
'edit_cost_constant': [], 'stabilizer': 'min', | |||||
'repeat': 50}): | |||||
"""This function constructs graph pre-image by the iterative pre-image | |||||
framework in reference [1], algorithm 1, where the step of generating new | |||||
graphs randomly is replaced by the IAM algorithm in reference [2]. | |||||
notes | |||||
----- | |||||
Every time a set of n better graphs is acquired, their distances in kernel space are | |||||
compared with the k nearest ones, and the k nearest distances from the k+n | |||||
distances will be used as the new ones. | |||||
""" | |||||
# compute k nearest neighbors of phi in DN. | |||||
dis_all = [] # distance between g_star and each graph. | |||||
term3 = 0 | |||||
for i1, a1 in enumerate(alpha): | |||||
for i2, a2 in enumerate(alpha): | |||||
term3 += a1 * a2 * Kmatrix[idx_gi[i1], idx_gi[i2]] | |||||
for ig, g in tqdm(enumerate(Gn_init), desc='computing distances', file=sys.stdout): | |||||
dtemp = dis_gstar(ig, idx_gi, alpha, Kmatrix, term3=term3) | |||||
dis_all.append(dtemp) | |||||
# sort | |||||
sort_idx = np.argsort(dis_all) | |||||
dis_k = [dis_all[idis] for idis in sort_idx[0:k]] # the k shortest distances | |||||
nb_best = len(np.argwhere(dis_k == dis_k[0]).flatten().tolist()) | |||||
ghat_list = [Gn_init[idx].copy() for idx in sort_idx[0:nb_best]] # the nearest neighbors of phi in DN | |||||
if dis_k[0] == 0: # the exact pre-image. | |||||
print('The exact pre-image is found from the input dataset.') | |||||
return 0, ghat_list, 0, 0 | |||||
dhat = dis_k[0] # the nearest distance | |||||
# for g in ghat_list: | |||||
# draw_Letter_graph(g) | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
Gk = [Gn_init[ig].copy() for ig in sort_idx[0:k]] # the k nearest neighbors | |||||
# for gi in Gk: | |||||
# nx.draw(gi, labels=nx.get_node_attributes(gi, 'atom'), with_labels=True) | |||||
## nx.draw_networkx(gi) | |||||
# plt.show() | |||||
## draw_Letter_graph(g) | |||||
# print(gi.nodes(data=True)) | |||||
# print(gi.edges(data=True)) | |||||
# i = 1 | |||||
r = 0 | |||||
itr_total = 0 | |||||
dis_of_each_itr = [dhat] | |||||
found = False | |||||
nb_updated = 0 | |||||
nb_updated_k = 0 | |||||
while r < r_max:# and not found: # @todo: if not found?# and np.abs(old_dis - cur_dis) > epsilon: | |||||
print('\n-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-') | |||||
print('Current preimage iteration =', r) | |||||
print('Total preimage iteration =', itr_total, '\n') | |||||
found = False | |||||
Gn_nearest_median = [g.copy() for g in Gk] | |||||
if InitIAMWithAllDk: # each graph in D_k is used to initialize IAM. | |||||
ghat_new_list = [] | |||||
for g_tmp in Gk: | |||||
Gn_nearest_init = [g_tmp.copy()] | |||||
ghat_new_list_tmp, _, _ = iam_upgraded(Gn_nearest_median, | |||||
Gn_nearest_init, params_ged=params_ged, **params_iam) | |||||
ghat_new_list += ghat_new_list_tmp | |||||
else: # only the best graph in D_k is used to initialize IAM. | |||||
Gn_nearest_init = [g.copy() for g in Gk] | |||||
ghat_new_list, _, _ = iam_upgraded(Gn_nearest_median, Gn_nearest_init, | |||||
params_ged=params_ged, **params_iam) | |||||
# for g in g_tmp_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# draw_Letter_graph(g) | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# compute distance between \psi and the new generated graphs. | |||||
knew = compute_kernel(ghat_new_list + Gn_median, gkernel, False) | |||||
dhat_new_list = [] | |||||
for idx, g_tmp in enumerate(ghat_new_list): | |||||
# @todo: the term3 below could use the one at the beginning of the function. | |||||
dhat_new_list.append(dis_gstar(idx, range(len(ghat_new_list), | |||||
len(ghat_new_list) + len(Gn_median) + 1), | |||||
alpha, knew, withterm3=False)) | |||||
for idx_g, ghat_new in enumerate(ghat_new_list): | |||||
dhat_new = dhat_new_list[idx_g] | |||||
# if the new distance is smaller than the max of D_k. | |||||
if dhat_new < dis_k[-1] and np.abs(dhat_new - dis_k[-1]) >= epsilon: | |||||
# check if the new distance is the same as one in D_k. | |||||
is_duplicate = False | |||||
for dis_tmp in dis_k[1:-1]: | |||||
if np.abs(dhat_new - dis_tmp) < epsilon: | |||||
is_duplicate = True | |||||
print('IAM: duplicate k nearest graph generated.') | |||||
break | |||||
if not is_duplicate: | |||||
if np.abs(dhat_new - dhat) < epsilon: | |||||
print('IAM: I am equal!') | |||||
# dhat = dhat_new | |||||
# ghat_list = [ghat_new.copy()] | |||||
else: | |||||
print('IAM: we got better k nearest neighbors!') | |||||
nb_updated_k += 1 | |||||
print('the k nearest neighbors are updated', | |||||
nb_updated_k, 'times.') | |||||
dis_k = [dhat_new] + dis_k[0:k-1] # add the new nearest distance. | |||||
Gk = [ghat_new.copy()] + Gk[0:k-1] # add the corresponding graph. | |||||
sort_idx = np.argsort(dis_k) | |||||
dis_k = [dis_k[idx] for idx in sort_idx[0:k]] # the new k nearest distances. | |||||
Gk = [Gk[idx] for idx in sort_idx[0:k]] | |||||
if dhat_new < dhat: | |||||
print('IAM: I have smaller distance!') | |||||
print(str(dhat) + '->' + str(dhat_new)) | |||||
dhat = dhat_new | |||||
ghat_list = [Gk[0].copy()] | |||||
r = 0 | |||||
nb_updated += 1 | |||||
print('the graph is updated', nb_updated, 'times.') | |||||
nx.draw(Gk[0], labels=nx.get_node_attributes(Gk[0], 'atom'), | |||||
with_labels=True) | |||||
## plt.savefig("results/gk_iam/simple_two/xx" + str(i) + ".png", format="PNG") | |||||
plt.show() | |||||
found = True | |||||
if not found: | |||||
r += 1 | |||||
dis_of_each_itr.append(dhat) | |||||
itr_total += 1 | |||||
print('\nthe k shortest distances are', dis_k) | |||||
print('the shortest distances for previous iterations are', dis_of_each_itr) | |||||
print('\n\nthe graph is updated', nb_updated, 'times.') | |||||
print('\nthe k nearest neighbors are updated', nb_updated_k, 'times.') | |||||
print('distances in kernel space:', dis_of_each_itr, '\n') | |||||
return dhat, ghat_list, dis_of_each_itr[-1], nb_updated, nb_updated_k | |||||
def preimage_iam_random_mix(Gn_init, Gn_median, alpha, idx_gi, Kmatrix, k, r_max, | |||||
l_max, gkernel, epsilon=0.001, | |||||
InitIAMWithAllDk=False, InitRandomWithAllDk=True, | |||||
params_iam={'c_ei': 1, 'c_er': 1, 'c_es': 1, | |||||
'ite_max': 50, 'epsilon': 0.001, | |||||
'removeNodes': True, 'connected': False}, | |||||
params_ged={'lib': 'gedlibpy', 'cost': 'CHEM_1', | |||||
'method': 'IPFP', 'edit_cost_constant': [], | |||||
'stabilizer': 'min', 'repeat': 50}): | |||||
"""This function constructs graph pre-image by the iterative pre-image | |||||
framework in reference [1], algorithm 1, where new graphs are generated | |||||
randomly and by the IAM algorithm in reference [2]. | |||||
notes | |||||
----- | |||||
Every time a set of n better graphs is acquired, their distances in kernel space are | |||||
compared with the k nearest ones, and the k nearest distances from the k+n | |||||
distances will be used as the new ones. | |||||
""" | |||||
Gn_init = [nx.convert_node_labels_to_integers(g) for g in Gn_init] | |||||
# compute k nearest neighbors of phi in DN. | |||||
dis_all = [] # distance between g_star and each graph. | |||||
term3 = 0 | |||||
for i1, a1 in enumerate(alpha): | |||||
for i2, a2 in enumerate(alpha): | |||||
term3 += a1 * a2 * Kmatrix[idx_gi[i1], idx_gi[i2]] | |||||
for ig, g in tqdm(enumerate(Gn_init), desc='computing distances', file=sys.stdout): | |||||
dtemp = dis_gstar(ig, idx_gi, alpha, Kmatrix, term3=term3) | |||||
dis_all.append(dtemp) | |||||
# sort | |||||
sort_idx = np.argsort(dis_all) | |||||
dis_k = [dis_all[idis] for idis in sort_idx[0:k]] # the k shortest distances | |||||
nb_best = len(np.argwhere(dis_k == dis_k[0]).flatten().tolist()) | |||||
ghat_list = [Gn_init[idx].copy() for idx in sort_idx[0:nb_best]] # the nearest neighbors of psi in DN | |||||
if dis_k[0] == 0: # the exact pre-image. | |||||
print('The exact pre-image is found from the input dataset.') | |||||
return 0, ghat_list, 0, 0 | |||||
dhat = dis_k[0] # the nearest distance | |||||
# for g in ghat_list: | |||||
# draw_Letter_graph(g) | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
Gk = [Gn_init[ig].copy() for ig in sort_idx[0:k]] # the k nearest neighbors | |||||
# for gi in Gk: | |||||
# nx.draw(gi, labels=nx.get_node_attributes(gi, 'atom'), with_labels=True) | |||||
## nx.draw_networkx(gi) | |||||
# plt.show() | |||||
## draw_Letter_graph(g) | |||||
# print(gi.nodes(data=True)) | |||||
# print(gi.edges(data=True)) | |||||
r = 0 | |||||
itr_total = 0 | |||||
dis_of_each_itr = [dhat] | |||||
nb_updated_iam = 0 | |||||
nb_updated_k_iam = 0 | |||||
nb_updated_random = 0 | |||||
nb_updated_k_random = 0 | |||||
# is_iam_duplicate = False | |||||
while r < r_max: # and not found: # @todo: if not found?# and np.abs(old_dis - cur_dis) > epsilon: | |||||
print('\n-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-') | |||||
print('Current preimage iteration =', r) | |||||
print('Total preimage iteration =', itr_total, '\n') | |||||
found_iam = False | |||||
Gn_nearest_median = [g.copy() for g in Gk] | |||||
if InitIAMWithAllDk: # each graph in D_k is used to initialize IAM. | |||||
ghat_new_list = [] | |||||
for g_tmp in Gk: | |||||
Gn_nearest_init = [g_tmp.copy()] | |||||
ghat_new_list_tmp, _ = iam_upgraded(Gn_nearest_median, | |||||
Gn_nearest_init, params_ged=params_ged, **params_iam) | |||||
ghat_new_list += ghat_new_list_tmp | |||||
else: # only the best graph in D_k is used to initialize IAM. | |||||
Gn_nearest_init = [g.copy() for g in Gk] | |||||
ghat_new_list, _ = iam_upgraded(Gn_nearest_median, Gn_nearest_init, | |||||
params_ged=params_ged, **params_iam) | |||||
# for g in g_tmp_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# draw_Letter_graph(g) | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# compute distance between \psi and the new generated graphs. | |||||
knew = compute_kernel(ghat_new_list + Gn_median, gkernel, False) | |||||
dhat_new_list = [] | |||||
for idx, g_tmp in enumerate(ghat_new_list): | |||||
# @todo: the term3 below could use the one at the beginning of the function. | |||||
dhat_new_list.append(dis_gstar(idx, range(len(ghat_new_list), | |||||
len(ghat_new_list) + len(Gn_median) + 1), | |||||
alpha, knew, withterm3=False)) | |||||
# find the new k nearest graphs. | |||||
for idx_g, ghat_new in enumerate(ghat_new_list): | |||||
dhat_new = dhat_new_list[idx_g] | |||||
# if the new distance is smaller than the max of D_k. | |||||
if dhat_new < dis_k[-1] and np.abs(dhat_new - dis_k[-1]) >= epsilon: | |||||
# check if the new distance is the same as one in D_k. | |||||
is_duplicate = False | |||||
for dis_tmp in dis_k[1:-1]: | |||||
if np.abs(dhat_new - dis_tmp) < epsilon: | |||||
is_duplicate = True | |||||
print('IAM: duplicate k nearest graph generated.') | |||||
break | |||||
if not is_duplicate: | |||||
if np.abs(dhat_new - dhat) < epsilon: | |||||
print('IAM: I am equal!') | |||||
# dhat = dhat_new | |||||
# ghat_list = [ghat_new.copy()] | |||||
else: | |||||
print('IAM: we got better k nearest neighbors!') | |||||
nb_updated_k_iam += 1 | |||||
print('the k nearest neighbors are updated', | |||||
nb_updated_k_iam, 'times.') | |||||
dis_k = [dhat_new] + dis_k[0:k-1] # add the new nearest distance. | |||||
Gk = [ghat_new.copy()] + Gk[0:k-1] # add the corresponding graph. | |||||
sort_idx = np.argsort(dis_k) | |||||
dis_k = [dis_k[idx] for idx in sort_idx[0:k]] # the new k nearest distances. | |||||
Gk = [Gk[idx] for idx in sort_idx[0:k]] | |||||
if dhat_new < dhat: | |||||
print('IAM: I have smaller distance!') | |||||
print(str(dhat) + '->' + str(dhat_new)) | |||||
dhat = dhat_new | |||||
ghat_list = [Gk[0].copy()] | |||||
r = 0 | |||||
nb_updated_iam += 1 | |||||
print('the graph is updated by IAM', nb_updated_iam, | |||||
'times.') | |||||
nx.draw(Gk[0], labels=nx.get_node_attributes(Gk[0], 'atom'), | |||||
with_labels=True) | |||||
## plt.savefig("results/gk_iam/simple_two/xx" + str(i) + ".png", format="PNG") | |||||
plt.show() | |||||
found_iam = True | |||||
# when new distance is not smaller than the max of D_k, use random generation. | |||||
if not found_iam: | |||||
print('Distance not better, switching to random generation now.') | |||||
print(str(dhat) + '->' + str(dhat_new)) | |||||
if InitRandomWithAllDk: # use all k nearest graphs as the initials. | |||||
init_list = [g_init.copy() for g_init in Gk] | |||||
else: # use just the nearest graph as the initial. | |||||
init_list = [Gk[0].copy()] | |||||
# number of edges to be changed. | |||||
if len(init_list) == 1: | |||||
# @todo what if the log is negetive? how to choose alpha (scalar)? seems fdgs is always 1. | |||||
# fdgs = dhat_new | |||||
fdgs = nb_updated_random + 1 | |||||
if fdgs < 1: | |||||
fdgs = 1 | |||||
fdgs = int(np.ceil(np.log(fdgs))) | |||||
if fdgs < 1: | |||||
fdgs += 1 | |||||
# fdgs = nb_updated_random + 1 # @todo: | |||||
fdgs_list = [fdgs] | |||||
else: | |||||
# @todo what if the log is negetive? how to choose alpha (scalar)? | |||||
fdgs_list = np.array(dis_k[:]) | |||||
if np.min(fdgs_list) < 1: | |||||
fdgs_list /= dis_k[0] | |||||
fdgs_list = [int(item) for item in np.ceil(np.log(fdgs_list))] | |||||
if np.min(fdgs_list) < 1: | |||||
fdgs_list = np.array(fdgs_list) + 1 | |||||
l = 0 | |||||
found_random = False | |||||
while l < l_max and not found_random: | |||||
for idx_g, g_tmp in enumerate(init_list): | |||||
# add and delete edges. | |||||
ghat_new = nx.convert_node_labels_to_integers(g_tmp.copy()) | |||||
# @todo: should we use just half of the adjacency matrix for undirected graphs? | |||||
nb_vpairs = nx.number_of_nodes(ghat_new) * (nx.number_of_nodes(ghat_new) - 1) | |||||
np.random.seed() | |||||
# which edges to change. | |||||
# @todo: what if fdgs is bigger than nb_vpairs? | |||||
idx_change = random.sample(range(nb_vpairs), fdgs_list[idx_g] if | |||||
fdgs_list[idx_g] < nb_vpairs else nb_vpairs) | |||||
# idx_change = np.random.randint(0, nx.number_of_nodes(gs) * | |||||
# (nx.number_of_nodes(gs) - 1), fdgs) | |||||
for item in idx_change: | |||||
node1 = int(item / (nx.number_of_nodes(ghat_new) - 1)) | |||||
node2 = (item - node1 * (nx.number_of_nodes(ghat_new) - 1)) | |||||
if node2 >= node1: # skip the self pair. | |||||
node2 += 1 | |||||
# @todo: is the randomness correct? | |||||
if not ghat_new.has_edge(node1, node2): | |||||
ghat_new.add_edge(node1, node2) | |||||
# nx.draw_networkx(gs) | |||||
# plt.show() | |||||
# nx.draw_networkx(ghat_new) | |||||
# plt.show() | |||||
else: | |||||
ghat_new.remove_edge(node1, node2) | |||||
# nx.draw_networkx(gs) | |||||
# plt.show() | |||||
# nx.draw_networkx(ghat_new) | |||||
# plt.show() | |||||
# nx.draw_networkx(ghat_new) | |||||
# plt.show() | |||||
# compute distance between \psi and the new generated graph. | |||||
knew = compute_kernel([ghat_new] + Gn_median, gkernel, verbose=False) | |||||
dhat_new = dis_gstar(0, range(1, len(Gn_median) + 1), | |||||
alpha, knew, withterm3=False) | |||||
# @todo: the new distance is smaller or also equal? | |||||
if dhat_new < dis_k[-1] and np.abs(dhat_new - dis_k[-1]) >= epsilon: | |||||
# check if the new distance is the same as one in D_k. | |||||
is_duplicate = False | |||||
for dis_tmp in dis_k[1:-1]: | |||||
if np.abs(dhat_new - dis_tmp) < epsilon: | |||||
is_duplicate = True | |||||
print('Random: duplicate k nearest graph generated.') | |||||
break | |||||
if not is_duplicate: | |||||
if np.abs(dhat_new - dhat) < epsilon: | |||||
print('Random: I am equal!') | |||||
# dhat = dhat_new | |||||
# ghat_list = [ghat_new.copy()] | |||||
else: | |||||
print('Random: we got better k nearest neighbors!') | |||||
print('l =', str(l)) | |||||
nb_updated_k_random += 1 | |||||
print('the k nearest neighbors are updated by random generation', | |||||
nb_updated_k_random, 'times.') | |||||
dis_k = [dhat_new] + dis_k # add the new nearest distances. | |||||
Gk = [ghat_new.copy()] + Gk # add the corresponding graphs. | |||||
sort_idx = np.argsort(dis_k) | |||||
dis_k = [dis_k[idx] for idx in sort_idx[0:k]] # the new k nearest distances. | |||||
Gk = [Gk[idx] for idx in sort_idx[0:k]] | |||||
if dhat_new < dhat: | |||||
print('\nRandom: I am smaller!') | |||||
print('l =', str(l)) | |||||
print(dhat, '->', dhat_new) | |||||
dhat = dhat_new | |||||
ghat_list = [ghat_new.copy()] | |||||
r = 0 | |||||
nb_updated_random += 1 | |||||
print('the graph is updated by random generation', | |||||
nb_updated_random, 'times.') | |||||
nx.draw(ghat_new, labels=nx.get_node_attributes(ghat_new, 'atom'), | |||||
with_labels=True) | |||||
## plt.savefig("results/gk_iam/simple_two/xx" + str(i) + ".png", format="PNG") | |||||
plt.show() | |||||
found_random = True | |||||
break | |||||
l += 1 | |||||
if not found_random: # l == l_max: | |||||
r += 1 | |||||
dis_of_each_itr.append(dhat) | |||||
itr_total += 1 | |||||
print('\nthe k shortest distances are', dis_k) | |||||
print('the shortest distances for previous iterations are', dis_of_each_itr) | |||||
print('\n\nthe graph is updated by IAM', nb_updated_iam, 'times, and by random generation', | |||||
nb_updated_random, 'times.') | |||||
print('\nthe k nearest neighbors are updated by IAM', nb_updated_k_iam, | |||||
'times, and by random generation', nb_updated_k_random, 'times.') | |||||
print('distances in kernel space:', dis_of_each_itr, '\n') | |||||
return dhat, ghat_list, dis_of_each_itr[-1], \ | |||||
nb_updated_iam, nb_updated_random, nb_updated_k_iam, nb_updated_k_random | |||||
############################################################################### | |||||
# Old implementations. | |||||
#def gk_iam(Gn, alpha): | |||||
# """This function constructs graph pre-image by the iterative pre-image | |||||
# framework in reference [1], algorithm 1, where the step of generating new | |||||
# graphs randomly is replaced by the IAM algorithm in reference [2]. | |||||
# | |||||
# notes | |||||
# ----- | |||||
# Every time a better graph is acquired, the older one is replaced by it. | |||||
# """ | |||||
# pass | |||||
# # compute k nearest neighbors of phi in DN. | |||||
# dis_list = [] # distance between g_star and each graph. | |||||
# for ig, g in tqdm(enumerate(Gn), desc='computing distances', file=sys.stdout): | |||||
# dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||||
# k_g2_list[ig]) + (alpha * alpha * k_list[idx1] + alpha * | |||||
# (1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||||
# k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||||
# dis_list.append(dtemp) | |||||
# | |||||
# # sort | |||||
# sort_idx = np.argsort(dis_list) | |||||
# dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] | |||||
# g0hat = Gn[sort_idx[0]] # the nearest neighbor of phi in DN | |||||
# if dis_gs[0] == 0: # the exact pre-image. | |||||
# print('The exact pre-image is found from the input dataset.') | |||||
# return 0, g0hat | |||||
# dhat = dis_gs[0] # the nearest distance | |||||
# Gk = [Gn[ig] for ig in sort_idx[0:k]] # the k nearest neighbors | |||||
# gihat_list = [] | |||||
# | |||||
## i = 1 | |||||
# r = 1 | |||||
# while r < r_max: | |||||
# print('r =', r) | |||||
## found = False | |||||
# Gs_nearest = Gk + gihat_list | |||||
# g_tmp = iam(Gs_nearest) | |||||
# | |||||
# # compute distance between \psi and the new generated graph. | |||||
# knew = marginalizedkernel([g_tmp, g1, g2], node_label='atom', edge_label=None, | |||||
# p_quit=lmbda, n_iteration=20, remove_totters=False, | |||||
# n_jobs=multiprocessing.cpu_count(), verbose=False) | |||||
# dnew = knew[0][0, 0] - 2 * (alpha * knew[0][0, 1] + (1 - alpha) * | |||||
# knew[0][0, 2]) + (alpha * alpha * k_list[idx1] + alpha * | |||||
# (1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||||
# k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||||
# if dnew <= dhat: # the new distance is smaller | |||||
# print('I am smaller!') | |||||
# dhat = dnew | |||||
# g_new = g_tmp.copy() # found better graph. | |||||
# gihat_list = [g_new] | |||||
# dis_gs.append(dhat) | |||||
# r = 0 | |||||
# else: | |||||
# r += 1 | |||||
# | |||||
# ghat = ([g0hat] if len(gihat_list) == 0 else gihat_list) | |||||
# | |||||
# return dhat, ghat | |||||
#def gk_iam_nearest(Gn, alpha, idx_gi, Kmatrix, k, r_max): | |||||
# """This function constructs graph pre-image by the iterative pre-image | |||||
# framework in reference [1], algorithm 1, where the step of generating new | |||||
# graphs randomly is replaced by the IAM algorithm in reference [2]. | |||||
# | |||||
# notes | |||||
# ----- | |||||
# Every time a better graph is acquired, its distance in kernel space is | |||||
# compared with the k nearest ones, and the k nearest distances from the k+1 | |||||
# distances will be used as the new ones. | |||||
# """ | |||||
# # compute k nearest neighbors of phi in DN. | |||||
# dis_list = [] # distance between g_star and each graph. | |||||
# for ig, g in tqdm(enumerate(Gn), desc='computing distances', file=sys.stdout): | |||||
# dtemp = dis_gstar(ig, idx_gi, alpha, Kmatrix) | |||||
## dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||||
## k_g2_list[ig]) + (alpha * alpha * k_list[0] + alpha * | |||||
## (1 - alpha) * k_g2_list[0] + (1 - alpha) * alpha * | |||||
## k_g1_list[6] + (1 - alpha) * (1 - alpha) * k_list[6]) | |||||
# dis_list.append(dtemp) | |||||
# | |||||
# # sort | |||||
# sort_idx = np.argsort(dis_list) | |||||
# dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] # the k shortest distances | |||||
# g0hat = Gn[sort_idx[0]] # the nearest neighbor of phi in DN | |||||
# if dis_gs[0] == 0: # the exact pre-image. | |||||
# print('The exact pre-image is found from the input dataset.') | |||||
# return 0, g0hat | |||||
# dhat = dis_gs[0] # the nearest distance | |||||
# ghat = g0hat.copy() | |||||
# Gk = [Gn[ig].copy() for ig in sort_idx[0:k]] # the k nearest neighbors | |||||
# for gi in Gk: | |||||
# nx.draw_networkx(gi) | |||||
# plt.show() | |||||
# print(gi.nodes(data=True)) | |||||
# print(gi.edges(data=True)) | |||||
# Gs_nearest = Gk.copy() | |||||
## gihat_list = [] | |||||
# | |||||
## i = 1 | |||||
# r = 1 | |||||
# while r < r_max: | |||||
# print('r =', r) | |||||
## found = False | |||||
## Gs_nearest = Gk + gihat_list | |||||
## g_tmp = iam(Gs_nearest) | |||||
# g_tmp = test_iam_with_more_graphs_as_init(Gs_nearest, Gs_nearest, c_ei=1, c_er=1, c_es=1) | |||||
# nx.draw_networkx(g_tmp) | |||||
# plt.show() | |||||
# print(g_tmp.nodes(data=True)) | |||||
# print(g_tmp.edges(data=True)) | |||||
# | |||||
# # compute distance between \psi and the new generated graph. | |||||
# gi_list = [Gn[i] for i in idx_gi] | |||||
# knew = compute_kernel([g_tmp] + gi_list, 'untilhpathkernel', False) | |||||
# dnew = dis_gstar(0, range(1, len(gi_list) + 1), alpha, knew) | |||||
# | |||||
## dnew = knew[0, 0] - 2 * (alpha[0] * knew[0, 1] + alpha[1] * | |||||
## knew[0, 2]) + (alpha[0] * alpha[0] * k_list[0] + alpha[0] * | |||||
## alpha[1] * k_g2_list[0] + alpha[1] * alpha[0] * | |||||
## k_g1_list[1] + alpha[1] * alpha[1] * k_list[1]) | |||||
# if dnew <= dhat and g_tmp != ghat: # the new distance is smaller | |||||
# print('I am smaller!') | |||||
# print(str(dhat) + '->' + str(dnew)) | |||||
## nx.draw_networkx(ghat) | |||||
## plt.show() | |||||
## print('->') | |||||
## nx.draw_networkx(g_tmp) | |||||
## plt.show() | |||||
# | |||||
# dhat = dnew | |||||
# g_new = g_tmp.copy() # found better graph. | |||||
# ghat = g_tmp.copy() | |||||
# dis_gs.append(dhat) # add the new nearest distance. | |||||
# Gs_nearest.append(g_new) # add the corresponding graph. | |||||
# sort_idx = np.argsort(dis_gs) | |||||
# dis_gs = [dis_gs[idx] for idx in sort_idx[0:k]] # the new k nearest distances. | |||||
# Gs_nearest = [Gs_nearest[idx] for idx in sort_idx[0:k]] | |||||
# r = 0 | |||||
# else: | |||||
# r += 1 | |||||
# | |||||
# return dhat, ghat | |||||
#def gk_iam_nearest_multi(Gn, alpha, idx_gi, Kmatrix, k, r_max): | |||||
# """This function constructs graph pre-image by the iterative pre-image | |||||
# framework in reference [1], algorithm 1, where the step of generating new | |||||
# graphs randomly is replaced by the IAM algorithm in reference [2]. | |||||
# | |||||
# notes | |||||
# ----- | |||||
# Every time a set of n better graphs is acquired, their distances in kernel space are | |||||
# compared with the k nearest ones, and the k nearest distances from the k+n | |||||
# distances will be used as the new ones. | |||||
# """ | |||||
# Gn_median = [Gn[idx].copy() for idx in idx_gi] | |||||
# # compute k nearest neighbors of phi in DN. | |||||
# dis_list = [] # distance between g_star and each graph. | |||||
# for ig, g in tqdm(enumerate(Gn), desc='computing distances', file=sys.stdout): | |||||
# dtemp = dis_gstar(ig, idx_gi, alpha, Kmatrix) | |||||
## dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||||
## k_g2_list[ig]) + (alpha * alpha * k_list[0] + alpha * | |||||
## (1 - alpha) * k_g2_list[0] + (1 - alpha) * alpha * | |||||
## k_g1_list[6] + (1 - alpha) * (1 - alpha) * k_list[6]) | |||||
# dis_list.append(dtemp) | |||||
# | |||||
# # sort | |||||
# sort_idx = np.argsort(dis_list) | |||||
# dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] # the k shortest distances | |||||
# nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist()) | |||||
# g0hat_list = [Gn[idx] for idx in sort_idx[0:nb_best]] # the nearest neighbors of phi in DN | |||||
# if dis_gs[0] == 0: # the exact pre-image. | |||||
# print('The exact pre-image is found from the input dataset.') | |||||
# return 0, g0hat_list | |||||
# dhat = dis_gs[0] # the nearest distance | |||||
# ghat_list = [g.copy() for g in g0hat_list] | |||||
# for g in ghat_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# Gk = [Gn[ig].copy() for ig in sort_idx[0:k]] # the k nearest neighbors | |||||
# for gi in Gk: | |||||
# nx.draw_networkx(gi) | |||||
# plt.show() | |||||
# print(gi.nodes(data=True)) | |||||
# print(gi.edges(data=True)) | |||||
# Gs_nearest = Gk.copy() | |||||
## gihat_list = [] | |||||
# | |||||
## i = 1 | |||||
# r = 1 | |||||
# while r < r_max: | |||||
# print('r =', r) | |||||
## found = False | |||||
## Gs_nearest = Gk + gihat_list | |||||
## g_tmp = iam(Gs_nearest) | |||||
# g_tmp_list = test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||||
# Gn_median, Gs_nearest, c_ei=1, c_er=1, c_es=1) | |||||
# for g in g_tmp_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# | |||||
# # compute distance between \psi and the new generated graphs. | |||||
# gi_list = [Gn[i] for i in idx_gi] | |||||
# knew = compute_kernel(g_tmp_list + gi_list, 'marginalizedkernel', False) | |||||
# dnew_list = [] | |||||
# for idx, g_tmp in enumerate(g_tmp_list): | |||||
# dnew_list.append(dis_gstar(idx, range(len(g_tmp_list), | |||||
# len(g_tmp_list) + len(gi_list) + 1), alpha, knew)) | |||||
# | |||||
## dnew = knew[0, 0] - 2 * (alpha[0] * knew[0, 1] + alpha[1] * | |||||
## knew[0, 2]) + (alpha[0] * alpha[0] * k_list[0] + alpha[0] * | |||||
## alpha[1] * k_g2_list[0] + alpha[1] * alpha[0] * | |||||
## k_g1_list[1] + alpha[1] * alpha[1] * k_list[1]) | |||||
# | |||||
# # find the new k nearest graphs. | |||||
# dis_gs = dnew_list + dis_gs # add the new nearest distances. | |||||
# Gs_nearest = [g.copy() for g in g_tmp_list] + Gs_nearest # add the corresponding graphs. | |||||
# sort_idx = np.argsort(dis_gs) | |||||
# if len([i for i in sort_idx[0:k] if i < len(dnew_list)]) > 0: | |||||
# print('We got better k nearest neighbors! Hurray!') | |||||
# dis_gs = [dis_gs[idx] for idx in sort_idx[0:k]] # the new k nearest distances. | |||||
# print(dis_gs[-1]) | |||||
# Gs_nearest = [Gs_nearest[idx] for idx in sort_idx[0:k]] | |||||
# nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist()) | |||||
# if len([i for i in sort_idx[0:nb_best] if i < len(dnew_list)]) > 0: | |||||
# print('I have smaller or equal distance!') | |||||
# dhat = dis_gs[0] | |||||
# print(str(dhat) + '->' + str(dhat)) | |||||
# idx_best_list = np.argwhere(dnew_list == dhat).flatten().tolist() | |||||
# ghat_list = [g_tmp_list[idx].copy() for idx in idx_best_list] | |||||
# for g in ghat_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# r = 0 | |||||
# else: | |||||
# r += 1 | |||||
# | |||||
# return dhat, ghat_list |
@@ -1,309 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Wed Mar 6 16:03:11 2019 | |||||
pre-image | |||||
@author: ljia | |||||
""" | |||||
import sys | |||||
import numpy as np | |||||
import random | |||||
from tqdm import tqdm | |||||
import networkx as nx | |||||
import matplotlib.pyplot as plt | |||||
from gklearn.preimage.utils import compute_kernel, dis_gstar | |||||
def preimage_random(Gn_init, Gn_median, alpha, idx_gi, Kmatrix, k, r_max, l, gkernel): | |||||
Gn_init = [nx.convert_node_labels_to_integers(g) for g in Gn_init] | |||||
# compute k nearest neighbors of phi in DN. | |||||
dis_list = [] # distance between g_star and each graph. | |||||
term3 = 0 | |||||
for i1, a1 in enumerate(alpha): | |||||
for i2, a2 in enumerate(alpha): | |||||
term3 += a1 * a2 * Kmatrix[idx_gi[i1], idx_gi[i2]] | |||||
for ig, g in tqdm(enumerate(Gn_init), desc='computing distances', file=sys.stdout): | |||||
dtemp = dis_gstar(ig, idx_gi, alpha, Kmatrix, term3=term3) | |||||
dis_list.append(dtemp) | |||||
# print(np.max(dis_list)) | |||||
# print(np.min(dis_list)) | |||||
# print(np.min([item for item in dis_list if item != 0])) | |||||
# print(np.mean(dis_list)) | |||||
# sort | |||||
sort_idx = np.argsort(dis_list) | |||||
dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] # the k shortest distances | |||||
nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist()) | |||||
g0hat_list = [Gn_init[idx] for idx in sort_idx[0:nb_best]] # the nearest neighbors of phi in DN | |||||
if dis_gs[0] == 0: # the exact pre-image. | |||||
print('The exact pre-image is found from the input dataset.') | |||||
return 0, g0hat_list[0], 0 | |||||
dhat = dis_gs[0] # the nearest distance | |||||
# ghat_list = [g.copy() for g in g0hat_list] | |||||
# for g in ghat_list: | |||||
# draw_Letter_graph(g) | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
Gk = [Gn_init[ig].copy() for ig in sort_idx[0:k]] # the k nearest neighbors | |||||
# for gi in Gk: | |||||
## nx.draw_networkx(gi) | |||||
## plt.show() | |||||
# draw_Letter_graph(g) | |||||
# print(gi.nodes(data=True)) | |||||
# print(gi.edges(data=True)) | |||||
Gs_nearest = [g.copy() for g in Gk] | |||||
gihat_list = [] | |||||
dihat_list = [] | |||||
# i = 1 | |||||
r = 0 | |||||
# sod_list = [dhat] | |||||
# found = False | |||||
dis_of_each_itr = [dhat] | |||||
nb_updated = 0 | |||||
g_best = [] | |||||
while r < r_max: | |||||
print('\nr =', r) | |||||
print('itr for gk =', nb_updated, '\n') | |||||
found = False | |||||
dis_bests = dis_gs + dihat_list | |||||
# @todo what if the log is negetive? how to choose alpha (scalar)? | |||||
fdgs_list = np.array(dis_bests) | |||||
if np.min(fdgs_list) < 1: | |||||
fdgs_list /= np.min(dis_bests) | |||||
fdgs_list = [int(item) for item in np.ceil(np.log(fdgs_list))] | |||||
if np.min(fdgs_list) < 1: | |||||
fdgs_list = np.array(fdgs_list) + 1 | |||||
for ig, gs in enumerate(Gs_nearest + gihat_list): | |||||
# nx.draw_networkx(gs) | |||||
# plt.show() | |||||
for trail in range(0, l): | |||||
# for trail in tqdm(range(0, l), desc='l loops', file=sys.stdout): | |||||
# add and delete edges. | |||||
gtemp = gs.copy() | |||||
np.random.seed() | |||||
# which edges to change. | |||||
# @todo: should we use just half of the adjacency matrix for undirected graphs? | |||||
nb_vpairs = nx.number_of_nodes(gs) * (nx.number_of_nodes(gs) - 1) | |||||
# @todo: what if fdgs is bigger than nb_vpairs? | |||||
idx_change = random.sample(range(nb_vpairs), fdgs_list[ig] if | |||||
fdgs_list[ig] < nb_vpairs else nb_vpairs) | |||||
# idx_change = np.random.randint(0, nx.number_of_nodes(gs) * | |||||
# (nx.number_of_nodes(gs) - 1), fdgs) | |||||
for item in idx_change: | |||||
node1 = int(item / (nx.number_of_nodes(gs) - 1)) | |||||
node2 = (item - node1 * (nx.number_of_nodes(gs) - 1)) | |||||
if node2 >= node1: # skip the self pair. | |||||
node2 += 1 | |||||
# @todo: is the randomness correct? | |||||
if not gtemp.has_edge(node1, node2): | |||||
gtemp.add_edge(node1, node2) | |||||
# nx.draw_networkx(gs) | |||||
# plt.show() | |||||
# nx.draw_networkx(gtemp) | |||||
# plt.show() | |||||
else: | |||||
gtemp.remove_edge(node1, node2) | |||||
# nx.draw_networkx(gs) | |||||
# plt.show() | |||||
# nx.draw_networkx(gtemp) | |||||
# plt.show() | |||||
# nx.draw_networkx(gtemp) | |||||
# plt.show() | |||||
# compute distance between \psi and the new generated graph. | |||||
# knew = marginalizedkernel([gtemp, g1, g2], node_label='atom', edge_label=None, | |||||
# p_quit=lmbda, n_iteration=20, remove_totters=False, | |||||
# n_jobs=multiprocessing.cpu_count(), verbose=False) | |||||
knew = compute_kernel([gtemp] + Gn_median, gkernel, verbose=False) | |||||
dnew = dis_gstar(0, range(1, len(Gn_median) + 1), alpha, knew, | |||||
withterm3=False) | |||||
if dnew <= dhat: # @todo: the new distance is smaller or also equal? | |||||
if dnew < dhat: | |||||
print('\nI am smaller!') | |||||
print('ig =', str(ig), ', l =', str(trail)) | |||||
print(dhat, '->', dnew) | |||||
nb_updated += 1 | |||||
elif dnew == dhat: | |||||
print('I am equal!') | |||||
# nx.draw_networkx(gtemp) | |||||
# plt.show() | |||||
# print(gtemp.nodes(data=True)) | |||||
# print(gtemp.edges(data=True)) | |||||
dhat = dnew | |||||
gnew = gtemp.copy() | |||||
found = True # found better graph. | |||||
if found: | |||||
r = 0 | |||||
gihat_list = [gnew] | |||||
dihat_list = [dhat] | |||||
else: | |||||
r += 1 | |||||
dis_of_each_itr.append(dhat) | |||||
print('the shortest distances for previous iterations are', dis_of_each_itr) | |||||
# dis_best.append(dhat) | |||||
g_best = (g0hat_list[0] if len(gihat_list) == 0 else gihat_list[0]) | |||||
print('distances in kernel space:', dis_of_each_itr, '\n') | |||||
return dhat, g_best, nb_updated | |||||
# return 0, 0, 0 | |||||
if __name__ == '__main__': | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
# ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
# 'extra_params': {}} # node/edge symb | |||||
ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', | |||||
'extra_params': {}} # node nsymb | |||||
# ds = {'name': 'Acyclic', 'dataset': '../datasets/monoterpenoides/trainset_9.ds', | |||||
# 'extra_params': {}} | |||||
# ds = {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
# 'extra_params': {}} # node symb | |||||
DN, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
#DN = DN[0:10] | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 3 # 10 # iteration limit. | |||||
l = 500 | |||||
alpha_range = np.linspace(0.5, 0.5, 1) | |||||
#alpha_range = np.linspace(0.1, 0.9, 9) | |||||
k = 10 # 5 # k nearest neighbors | |||||
# randomly select two molecules | |||||
#np.random.seed(1) | |||||
#idx1, idx2 = np.random.randint(0, len(DN), 2) | |||||
#g1 = DN[idx1] | |||||
#g2 = DN[idx2] | |||||
idx1 = 0 | |||||
idx2 = 6 | |||||
g1 = DN[idx1] | |||||
g2 = DN[idx2] | |||||
# compute | |||||
k_list = [] # kernel between each graph and itself. | |||||
k_g1_list = [] # kernel between each graph and g1 | |||||
k_g2_list = [] # kernel between each graph and g2 | |||||
for ig, g in tqdm(enumerate(DN), desc='computing self kernels', file=sys.stdout): | |||||
# ktemp = marginalizedkernel([g, g1, g2], node_label='atom', edge_label=None, | |||||
# p_quit=lmbda, n_iteration=20, remove_totters=False, | |||||
# n_jobs=multiprocessing.cpu_count(), verbose=False) | |||||
ktemp = compute_kernel([g, g1, g2], 'untilhpathkernel', verbose=False) | |||||
k_list.append(ktemp[0, 0]) | |||||
k_g1_list.append(ktemp[0, 1]) | |||||
k_g2_list.append(ktemp[0, 2]) | |||||
g_best = [] | |||||
dis_best = [] | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('alpha =', alpha) | |||||
# compute k nearest neighbors of phi in DN. | |||||
dis_list = [] # distance between g_star and each graph. | |||||
for ig, g in tqdm(enumerate(DN), desc='computing distances', file=sys.stdout): | |||||
dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||||
k_g2_list[ig]) + (alpha * alpha * k_list[idx1] + alpha * | |||||
(1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||||
k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||||
dis_list.append(np.sqrt(dtemp)) | |||||
# sort | |||||
sort_idx = np.argsort(dis_list) | |||||
dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] | |||||
g0hat = DN[sort_idx[0]] # the nearest neighbor of phi in DN | |||||
if dis_gs[0] == 0: # the exact pre-image. | |||||
print('The exact pre-image is found from the input dataset.') | |||||
g_pimg = g0hat | |||||
break | |||||
dhat = dis_gs[0] # the nearest distance | |||||
Dk = [DN[ig] for ig in sort_idx[0:k]] # the k nearest neighbors | |||||
gihat_list = [] | |||||
i = 1 | |||||
r = 1 | |||||
while r < r_max: | |||||
print('r =', r) | |||||
found = False | |||||
for ig, gs in enumerate(Dk + gihat_list): | |||||
# nx.draw_networkx(gs) | |||||
# plt.show() | |||||
# @todo what if the log is negetive? | |||||
fdgs = int(np.abs(np.ceil(np.log(alpha * dis_gs[ig])))) | |||||
for trail in tqdm(range(0, l), desc='l loop', file=sys.stdout): | |||||
# add and delete edges. | |||||
gtemp = gs.copy() | |||||
np.random.seed() | |||||
# which edges to change. | |||||
# @todo: should we use just half of the adjacency matrix for undirected graphs? | |||||
nb_vpairs = nx.number_of_nodes(gs) * (nx.number_of_nodes(gs) - 1) | |||||
# @todo: what if fdgs is bigger than nb_vpairs? | |||||
idx_change = random.sample(range(nb_vpairs), fdgs if fdgs < nb_vpairs else nb_vpairs) | |||||
# idx_change = np.random.randint(0, nx.number_of_nodes(gs) * | |||||
# (nx.number_of_nodes(gs) - 1), fdgs) | |||||
for item in idx_change: | |||||
node1 = int(item / (nx.number_of_nodes(gs) - 1)) | |||||
node2 = (item - node1 * (nx.number_of_nodes(gs) - 1)) | |||||
if node2 >= node1: # skip the self pair. | |||||
node2 += 1 | |||||
# @todo: is the randomness correct? | |||||
if not gtemp.has_edge(node1, node2): | |||||
# @todo: how to update the bond_type? 0 or 1? | |||||
gtemp.add_edges_from([(node1, node2, {'bond_type': 1})]) | |||||
# nx.draw_networkx(gs) | |||||
# plt.show() | |||||
# nx.draw_networkx(gtemp) | |||||
# plt.show() | |||||
else: | |||||
gtemp.remove_edge(node1, node2) | |||||
# nx.draw_networkx(gs) | |||||
# plt.show() | |||||
# nx.draw_networkx(gtemp) | |||||
# plt.show() | |||||
# nx.draw_networkx(gtemp) | |||||
# plt.show() | |||||
# compute distance between phi and the new generated graph. | |||||
# knew = marginalizedkernel([gtemp, g1, g2], node_label='atom', edge_label=None, | |||||
# p_quit=lmbda, n_iteration=20, remove_totters=False, | |||||
# n_jobs=multiprocessing.cpu_count(), verbose=False) | |||||
knew = compute_kernel([gtemp, g1, g2], 'untilhpathkernel', verbose=False) | |||||
dnew = np.sqrt(knew[0, 0] - 2 * (alpha * knew[0, 1] + (1 - alpha) * | |||||
knew[0, 2]) + (alpha * alpha * k_list[idx1] + alpha * | |||||
(1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||||
k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2])) | |||||
if dnew < dhat: # @todo: the new distance is smaller or also equal? | |||||
print('I am smaller!') | |||||
print(dhat, '->', dnew) | |||||
nx.draw_networkx(gtemp) | |||||
plt.show() | |||||
print(gtemp.nodes(data=True)) | |||||
print(gtemp.edges(data=True)) | |||||
dhat = dnew | |||||
gnew = gtemp.copy() | |||||
found = True # found better graph. | |||||
r = 0 | |||||
elif dnew == dhat: | |||||
print('I am equal!') | |||||
if found: | |||||
gihat_list = [gnew] | |||||
dis_gs.append(dhat) | |||||
else: | |||||
r += 1 | |||||
dis_best.append(dhat) | |||||
g_best += ([g0hat] if len(gihat_list) == 0 else gihat_list) | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', dis_best[idx]) | |||||
print('the corresponding pre-image is') | |||||
nx.draw_networkx(g_best[idx]) | |||||
plt.show() |
@@ -1,122 +0,0 @@ | |||||
elif opt_name == 'random-inits': | |||||
try: | |||||
num_random_inits_ = std::stoul(opt_val) | |||||
desired_num_random_inits_ = num_random_inits_ | |||||
except: | |||||
raise Error('Invalid argument "' + opt_val + '" for option random-inits. Usage: options = "[--random-inits <convertible to int greater 0>]"') | |||||
if num_random_inits_ <= 0: | |||||
raise Error('Invalid argument "' + opt_val + '" for option random-inits. Usage: options = "[--random-inits <convertible to int greater 0>]"') | |||||
} | |||||
elif opt_name == 'randomness': | |||||
if opt_val == 'PSEUDO': | |||||
use_real_randomness_ = False | |||||
elif opt_val == 'REAL': | |||||
use_real_randomness_ = True | |||||
else: | |||||
raise Error('Invalid argument "' + opt_val + '" for option randomness. Usage: options = "[--randomness REAL|PSEUDO] [...]"') | |||||
} | |||||
elif opt_name == 'stdout': | |||||
if opt_val == '0': | |||||
print_to_stdout_ = 0 | |||||
elif opt_val == '1': | |||||
print_to_stdout_ = 1 | |||||
elif opt_val == '2': | |||||
print_to_stdout_ = 2 | |||||
else: | |||||
raise Error('Invalid argument "' + opt_val + '" for option stdout. Usage: options = "[--stdout 0|1|2] [...]"') | |||||
} | |||||
elif opt_name == 'refine': | |||||
if opt_val == 'TRUE': | |||||
refine_ = True | |||||
elif opt_val == 'FALSE': | |||||
refine_ = False | |||||
else: | |||||
raise Error('Invalid argument "' + opt_val + '" for option refine. Usage: options = "[--refine TRUE|FALSE] [...]"') | |||||
} | |||||
elif opt_name == 'time-limit': | |||||
try: | |||||
time_limit_in_sec_ = std::stod(opt_val) | |||||
except: | |||||
raise Error('Invalid argument "' + opt_val + '" for option time-limit. Usage: options = "[--time-limit <convertible to double>] [...]') | |||||
} | |||||
elif opt_name == 'max-itrs': | |||||
try: | |||||
max_itrs_ = std::stoi(opt_val) | |||||
except: | |||||
raise Error('Invalid argument "' + opt_val + '" for option max-itrs. Usage: options = "[--max-itrs <convertible to int>] [...]') | |||||
} | |||||
elif opt_name == 'max-itrs-without-update': | |||||
try: | |||||
max_itrs_without_update_ = std::stoi(opt_val) | |||||
except: | |||||
raise Error('Invalid argument "' + opt_val + '" for option max-itrs-without-update. Usage: options = "[--max-itrs-without-update <convertible to int>] [...]') | |||||
} | |||||
elif opt_name == 'seed': | |||||
try: | |||||
seed_ = std::stoul(opt_val) | |||||
except: | |||||
raise Error('Invalid argument "' + opt_val + '" for option seed. Usage: options = "[--seed <convertible to int greater equal 0>] [...]') | |||||
} | |||||
elif opt_name == 'epsilon': | |||||
try: | |||||
epsilon_ = std::stod(opt_val) | |||||
except: | |||||
raise Error('Invalid argument "' + opt_val + '" for option epsilon. Usage: options = "[--epsilon <convertible to double greater 0>] [...]') | |||||
if epsilon_ <= 0: | |||||
raise Error('Invalid argument "' + opt_val + '" for option epsilon. Usage: options = "[--epsilon <convertible to double greater 0>] [...]') | |||||
} | |||||
elif opt_name == 'inits-increase-order': | |||||
try: | |||||
num_inits_increase_order_ = std::stoul(opt_val) | |||||
except: | |||||
raise Error('Invalid argument "' + opt_val + '" for option inits-increase-order. Usage: options = "[--inits-increase-order <convertible to int greater 0>]"') | |||||
if num_inits_increase_order_ <= 0: | |||||
raise Error('Invalid argument "' + opt_val + '" for option inits-increase-order. Usage: options = "[--inits-increase-order <convertible to int greater 0>]"') | |||||
} | |||||
elif opt_name == 'init-type-increase-order': | |||||
init_type_increase_order_ = opt_val | |||||
if opt_val != 'CLUSTERS' and opt_val != 'K-MEANS++': | |||||
raise Exception(std::string('Invalid argument ') + opt_val + ' for option init-type-increase-order. Usage: options = "[--init-type-increase-order CLUSTERS|K-MEANS++] [...]"') | |||||
} | |||||
elif opt_name == 'max-itrs-increase-order': | |||||
try: | |||||
max_itrs_increase_order_ = std::stoi(opt_val) | |||||
except: | |||||
raise Error('Invalid argument "' + opt_val + '" for option max-itrs-increase-order. Usage: options = "[--max-itrs-increase-order <convertible to int>] [...]') | |||||
} | |||||
else: | |||||
std::string valid_options('[--init-type <arg>] [--random-inits <arg>] [--randomness <arg>] [--seed <arg>] [--stdout <arg>] ') | |||||
valid_options += '[--time-limit <arg>] [--max-itrs <arg>] [--epsilon <arg>] ' | |||||
valid_options += '[--inits-increase-order <arg>] [--init-type-increase-order <arg>] [--max-itrs-increase-order <arg>]' | |||||
raise Error(std::string('Invalid option "') + opt_name + '". Usage: options = "' + valid_options + '"') | |||||
@@ -1,83 +0,0 @@ | |||||
#export LD_LIBRARY_PATH=.:/export/home/lambertn/Documents/gedlibpy/lib/fann/:/export/home/lambertn/Documents/gedlibpy/lib/libsvm.3.22:/export/home/lambertn/Documents/gedlibpy/lib/nomad | |||||
#Pour que "import script" trouve les librairies qu'a besoin GedLib | |||||
#Equivalent à définir la variable d'environnement LD_LIBRARY_PATH sur un bash | |||||
import gedlibpy.librariesImport | |||||
from gedlibpy import gedlibpy | |||||
import networkx as nx | |||||
def init() : | |||||
print("List of Edit Cost Options : ") | |||||
for i in gedlibpy.list_of_edit_cost_options : | |||||
print (i) | |||||
print("") | |||||
print("List of Method Options : ") | |||||
for j in gedlibpy.list_of_method_options : | |||||
print (j) | |||||
print("") | |||||
print("List of Init Options : ") | |||||
for k in gedlibpy.list_of_init_options : | |||||
print (k) | |||||
print("") | |||||
def test(): | |||||
gedlibpy.load_GXL_graphs('include/gedlib-master/data/datasets/Mutagenicity/data/', 'collections/MUTA_10.xml') | |||||
listID = gedlibpy.get_all_graph_ids() | |||||
gedlibpy.set_edit_cost("CHEM_1") | |||||
gedlibpy.init() | |||||
gedlibpy.set_method("IPFP", "") | |||||
gedlibpy.init_method() | |||||
g = listID[0] | |||||
h = listID[1] | |||||
gedlibpy.run_method(g, h) | |||||
print("Node Map : ", gedlibpy.get_node_map(g,h)) | |||||
print("Forward map : " , gedlibpy.get_forward_map(g, h), ", Backward map : ", gedlibpy.get_backward_map(g, h)) | |||||
print("Assignment Matrix : ") | |||||
print(gedlibpy.get_assignment_matrix(g, h)) | |||||
print ("Upper Bound = " + str(gedlibpy.get_upper_bound(g,h)) + ", Lower Bound = " + str(gedlibpy.get_lower_bound(g, h)) + ", Runtime = " + str(gedlibpy.get_runtime(g, h))) | |||||
def convertGraph(G): | |||||
G_new = nx.Graph() | |||||
for nd, attrs in G.nodes(data=True): | |||||
G_new.add_node(str(nd), chem=attrs['atom']) | |||||
for nd1, nd2, attrs in G.edges(data=True): | |||||
G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type']) | |||||
return G_new | |||||
def testNxGrapĥ(): | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
gedlibpy.restart_env() | |||||
for graph in Gn: | |||||
g_new = convertGraph(graph) | |||||
gedlibpy.add_nx_graph(g_new, "") | |||||
listID = gedlibpy.get_all_graph_ids() | |||||
gedlibpy.set_edit_cost("CHEM_1") | |||||
gedlibpy.init() | |||||
gedlibpy.set_method("IPFP", "") | |||||
gedlibpy.init_method() | |||||
print(listID) | |||||
g = listID[0] | |||||
h = listID[1] | |||||
gedlibpy.run_method(g, h) | |||||
print("Node Map : ", gedlibpy.get_node_map(g, h)) | |||||
print("Forward map : " , gedlibpy.get_forward_map(g, h), ", Backward map : ", gedlibpy.get_backward_map(g, h)) | |||||
print ("Upper Bound = " + str(gedlibpy.get_upper_bound(g, h)) + ", Lower Bound = " + str(gedlibpy.get_lower_bound(g, h)) + ", Runtime = " + str(gedlibpy.get_runtime(g, h))) | |||||
#test() | |||||
init() | |||||
#testNxGrapĥ() |
@@ -1,648 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Thu Oct 24 11:50:56 2019 | |||||
@author: ljia | |||||
""" | |||||
from matplotlib import pyplot as plt | |||||
import numpy as np | |||||
from tqdm import tqdm | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
from gklearn.preimage.utils import remove_edges | |||||
from gklearn.preimage.fitDistance import fit_GED_to_kernel_distance | |||||
from gklearn.preimage.utils import normalize_distance_matrix | |||||
def test_update_costs(): | |||||
from preimage.fitDistance import update_costs | |||||
import cvxpy as cp | |||||
ds = np.load('results/xp_fit_method/fit_data_debug4.gm.npz') | |||||
nb_cost_mat = ds['nb_cost_mat'] | |||||
dis_k_vec = ds['dis_k_vec'] | |||||
n_edit_operations = ds['n_edit_operations'] | |||||
ged_vec_init = ds['ged_vec_init'] | |||||
ged_mat = ds['ged_mat'] | |||||
nb_cost_mat_new = nb_cost_mat[:,[2,3,4]] | |||||
x = cp.Variable(nb_cost_mat_new.shape[1]) | |||||
cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | |||||
# constraints = [x >= [0.000 for i in range(nb_cost_mat_new.shape[1])], | |||||
# np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] | |||||
# constraints = [x >= [0.000 for i in range(nb_cost_mat_new.shape[1])], | |||||
# np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0, | |||||
# np.array([0.0, 0.0, 0.0, 1.0, -1.0]).T@x == 0.0] | |||||
constraints = [x >= [0.00 for i in range(nb_cost_mat_new.shape[1])], | |||||
np.array([0.0, 1.0, -1.0]).T@x == 0.0] | |||||
# constraints = [x >= [0.00000 for i in range(nb_cost_mat_new.shape[1])]] | |||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||||
prob.solve() | |||||
print(x.value) | |||||
edit_costs_new = np.concatenate((x.value, np.array([0.0]))) | |||||
residual = np.sqrt(prob.value) | |||||
def median_paper_clcpc_python_best(): | |||||
"""c_vs <= c_vi + c_vr, c_es <= c_ei + c_er with ged computation with | |||||
python invoking the c++ code by bash command (with updated library). | |||||
""" | |||||
# ds = {'name': 'monoterpenoides', | |||||
# 'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb | |||||
# _, y_all = loadDataset(ds['dataset']) | |||||
gkernel = 'untilhpathkernel' | |||||
node_label = 'atom' | |||||
edge_label = 'bond_type' | |||||
itr_max = 6 | |||||
algo_options = '--threads 8 --initial-solutions 40 --ratio-runs-from-initial-solutions 1' | |||||
params_ged = {'lib': 'gedlibpy', 'cost': 'CONSTANT', 'method': 'IPFP', | |||||
'algo_options': algo_options, 'stabilizer': None} | |||||
y_all = ['3', '1', '4', '6', '7', '8', '9', '2'] | |||||
repeats = 50 | |||||
collection_path = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/generated_datsets/monoterpenoides/' | |||||
graph_dir = collection_path + 'gxl/' | |||||
fn_edit_costs_output = 'results/median_paper/edit_costs_output.python_init40.k10.txt' | |||||
for y in y_all: | |||||
for repeat in range(repeats): | |||||
edit_costs_output_file = open(fn_edit_costs_output, 'a') | |||||
collection_file = collection_path + 'monoterpenoides_' + y + '_' + str(repeat) + '.xml' | |||||
Gn, _ = loadDataset(collection_file, extra_params=graph_dir) | |||||
edit_costs, residual_list, edit_cost_list, dis_k_mat, ged_mat, time_list, \ | |||||
nb_cost_mat_list = fit_GED_to_kernel_distance(Gn, node_label, edge_label, | |||||
gkernel, itr_max, params_ged=params_ged, | |||||
parallel=True) | |||||
total_time = np.sum(time_list) | |||||
# print('\nedit_costs:', edit_costs) | |||||
# print('\nresidual_list:', residual_list) | |||||
# print('\nedit_cost_list:', edit_cost_list) | |||||
# print('\ndistance matrix in kernel space:', dis_k_mat) | |||||
# print('\nged matrix:', ged_mat) | |||||
# print('\ntotal time:', total_time) | |||||
# print('\nnb_cost_mat:', nb_cost_mat_list[-1]) | |||||
np.savez('results/median_paper/fit_distance.clcpc.python_init40.monot.elabeled.uhpkernel.y' | |||||
+ y + '.repeat' + str(repeat) + '.k10..gm', | |||||
edit_costs=edit_costs, | |||||
residual_list=residual_list, edit_cost_list=edit_cost_list, | |||||
dis_k_mat=dis_k_mat, ged_mat=ged_mat, time_list=time_list, | |||||
total_time=total_time, nb_cost_mat_list=nb_cost_mat_list) | |||||
for ec in edit_costs: | |||||
edit_costs_output_file.write(str(ec) + ' ') | |||||
edit_costs_output_file.write('\n') | |||||
edit_costs_output_file.close() | |||||
# # normalized distance matrices. | |||||
# gmfile = np.load('results/fit_distance.cs_leq_ci_plus_cr.cost_leq_1en2.monot.elabeled.uhpkernel.gm.npz') | |||||
# edit_costs = gmfile['edit_costs'] | |||||
# residual_list = gmfile['residual_list'] | |||||
# edit_cost_list = gmfile['edit_cost_list'] | |||||
# dis_k_mat = gmfile['dis_k_mat'] | |||||
# ged_mat = gmfile['ged_mat'] | |||||
# total_time = gmfile['total_time'] | |||||
# nb_cost_mat_list = gmfile['nb_cost_mat_list'] | |||||
nb_consistent, nb_inconsistent, ratio_consistent = pairwise_substitution_consistence(dis_k_mat, ged_mat) | |||||
print(nb_consistent, nb_inconsistent, ratio_consistent) | |||||
# norm_dis_k_mat = normalize_distance_matrix(dis_k_mat) | |||||
# plt.imshow(norm_dis_k_mat) | |||||
# plt.colorbar() | |||||
# plt.savefig('results/median_paper/norm_dis_k_mat.clcpc.python_best.monot.elabeled.uhpkernel.y' | |||||
# + y + '.repeat' + str(repeat) + '.eps', format='eps', dpi=300) | |||||
# plt.savefig('results/median_paper/norm_dis_k_mat.clcpc.python_best.monot.elabeled.uhpkernel.y' | |||||
# + y + '.repeat' + str(repeat) + '.png', format='png') | |||||
# # plt.show() | |||||
# plt.clf() | |||||
# | |||||
# norm_ged_mat = normalize_distance_matrix(ged_mat) | |||||
# plt.imshow(norm_ged_mat) | |||||
# plt.colorbar() | |||||
# plt.savefig('results/median_paper/norm_ged_mat.clcpc.python_best.monot.elabeled.uhpkernel.y' | |||||
# + y + '.repeat' + str(repeat) + '.eps', format='eps', dpi=300) | |||||
# plt.savefig('results/median_paper/norm_ged_mat.clcpc.python_best.monot.elabeled.uhpkernel.y' | |||||
# + y + '.repeat' + str(repeat) + '.png', format='png') | |||||
# # plt.show() | |||||
# plt.clf() | |||||
# | |||||
# norm_diff = norm_ged_mat - norm_dis_k_mat | |||||
# plt.imshow(norm_diff) | |||||
# plt.colorbar() | |||||
# plt.savefig('results/median_paper/diff_mat_norm_ged_dis_k.clcpc.python_best.monot.elabeled.uhpkernel.y' | |||||
# + y + '.repeat' + str(repeat) + '.eps', format='eps', dpi=300) | |||||
# plt.savefig('results/median_paper/diff_mat_norm_ged_dis_k.clcpc.python_best.monot.elabeled.uhpkernel.y' | |||||
# + y + '.repeat' + str(repeat) + '.png', format='png') | |||||
# # plt.show() | |||||
# plt.clf() | |||||
# # draw_count_bar(norm_diff) | |||||
def median_paper_clcpc_python_bash_cpp(): | |||||
"""c_vs <= c_vi + c_vr, c_es <= c_ei + c_er with ged computation with | |||||
python invoking the c++ code by bash command (with updated library). | |||||
""" | |||||
# ds = {'name': 'monoterpenoides', | |||||
# 'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb | |||||
# _, y_all = loadDataset(ds['dataset']) | |||||
gkernel = 'untilhpathkernel' | |||||
node_label = 'atom' | |||||
edge_label = 'bond_type' | |||||
itr_max = 20 | |||||
algo_options = '--threads 6 --initial-solutions 10 --ratio-runs-from-initial-solutions .5' | |||||
params_ged = {'lib': 'gedlib-bash', 'cost': 'CONSTANT', 'method': 'IPFP', | |||||
'algo_options': algo_options} | |||||
y_all = ['3', '1', '4', '6', '7', '8', '9', '2'] | |||||
repeats = 50 | |||||
collection_path = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/generated_datsets/monoterpenoides/' | |||||
graph_dir = collection_path + 'gxl/' | |||||
fn_edit_costs_output = 'results/median_paper/edit_costs_output.txt' | |||||
for y in y_all: | |||||
for repeat in range(repeats): | |||||
edit_costs_output_file = open(fn_edit_costs_output, 'a') | |||||
collection_file = collection_path + 'monoterpenoides_' + y + '_' + str(repeat) + '.xml' | |||||
Gn, _ = loadDataset(collection_file, extra_params=graph_dir) | |||||
edit_costs, residual_list, edit_cost_list, dis_k_mat, ged_mat, time_list, \ | |||||
nb_cost_mat_list, coef_dk = fit_GED_to_kernel_distance(Gn, node_label, edge_label, | |||||
gkernel, itr_max, params_ged=params_ged, | |||||
parallel=False) | |||||
total_time = np.sum(time_list) | |||||
# print('\nedit_costs:', edit_costs) | |||||
# print('\nresidual_list:', residual_list) | |||||
# print('\nedit_cost_list:', edit_cost_list) | |||||
# print('\ndistance matrix in kernel space:', dis_k_mat) | |||||
# print('\nged matrix:', ged_mat) | |||||
# print('\ntotal time:', total_time) | |||||
# print('\nnb_cost_mat:', nb_cost_mat_list[-1]) | |||||
np.savez('results/median_paper/fit_distance.clcpc.python_bash_cpp.monot.elabeled.uhpkernel.y' | |||||
+ y + '.repeat' + str(repeat) + '.gm', | |||||
edit_costs=edit_costs, | |||||
residual_list=residual_list, edit_cost_list=edit_cost_list, | |||||
dis_k_mat=dis_k_mat, ged_mat=ged_mat, time_list=time_list, | |||||
total_time=total_time, nb_cost_mat_list=nb_cost_mat_list, | |||||
coef_dk=coef_dk) | |||||
for ec in edit_costs: | |||||
edit_costs_output_file.write(str(ec) + ' ') | |||||
edit_costs_output_file.write('\n') | |||||
edit_costs_output_file.close() | |||||
# # normalized distance matrices. | |||||
# gmfile = np.load('results/fit_distance.cs_leq_ci_plus_cr.cost_leq_1en2.monot.elabeled.uhpkernel.gm.npz') | |||||
# edit_costs = gmfile['edit_costs'] | |||||
# residual_list = gmfile['residual_list'] | |||||
# edit_cost_list = gmfile['edit_cost_list'] | |||||
# dis_k_mat = gmfile['dis_k_mat'] | |||||
# ged_mat = gmfile['ged_mat'] | |||||
# total_time = gmfile['total_time'] | |||||
# nb_cost_mat_list = gmfile['nb_cost_mat_list'] | |||||
# coef_dk = gmfile['coef_dk'] | |||||
nb_consistent, nb_inconsistent, ratio_consistent = pairwise_substitution_consistence(dis_k_mat, ged_mat) | |||||
print(nb_consistent, nb_inconsistent, ratio_consistent) | |||||
# norm_dis_k_mat = normalize_distance_matrix(dis_k_mat) | |||||
# plt.imshow(norm_dis_k_mat) | |||||
# plt.colorbar() | |||||
# plt.savefig('results/median_paper/norm_dis_k_mat.clcpc.python_bash_cpp.monot.elabeled.uhpkernel.y' | |||||
# + y + '.repeat' + str(repeat) + '.eps', format='eps', dpi=300) | |||||
# plt.savefig('results/median_paper/norm_dis_k_mat.clcpc.python_bash_cpp.monot.elabeled.uhpkernel.y' | |||||
# + y + '.repeat' + str(repeat) + '.png', format='png') | |||||
# # plt.show() | |||||
# plt.clf() | |||||
# | |||||
# norm_ged_mat = normalize_distance_matrix(ged_mat) | |||||
# plt.imshow(norm_ged_mat) | |||||
# plt.colorbar() | |||||
# plt.savefig('results/median_paper/norm_ged_mat.clcpc.python_bash_cpp.monot.elabeled.uhpkernel.y' | |||||
# + y + '.repeat' + str(repeat) + '.eps', format='eps', dpi=300) | |||||
# plt.savefig('results/median_paper/norm_ged_mat.clcpc.python_bash_cpp.monot.elabeled.uhpkernel.y' | |||||
# + y + '.repeat' + str(repeat) + '.png', format='png') | |||||
# # plt.show() | |||||
# plt.clf() | |||||
# | |||||
# norm_diff = norm_ged_mat - norm_dis_k_mat | |||||
# plt.imshow(norm_diff) | |||||
# plt.colorbar() | |||||
# plt.savefig('results/median_paper/diff_mat_norm_ged_dis_k.clcpc.python_bash_cpp.monot.elabeled.uhpkernel.y' | |||||
# + y + '.repeat' + str(repeat) + '.eps', format='eps', dpi=300) | |||||
# plt.savefig('results/median_paper/diff_mat_norm_ged_dis_k.clcpc.python_bash_cpp.monot.elabeled.uhpkernel.y' | |||||
# + y + '.repeat' + str(repeat) + '.png', format='png') | |||||
# # plt.show() | |||||
# plt.clf() | |||||
# # draw_count_bar(norm_diff) | |||||
def test_cs_leq_ci_plus_cr_python_bash_cpp(): | |||||
"""c_vs <= c_vi + c_vr, c_es <= c_ei + c_er with ged computation with | |||||
python invoking the c++ code by bash command (with updated library). | |||||
""" | |||||
ds = {'name': 'monoterpenoides', | |||||
'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset']) | |||||
# Gn = Gn[0:10] | |||||
gkernel = 'untilhpathkernel' | |||||
node_label = 'atom' | |||||
edge_label = 'bond_type' | |||||
itr_max = 10 | |||||
algo_options = '--threads 6 --initial-solutions 10 --ratio-runs-from-initial-solutions .5' | |||||
params_ged = {'lib': 'gedlib-bash', 'cost': 'CONSTANT', 'method': 'IPFP', | |||||
'algo_options': algo_options} | |||||
edit_costs, residual_list, edit_cost_list, dis_k_mat, ged_mat, time_list, \ | |||||
nb_cost_mat_list, coef_dk = fit_GED_to_kernel_distance(Gn, node_label, edge_label, | |||||
gkernel, itr_max, params_ged=params_ged, | |||||
parallel=False) | |||||
total_time = np.sum(time_list) | |||||
print('\nedit_costs:', edit_costs) | |||||
print('\nresidual_list:', residual_list) | |||||
print('\nedit_cost_list:', edit_cost_list) | |||||
print('\ndistance matrix in kernel space:', dis_k_mat) | |||||
print('\nged matrix:', ged_mat) | |||||
print('\ntotal time:', total_time) | |||||
print('\nnb_cost_mat:', nb_cost_mat_list[-1]) | |||||
np.savez('results/fit_distance.cs_leq_ci_plus_cr.python_bash_cpp.monot.elabeled.uhpkernel.gm', | |||||
edit_costs=edit_costs, | |||||
residual_list=residual_list, edit_cost_list=edit_cost_list, | |||||
dis_k_mat=dis_k_mat, ged_mat=ged_mat, time_list=time_list, | |||||
total_time=total_time, nb_cost_mat_list=nb_cost_mat_list, | |||||
coef_dk=coef_dk) | |||||
# ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
# 'extra_params': {}} # node/edge symb | |||||
# Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
## Gn = Gn[0:10] | |||||
## remove_edges(Gn) | |||||
# gkernel = 'untilhpathkernel' | |||||
# node_label = 'atom' | |||||
# edge_label = 'bond_type' | |||||
# itr_max = 10 | |||||
# edit_costs, residual_list, edit_cost_list, dis_k_mat, ged_mat, time_list, \ | |||||
# nb_cost_mat_list, coef_dk = fit_GED_to_kernel_distance(Gn, node_label, edge_label, | |||||
# gkernel, itr_max) | |||||
# total_time = np.sum(time_list) | |||||
# print('\nedit_costs:', edit_costs) | |||||
# print('\nresidual_list:', residual_list) | |||||
# print('\nedit_cost_list:', edit_cost_list) | |||||
# print('\ndistance matrix in kernel space:', dis_k_mat) | |||||
# print('\nged matrix:', ged_mat) | |||||
# print('\ntotal time:', total_time) | |||||
# print('\nnb_cost_mat:', nb_cost_mat_list[-1]) | |||||
# np.savez('results/fit_distance.cs_leq_ci_plus_cr.mutag.elabeled.uhpkernel.gm', | |||||
# edit_costs=edit_costs, | |||||
# residual_list=residual_list, edit_cost_list=edit_cost_list, | |||||
# dis_k_mat=dis_k_mat, ged_mat=ged_mat, time_list=time_list, | |||||
# total_time=total_time, nb_cost_mat_list=nb_cost_mat_list, coef_dk) | |||||
# # normalized distance matrices. | |||||
# gmfile = np.load('results/fit_distance.cs_leq_ci_plus_cr.monot.elabeled.uhpkernel.gm.npz') | |||||
# edit_costs = gmfile['edit_costs'] | |||||
# residual_list = gmfile['residual_list'] | |||||
# edit_cost_list = gmfile['edit_cost_list'] | |||||
# dis_k_mat = gmfile['dis_k_mat'] | |||||
# ged_mat = gmfile['ged_mat'] | |||||
# total_time = gmfile['total_time'] | |||||
# nb_cost_mat_list = gmfile['nb_cost_mat_list'] | |||||
# coef_dk = gmfile['coef_dk'] | |||||
nb_consistent, nb_inconsistent, ratio_consistent = pairwise_substitution_consistence(dis_k_mat, ged_mat) | |||||
print(nb_consistent, nb_inconsistent, ratio_consistent) | |||||
# dis_k_sub = pairwise_substitution(dis_k_mat) | |||||
# ged_sub = pairwise_substitution(ged_mat) | |||||
# np.savez('results/sub_dis_mat.cs_leq_ci_plus_cr.gm', | |||||
# dis_k_sub=dis_k_sub, ged_sub=ged_sub) | |||||
norm_dis_k_mat = normalize_distance_matrix(dis_k_mat) | |||||
plt.imshow(norm_dis_k_mat) | |||||
plt.colorbar() | |||||
plt.savefig('results/norm_dis_k_mat.cs_leq_ci_plus_cr.python_bash_cpp.monot.elabeled.uhpkernel' | |||||
+ '.eps', format='eps', dpi=300) | |||||
plt.savefig('results/norm_dis_k_mat.cs_leq_ci_plus_cr.python_bash_cpp.monot.elabeled.uhpkernel' | |||||
+ '.png', format='png') | |||||
# plt.show() | |||||
plt.clf() | |||||
norm_ged_mat = normalize_distance_matrix(ged_mat) | |||||
plt.imshow(norm_ged_mat) | |||||
plt.colorbar() | |||||
plt.savefig('results/norm_ged_mat.cs_leq_ci_plus_cr.python_bash_cpp.monot.elabeled.uhpkernel' | |||||
+ '.eps', format='eps', dpi=300) | |||||
plt.savefig('results/norm_ged_mat.cs_leq_ci_plus_cr.python_bash_cpp.monot.elabeled.uhpkernel' | |||||
+ '.png', format='png') | |||||
# plt.show() | |||||
plt.clf() | |||||
norm_diff = norm_ged_mat - norm_dis_k_mat | |||||
plt.imshow(norm_diff) | |||||
plt.colorbar() | |||||
plt.savefig('results/diff_mat_norm_ged_dis_k.cs_leq_ci_plus_cr.python_bash_cpp.monot.elabeled.uhpkernel' | |||||
+ '.eps', format='eps', dpi=300) | |||||
plt.savefig('results/diff_mat_norm_ged_dis_k.cs_leq_ci_plus_cr.python_bash_cpp.monot.elabeled.uhpkernel' | |||||
+ '.png', format='png') | |||||
# plt.show() | |||||
plt.clf() | |||||
# draw_count_bar(norm_diff) | |||||
def test_anycosts(): | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:10] | |||||
remove_edges(Gn) | |||||
gkernel = 'marginalizedkernel' | |||||
itr_max = 10 | |||||
edit_costs, residual_list, edit_cost_list, dis_k_mat, ged_mat, time_list, \ | |||||
nb_cost_mat_list, coef_dk = fit_GED_to_kernel_distance(Gn, gkernel, itr_max) | |||||
total_time = np.sum(time_list) | |||||
print('\nedit_costs:', edit_costs) | |||||
print('\nresidual_list:', residual_list) | |||||
print('\nedit_cost_list:', edit_cost_list) | |||||
print('\ndistance matrix in kernel space:', dis_k_mat) | |||||
print('\nged matrix:', ged_mat) | |||||
print('\ntotal time:', total_time) | |||||
print('\nnb_cost_mat:', nb_cost_mat_list[-1]) | |||||
np.savez('results/fit_distance.any_costs.gm', edit_costs=edit_costs, | |||||
residual_list=residual_list, edit_cost_list=edit_cost_list, | |||||
dis_k_mat=dis_k_mat, ged_mat=ged_mat, time_list=time_list, | |||||
total_time=total_time, nb_cost_mat_list=nb_cost_mat_list) | |||||
# # normalized distance matrices. | |||||
# gmfile = np.load('results/fit_distance.any_costs.gm.npz') | |||||
# edit_costs = gmfile['edit_costs'] | |||||
# residual_list = gmfile['residual_list'] | |||||
# edit_cost_list = gmfile['edit_cost_list'] | |||||
# dis_k_mat = gmfile['dis_k_mat'] | |||||
# ged_mat = gmfile['ged_mat'] | |||||
# total_time = gmfile['total_time'] | |||||
## nb_cost_mat_list = gmfile['nb_cost_mat_list'] | |||||
norm_dis_k_mat = normalize_distance_matrix(dis_k_mat) | |||||
plt.imshow(norm_dis_k_mat) | |||||
plt.colorbar() | |||||
plt.savefig('results/norm_dis_k_mat.any_costs' + '.eps', format='eps', dpi=300) | |||||
# plt.savefig('results/norm_dis_k_mat.any_costs' + '.png', format='png') | |||||
# plt.show() | |||||
plt.clf() | |||||
norm_ged_mat = normalize_distance_matrix(ged_mat) | |||||
plt.imshow(norm_ged_mat) | |||||
plt.colorbar() | |||||
plt.savefig('results/norm_ged_mat.any_costs' + '.eps', format='eps', dpi=300) | |||||
# plt.savefig('results/norm_ged_mat.any_costs' + '.png', format='png') | |||||
# plt.show() | |||||
plt.clf() | |||||
norm_diff = norm_ged_mat - norm_dis_k_mat | |||||
plt.imshow(norm_diff) | |||||
plt.colorbar() | |||||
plt.savefig('results/diff_mat_norm_ged_dis_k.any_costs' + '.eps', format='eps', dpi=300) | |||||
# plt.savefig('results/diff_mat_norm_ged_dis_k.any_costs' + '.png', format='png') | |||||
# plt.show() | |||||
plt.clf() | |||||
# draw_count_bar(norm_diff) | |||||
def test_cs_leq_ci_plus_cr(): | |||||
"""c_vs <= c_vi + c_vr, c_es <= c_ei + c_er | |||||
""" | |||||
ds = {'name': 'monoterpenoides', | |||||
'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset']) | |||||
# Gn = Gn[0:10] | |||||
gkernel = 'untilhpathkernel' | |||||
node_label = 'atom' | |||||
edge_label = 'bond_type' | |||||
itr_max = 10 | |||||
edit_costs, residual_list, edit_cost_list, dis_k_mat, ged_mat, time_list, \ | |||||
nb_cost_mat_list, coef_dk = fit_GED_to_kernel_distance(Gn, node_label, edge_label, | |||||
gkernel, itr_max, | |||||
fitkernel='gaussian') | |||||
total_time = np.sum(time_list) | |||||
print('\nedit_costs:', edit_costs) | |||||
print('\nresidual_list:', residual_list) | |||||
print('\nedit_cost_list:', edit_cost_list) | |||||
print('\ndistance matrix in kernel space:', dis_k_mat) | |||||
print('\nged matrix:', ged_mat) | |||||
print('\ntotal time:', total_time) | |||||
print('\nnb_cost_mat:', nb_cost_mat_list[-1]) | |||||
np.savez('results/fit_distance.cs_leq_ci_plus_cr.gaussian.cost_leq_1en2.monot.elabeled.uhpkernel.gm', | |||||
edit_costs=edit_costs, | |||||
residual_list=residual_list, edit_cost_list=edit_cost_list, | |||||
dis_k_mat=dis_k_mat, ged_mat=ged_mat, time_list=time_list, | |||||
total_time=total_time, nb_cost_mat_list=nb_cost_mat_list, | |||||
coef_dk=coef_dk) | |||||
# ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
# 'extra_params': {}} # node/edge symb | |||||
# Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
## Gn = Gn[0:10] | |||||
## remove_edges(Gn) | |||||
# gkernel = 'untilhpathkernel' | |||||
# node_label = 'atom' | |||||
# edge_label = 'bond_type' | |||||
# itr_max = 10 | |||||
# edit_costs, residual_list, edit_cost_list, dis_k_mat, ged_mat, time_list, \ | |||||
# nb_cost_mat_list, coef_dk = fit_GED_to_kernel_distance(Gn, node_label, edge_label, | |||||
# gkernel, itr_max) | |||||
# total_time = np.sum(time_list) | |||||
# print('\nedit_costs:', edit_costs) | |||||
# print('\nresidual_list:', residual_list) | |||||
# print('\nedit_cost_list:', edit_cost_list) | |||||
# print('\ndistance matrix in kernel space:', dis_k_mat) | |||||
# print('\nged matrix:', ged_mat) | |||||
# print('\ntotal time:', total_time) | |||||
# print('\nnb_cost_mat:', nb_cost_mat_list[-1]) | |||||
# np.savez('results/fit_distance.cs_leq_ci_plus_cr.cost_leq_1en2.mutag.elabeled.uhpkernel.gm', | |||||
# edit_costs=edit_costs, | |||||
# residual_list=residual_list, edit_cost_list=edit_cost_list, | |||||
# dis_k_mat=dis_k_mat, ged_mat=ged_mat, time_list=time_list, | |||||
# total_time=total_time, nb_cost_mat_list=nb_cost_mat_list, coef_dk) | |||||
# # normalized distance matrices. | |||||
# gmfile = np.load('results/fit_distance.cs_leq_ci_plus_cr.cost_leq_1en2.monot.elabeled.uhpkernel.gm.npz') | |||||
# edit_costs = gmfile['edit_costs'] | |||||
# residual_list = gmfile['residual_list'] | |||||
# edit_cost_list = gmfile['edit_cost_list'] | |||||
# dis_k_mat = gmfile['dis_k_mat'] | |||||
# ged_mat = gmfile['ged_mat'] | |||||
# total_time = gmfile['total_time'] | |||||
# nb_cost_mat_list = gmfile['nb_cost_mat_list'] | |||||
# coef_dk = gmfile['coef_dk'] | |||||
nb_consistent, nb_inconsistent, ratio_consistent = pairwise_substitution_consistence(dis_k_mat, ged_mat) | |||||
print(nb_consistent, nb_inconsistent, ratio_consistent) | |||||
# dis_k_sub = pairwise_substitution(dis_k_mat) | |||||
# ged_sub = pairwise_substitution(ged_mat) | |||||
# np.savez('results/sub_dis_mat.cs_leq_ci_plus_cr.cost_leq_1en2.gm', | |||||
# dis_k_sub=dis_k_sub, ged_sub=ged_sub) | |||||
norm_dis_k_mat = normalize_distance_matrix(dis_k_mat) | |||||
plt.imshow(norm_dis_k_mat) | |||||
plt.colorbar() | |||||
plt.savefig('results/norm_dis_k_mat.cs_leq_ci_plus_cr.gaussian.cost_leq_1en2.monot.elabeled.uhpkernel' | |||||
+ '.eps', format='eps', dpi=300) | |||||
plt.savefig('results/norm_dis_k_mat.cs_leq_ci_plus_cr.gaussian.cost_leq_1en2.monot.elabeled.uhpkernel' | |||||
+ '.png', format='png') | |||||
# plt.show() | |||||
plt.clf() | |||||
norm_ged_mat = normalize_distance_matrix(ged_mat) | |||||
plt.imshow(norm_ged_mat) | |||||
plt.colorbar() | |||||
plt.savefig('results/norm_ged_mat.cs_leq_ci_plus_cr.gaussian.cost_leq_1en2.monot.elabeled.uhpkernel' | |||||
+ '.eps', format='eps', dpi=300) | |||||
plt.savefig('results/norm_ged_mat.cs_leq_ci_plus_cr.gaussian.cost_leq_1en2.monot.elabeled.uhpkernel' | |||||
+ '.png', format='png') | |||||
# plt.show() | |||||
plt.clf() | |||||
norm_diff = norm_ged_mat - norm_dis_k_mat | |||||
plt.imshow(norm_diff) | |||||
plt.colorbar() | |||||
plt.savefig('results/diff_mat_norm_ged_dis_k.cs_leq_ci_plus_cr.gaussian.cost_leq_1en2.monot.elabeled.uhpkernel' | |||||
+ '.eps', format='eps', dpi=300) | |||||
plt.savefig('results/diff_mat_norm_ged_dis_k.cs_leq_ci_plus_cr.gaussian.cost_leq_1en2.monot.elabeled.uhpkernel' | |||||
+ '.png', format='png') | |||||
# plt.show() | |||||
plt.clf() | |||||
# draw_count_bar(norm_diff) | |||||
def test_unfitted(): | |||||
"""unfitted. | |||||
""" | |||||
from fitDistance import compute_geds | |||||
from utils import kernel_distance_matrix | |||||
ds = {'name': 'monoterpenoides', | |||||
'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset']) | |||||
# Gn = Gn[0:10] | |||||
gkernel = 'untilhpathkernel' | |||||
node_label = 'atom' | |||||
edge_label = 'bond_type' | |||||
# ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
# 'extra_params': {}} # node/edge symb | |||||
# Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
## Gn = Gn[0:10] | |||||
## remove_edges(Gn) | |||||
# gkernel = 'marginalizedkernel' | |||||
dis_k_mat, _, _, _ = kernel_distance_matrix(Gn, node_label, edge_label, gkernel=gkernel) | |||||
ged_all, ged_mat, n_edit_operations = compute_geds(Gn, [3, 3, 1, 3, 3, 1], | |||||
[0, 1, 2, 3, 4, 5], parallel=True) | |||||
print('\ndistance matrix in kernel space:', dis_k_mat) | |||||
print('\nged matrix:', ged_mat) | |||||
# np.savez('results/fit_distance.cs_leq_ci_plus_cr.cost_leq_1en2.gm', edit_costs=edit_costs, | |||||
# residual_list=residual_list, edit_cost_list=edit_cost_list, | |||||
# dis_k_mat=dis_k_mat, ged_mat=ged_mat, time_list=time_list, | |||||
# total_time=total_time, nb_cost_mat_list=nb_cost_mat_list) | |||||
# normalized distance matrices. | |||||
# gmfile = np.load('results/fit_distance.cs_leq_ci_plus_cr.cost_leq_1en3.gm.npz') | |||||
# edit_costs = gmfile['edit_costs'] | |||||
# residual_list = gmfile['residual_list'] | |||||
# edit_cost_list = gmfile['edit_cost_list'] | |||||
# dis_k_mat = gmfile['dis_k_mat'] | |||||
# ged_mat = gmfile['ged_mat'] | |||||
# total_time = gmfile['total_time'] | |||||
# nb_cost_mat_list = gmfile['nb_cost_mat_list'] | |||||
nb_consistent, nb_inconsistent, ratio_consistent = pairwise_substitution_consistence(dis_k_mat, ged_mat) | |||||
print(nb_consistent, nb_inconsistent, ratio_consistent) | |||||
norm_dis_k_mat = normalize_distance_matrix(dis_k_mat) | |||||
plt.imshow(norm_dis_k_mat) | |||||
plt.colorbar() | |||||
plt.savefig('results/norm_dis_k_mat.unfitted.MUTAG' + '.eps', format='eps', dpi=300) | |||||
plt.savefig('results/norm_dis_k_mat.unfitted.MUTAG' + '.png', format='png') | |||||
# plt.show() | |||||
plt.clf() | |||||
norm_ged_mat = normalize_distance_matrix(ged_mat) | |||||
plt.imshow(norm_ged_mat) | |||||
plt.colorbar() | |||||
plt.savefig('results/norm_ged_mat.unfitted.MUTAG' + '.eps', format='eps', dpi=300) | |||||
plt.savefig('results/norm_ged_mat.unfitted.MUTAG' + '.png', format='png') | |||||
# plt.show() | |||||
plt.clf() | |||||
norm_diff = norm_ged_mat - norm_dis_k_mat | |||||
plt.imshow(norm_diff) | |||||
plt.colorbar() | |||||
plt.savefig('results/diff_mat_norm_ged_dis_k.unfitted.MUTAG' + '.eps', format='eps', dpi=300) | |||||
plt.savefig('results/diff_mat_norm_ged_dis_k.unfitted.MUTAG' + '.png', format='png') | |||||
# plt.show() | |||||
plt.clf() | |||||
draw_count_bar(norm_diff) | |||||
def pairwise_substitution_consistence(mat1, mat2): | |||||
""" | |||||
""" | |||||
nb_consistent = 0 | |||||
nb_inconsistent = 0 | |||||
# the matrix is considered symmetric. | |||||
upper_tri1 = mat1[np.triu_indices_from(mat1)] | |||||
upper_tri2 = mat2[np.tril_indices_from(mat2)] | |||||
for i in tqdm(range(len(upper_tri1)), desc='computing consistence', file=sys.stdout): | |||||
for j in range(i, len(upper_tri1)): | |||||
if np.sign(upper_tri1[i] - upper_tri1[j]) == np.sign(upper_tri2[i] - upper_tri2[j]): | |||||
nb_consistent += 1 | |||||
else: | |||||
nb_inconsistent += 1 | |||||
return nb_consistent, nb_inconsistent, nb_consistent / (nb_consistent + nb_inconsistent) | |||||
def pairwise_substitution(mat): | |||||
# the matrix is considered symmetric. | |||||
upper_tri = mat[np.triu_indices_from(mat)] | |||||
sub_list = [] | |||||
for i in tqdm(range(len(upper_tri)), desc='computing', file=sys.stdout): | |||||
for j in range(i, len(upper_tri)): | |||||
sub_list.append(upper_tri[i] - upper_tri[j]) | |||||
return sub_list | |||||
def draw_count_bar(norm_diff): | |||||
import pandas | |||||
from collections import Counter, OrderedDict | |||||
norm_diff_cnt = norm_diff.flatten() | |||||
norm_diff_cnt = norm_diff_cnt * 10 | |||||
norm_diff_cnt = np.floor(norm_diff_cnt) | |||||
norm_diff_cnt = Counter(norm_diff_cnt) | |||||
norm_diff_cnt = OrderedDict(sorted(norm_diff_cnt.items())) | |||||
df = pandas.DataFrame.from_dict(norm_diff_cnt, orient='index') | |||||
df.plot(kind='bar') | |||||
if __name__ == '__main__': | |||||
# test_anycosts() | |||||
# test_cs_leq_ci_plus_cr() | |||||
# test_unfitted() | |||||
# test_cs_leq_ci_plus_cr_python_bash_cpp() | |||||
# median_paper_clcpc_python_bash_cpp() | |||||
# median_paper_clcpc_python_best() | |||||
# x = np.array([[1,2,3],[4,5,6],[7,8,9]]) | |||||
# xx = pairwise_substitution(x) | |||||
test_update_costs() |
@@ -1,520 +0,0 @@ | |||||
#export LD_LIBRARY_PATH=.:/export/home/lambertn/Documents/gedlibpy/lib/fann/:/export/home/lambertn/Documents/gedlibpy/lib/libsvm.3.22:/export/home/lambertn/Documents/gedlibpy/lib/nomad | |||||
#Pour que "import script" trouve les librairies qu'a besoin GedLib | |||||
#Equivalent à définir la variable d'environnement LD_LIBRARY_PATH sur un bash | |||||
#import gedlibpy_linlin.librariesImport | |||||
#from gedlibpy_linlin import gedlibpy | |||||
from libs import * | |||||
import networkx as nx | |||||
import numpy as np | |||||
from tqdm import tqdm | |||||
import sys | |||||
def test_NON_SYMBOLIC_cost(): | |||||
"""Test edit cost LETTER2. | |||||
""" | |||||
from gklearn.preimage.ged import GED, get_nb_edit_operations_nonsymbolic, get_nb_edit_operations_letter | |||||
from gklearn.preimage.test_k_closest_graphs import reform_attributes | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
dataset = '../../datasets/Letter-high/Letter-high_A.txt' | |||||
Gn, y_all = loadDataset(dataset) | |||||
g1 = Gn[200] | |||||
g2 = Gn[1780] | |||||
reform_attributes(g1) | |||||
reform_attributes(g2) | |||||
c_vi = 0.675 | |||||
c_vr = 0.675 | |||||
c_vs = 0.75 | |||||
c_ei = 0.425 | |||||
c_er = 0.425 | |||||
c_es = 0 | |||||
edit_cost_constant = [c_vi, c_vr, c_vs, c_ei, c_er, c_es] | |||||
dis, pi_forward, pi_backward = GED(g1, g2, lib='gedlibpy', | |||||
cost='NON_SYMBOLIC', method='IPFP', edit_cost_constant=edit_cost_constant, | |||||
algo_options='', stabilizer=None) | |||||
n_vi, n_vr, sod_vs, n_ei, n_er, sod_es = get_nb_edit_operations_nonsymbolic(g1, g2, | |||||
pi_forward, pi_backward) | |||||
print('# of operations:', n_vi, n_vr, sod_vs, n_ei, n_er, sod_es) | |||||
print('c_vi, c_vr, c_vs, c_ei, c_er:', c_vi, c_vr, c_vs, c_ei, c_er, c_es) | |||||
cost_computed = c_vi * n_vi + c_vr * n_vr + c_vs * sod_vs \ | |||||
+ c_ei * n_ei + c_er * n_er + c_es * sod_es | |||||
print('dis (cost computed by GED):', dis) | |||||
print('cost computed by # of operations and edit cost constants:', cost_computed) | |||||
def test_LETTER2_cost(): | |||||
"""Test edit cost LETTER2. | |||||
""" | |||||
from gklearn.preimage.ged import GED, get_nb_edit_operations_letter | |||||
from gklearn.preimage.test_k_closest_graphs import reform_attributes | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
ds = {'dataset': 'cpp_ext/data/collections/Letter.xml', | |||||
'graph_dir': os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/data/datasets/Letter/HIGH/'} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['graph_dir']) | |||||
g1 = Gn[200] | |||||
g2 = Gn[1780] | |||||
reform_attributes(g1) | |||||
reform_attributes(g2) | |||||
c_vi = 0.675 | |||||
c_vr = 0.675 | |||||
c_vs = 0.75 | |||||
c_ei = 0.425 | |||||
c_er = 0.425 | |||||
edit_cost_constant = [c_vi, c_vr, c_vs, c_ei, c_er] | |||||
dis, pi_forward, pi_backward = GED(g1, g2, dataset='letter', lib='gedlibpy', | |||||
cost='LETTER2', method='IPFP', edit_cost_constant=edit_cost_constant, | |||||
algo_options='', stabilizer=None) | |||||
n_vi, n_vr, n_vs, sod_vs, n_ei, n_er = get_nb_edit_operations_letter(g1, g2, | |||||
pi_forward, pi_backward) | |||||
print('# of operations:', n_vi, n_vr, n_vs, sod_vs, n_ei, n_er) | |||||
print('c_vi, c_vr, c_vs, c_ei, c_er:', c_vi, c_vr, c_vs, c_ei, c_er) | |||||
cost_computed = c_vi * n_vi + c_vr * n_vr + c_vs * sod_vs \ | |||||
+ c_ei * n_ei + c_er * n_er | |||||
print('dis (cost computed by GED):', dis) | |||||
print('cost computed by # of operations and edit cost constants:', cost_computed) | |||||
def test_get_nb_edit_operations_letter(): | |||||
"""Test whether function preimage.ged.get_nb_edit_operations_letter returns | |||||
correct numbers of edit operations. The distance/cost computed by GED | |||||
should be the same as the cost computed by number of operations and edit | |||||
cost constants. | |||||
""" | |||||
from gklearn.preimage.ged import GED, get_nb_edit_operations_letter | |||||
from gklearn.preimage.test_k_closest_graphs import reform_attributes | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
ds = {'dataset': 'cpp_ext/data/collections/Letter.xml', | |||||
'graph_dir': os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/data/datasets/Letter/HIGH/'} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['graph_dir']) | |||||
g1 = Gn[200] | |||||
g2 = Gn[1780] | |||||
reform_attributes(g1) | |||||
reform_attributes(g2) | |||||
c_vir = 0.9 | |||||
c_eir = 1.7 | |||||
alpha = 0.75 | |||||
edit_cost_constant = [c_vir, c_eir, alpha] | |||||
dis, pi_forward, pi_backward = GED(g1, g2, dataset='letter', lib='gedlibpy', | |||||
cost='LETTER', method='IPFP', edit_cost_constant=edit_cost_constant, | |||||
algo_options='', stabilizer=None) | |||||
n_vi, n_vr, n_vs, c_vs, n_ei, n_er = get_nb_edit_operations_letter(g1, g2, | |||||
pi_forward, pi_backward) | |||||
print('# of operations and costs:', n_vi, n_vr, n_vs, c_vs, n_ei, n_er) | |||||
print('c_vir, c_eir, alpha:', c_vir, c_eir, alpha) | |||||
cost_computed = alpha * c_vir * (n_vi + n_vr) \ | |||||
+ alpha * c_vs \ | |||||
+ (1 - alpha) * c_eir * (n_ei + n_er) | |||||
print('dis (cost computed by GED):', dis) | |||||
print('cost computed by # of operations and edit cost constants:', cost_computed) | |||||
def test_get_nb_edit_operations(): | |||||
"""Test whether function preimage.ged.get_nb_edit_operations returns correct | |||||
numbers of edit operations. The distance/cost computed by GED should be the | |||||
same as the cost computed by number of operations and edit cost constants. | |||||
""" | |||||
from gklearn.preimage.ged import GED, get_nb_edit_operations | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
import os | |||||
ds = {'dataset': '../../datasets/monoterpenoides/dataset_10+.ds', | |||||
'graph_dir': os.path.dirname(os.path.realpath(__file__)) + '../../datasets/monoterpenoides/'} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset']) | |||||
g1 = Gn[20] | |||||
g2 = Gn[108] | |||||
c_vi = 3 | |||||
c_vr = 3 | |||||
c_vs = 1 | |||||
c_ei = 3 | |||||
c_er = 3 | |||||
c_es = 1 | |||||
edit_cost_constant = [c_vi, c_vr, c_vs, c_ei, c_er, c_es] | |||||
dis, pi_forward, pi_backward = GED(g1, g2, dataset='monoterpenoides', lib='gedlibpy', | |||||
cost='CONSTANT', method='IPFP', edit_cost_constant=edit_cost_constant, | |||||
algo_options='', stabilizer=None) | |||||
n_vi, n_vr, n_vs, n_ei, n_er, n_es = get_nb_edit_operations(g1, g2, | |||||
pi_forward, pi_backward) | |||||
print('# of operations and costs:', n_vi, n_vr, n_vs, n_ei, n_er, n_es) | |||||
print('edit costs:', c_vi, c_vr, c_vs, c_ei, c_er, c_es) | |||||
cost_computed = n_vi * c_vi + n_vr * c_vr + n_vs * c_vs \ | |||||
+ n_ei * c_ei + n_er * c_er + n_es * c_es | |||||
print('dis (cost computed by GED):', dis) | |||||
print('cost computed by # of operations and edit cost constants:', cost_computed) | |||||
def test_ged_python_bash_cpp(): | |||||
"""Test ged computation with python invoking the c++ code by bash command (with updated library). | |||||
""" | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
from gklearn.preimage.ged import GED | |||||
data_dir_prefix = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/' | |||||
# collection_file = data_dir_prefix + 'generated_datsets/monoterpenoides/gxl/monoterpenoides.xml' | |||||
collection_file = data_dir_prefix + 'generated_datsets/monoterpenoides/monoterpenoides_3_20.xml' | |||||
graph_dir = data_dir_prefix +'generated_datsets/monoterpenoides/gxl/' | |||||
Gn, y = loadDataset(collection_file, extra_params=graph_dir) | |||||
algo_options = '--threads 8 --initial-solutions 40 --ratio-runs-from-initial-solutions 1' | |||||
for repeat in range(0, 3): | |||||
# Generate the result file. | |||||
ged_filename = data_dir_prefix + 'output/test_ged/ged_mat_python_bash_' + str(repeat) + '_init40.3_20.txt' | |||||
# runtime_filename = data_dir_prefix + 'output/test_ged/runtime_mat_python_min_' + str(repeat) + '.txt' | |||||
ged_file = open(ged_filename, 'a') | |||||
# runtime_file = open(runtime_filename, 'a') | |||||
ged_mat = np.empty((len(Gn), len(Gn))) | |||||
# runtime_mat = np.empty((len(Gn), len(Gn))) | |||||
for i in tqdm(range(len(Gn)), desc='computing GEDs', file=sys.stdout): | |||||
for j in range(len(Gn)): | |||||
print(i, j) | |||||
g1 = Gn[i] | |||||
g2 = Gn[j] | |||||
upper_bound, _, _ = GED(g1, g2, lib='gedlib-bash', cost='CONSTANT', | |||||
method='IPFP', | |||||
edit_cost_constant=[3.0, 3.0, 1.0, 3.0, 3.0, 1.0], | |||||
algo_options=algo_options) | |||||
# runtime = gedlibpy.get_runtime(g1, g2) | |||||
ged_mat[i][j] = upper_bound | |||||
# runtime_mat[i][j] = runtime | |||||
# Write to files. | |||||
ged_file.write(str(int(upper_bound)) + ' ') | |||||
# runtime_file.write(str(runtime) + ' ') | |||||
ged_file.write('\n') | |||||
# runtime_file.write('\n') | |||||
ged_file.close() | |||||
# runtime_file.close() | |||||
print('ged_mat') | |||||
print(ged_mat) | |||||
# print('runtime_mat:') | |||||
# print(runtime_mat) | |||||
return | |||||
def test_ged_best_settings_updated(): | |||||
"""Test ged computation with best settings the same as in the C++ code (with updated library). | |||||
""" | |||||
data_dir_prefix = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/' | |||||
collection_file = data_dir_prefix + 'generated_datsets/monoterpenoides/gxl/monoterpenoides.xml' | |||||
# collection_file = data_dir_prefix + 'generated_datsets/monoterpenoides/monoterpenoides_3_20.xml' | |||||
graph_dir = data_dir_prefix +'generated_datsets/monoterpenoides/gxl/' | |||||
algo_options = '--threads 8 --initial-solutions 40 --ratio-runs-from-initial-solutions 1' | |||||
for repeat in range(0, 3): | |||||
# Generate the result file. | |||||
ged_filename = data_dir_prefix + 'output/test_ged/ged_mat_python_updated_' + str(repeat) + '_init40.txt' | |||||
runtime_filename = data_dir_prefix + 'output/test_ged/runtime_mat_python_updated_' + str(repeat) + '_init40.txt' | |||||
gedlibpy.restart_env() | |||||
gedlibpy.load_GXL_graphs(graph_dir, collection_file) | |||||
listID = gedlibpy.get_all_graph_ids() | |||||
gedlibpy.set_edit_cost('CONSTANT', [3.0, 3.0, 1.0, 3.0, 3.0, 1.0]) | |||||
gedlibpy.init() | |||||
gedlibpy.set_method("IPFP", algo_options) | |||||
gedlibpy.init_method() | |||||
ged_mat = np.empty((len(listID), len(listID))) | |||||
runtime_mat = np.empty((len(listID), len(listID))) | |||||
for i in tqdm(range(len(listID)), desc='computing GEDs', file=sys.stdout): | |||||
ged_file = open(ged_filename, 'a') | |||||
runtime_file = open(runtime_filename, 'a') | |||||
for j in range(len(listID)): | |||||
g1 = listID[i] | |||||
g2 = listID[j] | |||||
gedlibpy.run_method(g1, g2) | |||||
upper_bound = gedlibpy.get_upper_bound(g1, g2) | |||||
runtime = gedlibpy.get_runtime(g1, g2) | |||||
ged_mat[i][j] = upper_bound | |||||
runtime_mat[i][j] = runtime | |||||
# Write to files. | |||||
ged_file.write(str(int(upper_bound)) + ' ') | |||||
runtime_file.write(str(runtime) + ' ') | |||||
ged_file.write('\n') | |||||
runtime_file.write('\n') | |||||
ged_file.close() | |||||
runtime_file.close() | |||||
print('ged_mat') | |||||
print(ged_mat) | |||||
print('runtime_mat:') | |||||
print(runtime_mat) | |||||
return | |||||
def test_ged_best_settings(): | |||||
"""Test ged computation with best settings the same as in the C++ code. | |||||
""" | |||||
data_dir_prefix = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/' | |||||
collection_file = data_dir_prefix + 'generated_datsets/monoterpenoides/gxl/monoterpenoides.xml' | |||||
graph_dir = data_dir_prefix +'generated_datsets/monoterpenoides/gxl/' | |||||
algo_options = '--threads 6 --initial-solutions 10 --ratio-runs-from-initial-solutions .5' | |||||
for repeat in range(0, 3): | |||||
# Generate the result file. | |||||
ged_filename = data_dir_prefix + 'output/test_ged/ged_mat_python_best_settings_' + str(repeat) + '.txt' | |||||
runtime_filename = data_dir_prefix + 'output/test_ged/runtime_mat_python_best_settings_' + str(repeat) + '.txt' | |||||
ged_file = open(ged_filename, 'a') | |||||
runtime_file = open(runtime_filename, 'a') | |||||
gedlibpy.restart_env() | |||||
gedlibpy.load_GXL_graphs(graph_dir, collection_file) | |||||
listID = gedlibpy.get_all_graph_ids() | |||||
gedlibpy.set_edit_cost('CONSTANT', [3.0, 3.0, 1.0, 3.0, 3.0, 1.0]) | |||||
gedlibpy.init() | |||||
gedlibpy.set_method("IPFP", algo_options) | |||||
gedlibpy.init_method() | |||||
ged_mat = np.empty((len(listID), len(listID))) | |||||
runtime_mat = np.empty((len(listID), len(listID))) | |||||
for i in tqdm(range(len(listID)), desc='computing GEDs', file=sys.stdout): | |||||
for j in range(len(listID)): | |||||
g1 = listID[i] | |||||
g2 = listID[j] | |||||
gedlibpy.run_method(g1, g2) | |||||
upper_bound = gedlibpy.get_upper_bound(g1, g2) | |||||
runtime = gedlibpy.get_runtime(g1, g2) | |||||
ged_mat[i][j] = upper_bound | |||||
runtime_mat[i][j] = runtime | |||||
# Write to files. | |||||
ged_file.write(str(int(upper_bound)) + ' ') | |||||
runtime_file.write(str(runtime) + ' ') | |||||
ged_file.write('\n') | |||||
runtime_file.write('\n') | |||||
ged_file.close() | |||||
runtime_file.close() | |||||
print('ged_mat') | |||||
print(ged_mat) | |||||
print('runtime_mat:') | |||||
print(runtime_mat) | |||||
return | |||||
def test_ged_default(): | |||||
"""Test ged computation with default settings. | |||||
""" | |||||
data_dir_prefix = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/' | |||||
collection_file = data_dir_prefix + 'generated_datsets/monoterpenoides/gxl/monoterpenoides.xml' | |||||
graph_dir = data_dir_prefix +'generated_datsets/monoterpenoides/gxl/' | |||||
for repeat in range(3): | |||||
# Generate the result file. | |||||
ged_filename = data_dir_prefix + 'output/test_ged/ged_mat_python_default_' + str(repeat) + '.txt' | |||||
runtime_filename = data_dir_prefix + 'output/test_ged/runtime_mat_python_default_' + str(repeat) + '.txt' | |||||
ged_file = open(ged_filename, 'a') | |||||
runtime_file = open(runtime_filename, 'a') | |||||
gedlibpy.restart_env() | |||||
gedlibpy.load_GXL_graphs(graph_dir, collection_file) | |||||
listID = gedlibpy.get_all_graph_ids() | |||||
gedlibpy.set_edit_cost('CONSTANT', [3.0, 3.0, 1.0, 3.0, 3.0, 1.0]) | |||||
gedlibpy.init() | |||||
gedlibpy.set_method("IPFP", "") | |||||
gedlibpy.init_method() | |||||
ged_mat = np.empty((len(listID), len(listID))) | |||||
runtime_mat = np.empty((len(listID), len(listID))) | |||||
for i in tqdm(range(len(listID)), desc='computing GEDs', file=sys.stdout): | |||||
for j in range(len(listID)): | |||||
g1 = listID[i] | |||||
g2 = listID[j] | |||||
gedlibpy.run_method(g1, g2) | |||||
upper_bound = gedlibpy.get_upper_bound(g1, g2) | |||||
runtime = gedlibpy.get_runtime(g1, g2) | |||||
ged_mat[i][j] = upper_bound | |||||
runtime_mat[i][j] = runtime | |||||
# Write to files. | |||||
ged_file.write(str(int(upper_bound)) + ' ') | |||||
runtime_file.write(str(runtime) + ' ') | |||||
ged_file.write('\n') | |||||
runtime_file.write('\n') | |||||
ged_file.close() | |||||
runtime_file.close() | |||||
print('ged_mat') | |||||
print(ged_mat) | |||||
print('runtime_mat:') | |||||
print(runtime_mat) | |||||
return | |||||
def test_ged_min(): | |||||
"""Test ged computation with the "min" stabilizer. | |||||
""" | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
from gklearn.preimage.ged import GED | |||||
data_dir_prefix = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/' | |||||
collection_file = data_dir_prefix + 'generated_datsets/monoterpenoides/gxl/monoterpenoides.xml' | |||||
graph_dir = data_dir_prefix +'generated_datsets/monoterpenoides/gxl/' | |||||
Gn, y = loadDataset(collection_file, extra_params=graph_dir) | |||||
# algo_options = '--threads 6 --initial-solutions 10 --ratio-runs-from-initial-solutions .5' | |||||
for repeat in range(0, 3): | |||||
# Generate the result file. | |||||
ged_filename = data_dir_prefix + 'output/test_ged/ged_mat_python_min_' + str(repeat) + '.txt' | |||||
# runtime_filename = data_dir_prefix + 'output/test_ged/runtime_mat_python_min_' + str(repeat) + '.txt' | |||||
ged_file = open(ged_filename, 'a') | |||||
# runtime_file = open(runtime_filename, 'a') | |||||
ged_mat = np.empty((len(Gn), len(Gn))) | |||||
# runtime_mat = np.empty((len(Gn), len(Gn))) | |||||
for i in tqdm(range(len(Gn)), desc='computing GEDs', file=sys.stdout): | |||||
for j in range(len(Gn)): | |||||
g1 = Gn[i] | |||||
g2 = Gn[j] | |||||
upper_bound, _, _ = GED(g1, g2, lib='gedlibpy', cost='CONSTANT', | |||||
method='IPFP', | |||||
edit_cost_constant=[3.0, 3.0, 1.0, 3.0, 3.0, 1.0], | |||||
stabilizer='min', repeat=10) | |||||
# runtime = gedlibpy.get_runtime(g1, g2) | |||||
ged_mat[i][j] = upper_bound | |||||
# runtime_mat[i][j] = runtime | |||||
# Write to files. | |||||
ged_file.write(str(int(upper_bound)) + ' ') | |||||
# runtime_file.write(str(runtime) + ' ') | |||||
ged_file.write('\n') | |||||
# runtime_file.write('\n') | |||||
ged_file.close() | |||||
# runtime_file.close() | |||||
print('ged_mat') | |||||
print(ged_mat) | |||||
# print('runtime_mat:') | |||||
# print(runtime_mat) | |||||
return | |||||
def init() : | |||||
print("List of Edit Cost Options : ") | |||||
for i in gedlibpy.list_of_edit_cost_options : | |||||
print (i) | |||||
print("") | |||||
print("List of Method Options : ") | |||||
for j in gedlibpy.list_of_method_options : | |||||
print (j) | |||||
print("") | |||||
print("List of Init Options : ") | |||||
for k in gedlibpy.list_of_init_options : | |||||
print (k) | |||||
print("") | |||||
def convertGraph(G): | |||||
G_new = nx.Graph() | |||||
for nd, attrs in G.nodes(data=True): | |||||
G_new.add_node(str(nd), chem=attrs['atom']) | |||||
for nd1, nd2, attrs in G.edges(data=True): | |||||
G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type']) | |||||
return G_new | |||||
def testNxGrapĥ(): | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
gedlibpy.restart_env() | |||||
for graph in Gn: | |||||
g_new = convertGraph(graph) | |||||
gedlibpy.add_nx_graph(g_new, "") | |||||
listID = gedlibpy.get_all_graph_ids() | |||||
gedlibpy.set_edit_cost("CHEM_1") | |||||
gedlibpy.init() | |||||
gedlibpy.set_method("IPFP", "") | |||||
gedlibpy.init_method() | |||||
print(listID) | |||||
g = listID[0] | |||||
h = listID[1] | |||||
gedlibpy.run_method(g, h) | |||||
print("Node Map : ", gedlibpy.get_node_map(g, h)) | |||||
print("Forward map : " , gedlibpy.get_forward_map(g, h), ", Backward map : ", gedlibpy.get_backward_map(g, h)) | |||||
print ("Upper Bound = " + str(gedlibpy.get_upper_bound(g, h)) + ", Lower Bound = " + str(gedlibpy.get_lower_bound(g, h)) + ", Runtime = " + str(gedlibpy.get_runtime(g, h))) | |||||
if __name__ == '__main__': | |||||
# test_ged_default() | |||||
# test_ged_min() | |||||
# test_ged_best_settings() | |||||
# test_ged_best_settings_updated() | |||||
# test_ged_python_bash_cpp() | |||||
# test_get_nb_edit_operations() | |||||
# test_get_nb_edit_operations_letter() | |||||
# test_LETTER2_cost() | |||||
test_NON_SYMBOLIC_cost() | |||||
#init() | |||||
#testNxGrapĥ() |
@@ -1,964 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Thu Sep 5 15:59:00 2019 | |||||
@author: ljia | |||||
""" | |||||
import numpy as np | |||||
import networkx as nx | |||||
import matplotlib.pyplot as plt | |||||
import time | |||||
import random | |||||
#from tqdm import tqdm | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
#from gklearn.utils.logger2file import * | |||||
from gklearn.preimage.iam import iam_upgraded | |||||
from gklearn.preimage.utils import remove_edges, compute_kernel, get_same_item_indices, dis_gstar | |||||
#from gklearn.preimage.ged import ged_median | |||||
def test_iam_monoterpenoides_with_init40(): | |||||
gkernel = 'untilhpathkernel' | |||||
node_label = 'atom' | |||||
edge_label = 'bond_type' | |||||
# unfitted edit costs. | |||||
c_vi = 3 | |||||
c_vr = 3 | |||||
c_vs = 1 | |||||
c_ei = 3 | |||||
c_er = 3 | |||||
c_es = 1 | |||||
ite_max_iam = 50 | |||||
epsilon_iam = 0.0001 | |||||
removeNodes = False | |||||
connected_iam = False | |||||
# parameters for IAM function | |||||
# ged_cost = 'CONSTANT' | |||||
ged_cost = 'CONSTANT' | |||||
ged_method = 'IPFP' | |||||
edit_cost_constant = [c_vi, c_vr, c_vs, c_ei, c_er, c_es] | |||||
ged_stabilizer = None | |||||
# ged_repeat = 50 | |||||
algo_options = '--threads 8 --initial-solutions 40 --ratio-runs-from-initial-solutions 1' | |||||
params_ged = {'lib': 'gedlibpy', 'cost': ged_cost, 'method': ged_method, | |||||
'edit_cost_constant': edit_cost_constant, | |||||
'algo_options': algo_options, | |||||
'stabilizer': ged_stabilizer} | |||||
collection_path = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/generated_datsets/monoterpenoides/' | |||||
graph_dir = collection_path + 'gxl/' | |||||
y_all = ['3', '1', '4', '6', '7', '8', '9', '2'] | |||||
repeats = 50 | |||||
# classify graphs according to classes. | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
dis_ks_set_median_list = [] | |||||
sod_gs_list = [] | |||||
g_best = [] | |||||
sod_set_median_list = [] | |||||
sod_list_list = [] | |||||
for y in y_all: | |||||
print('\n-------------------------------------------------------') | |||||
print('class of y:', y) | |||||
time_list.append([]) | |||||
dis_ks_min_list.append([]) | |||||
dis_ks_set_median_list.append([]) | |||||
sod_gs_list.append([]) | |||||
g_best.append([]) | |||||
sod_set_median_list.append([]) | |||||
for repeat in range(repeats): | |||||
# load median set. | |||||
collection_file = collection_path + 'monoterpenoides_' + y + '_' + str(repeat) + '.xml' | |||||
Gn_median, _ = loadDataset(collection_file, extra_params=graph_dir) | |||||
Gn_candidate = [g.copy() for g in Gn_median] | |||||
time0 = time.time() | |||||
G_gen_median_list, sod_gen_median, sod_list, G_set_median_list, sod_set_median \ | |||||
= iam_upgraded(Gn_median, | |||||
Gn_candidate, c_ei=c_ei, c_er=c_er, c_es=c_es, ite_max=ite_max_iam, | |||||
epsilon=epsilon_iam, node_label=node_label, edge_label=edge_label, | |||||
connected=connected_iam, removeNodes=removeNodes, | |||||
params_ged=params_ged) | |||||
time_total = time.time() - time0 | |||||
print('\ntime: ', time_total) | |||||
time_list[-1].append(time_total) | |||||
g_best[-1].append(G_gen_median_list[0]) | |||||
sod_set_median_list[-1].append(sod_set_median) | |||||
print('\nsmallest sod of the set median:', sod_set_median) | |||||
sod_gs_list[-1].append(sod_gen_median) | |||||
print('\nsmallest sod in graph space:', sod_gen_median) | |||||
sod_list_list.append(sod_list) | |||||
# # show the best graph and save it to file. | |||||
# print('one of the possible corresponding pre-images is') | |||||
# nx.draw(G_gen_median_list[0], labels=nx.get_node_attributes(G_gen_median_list[0], 'atom'), | |||||
# with_labels=True) | |||||
## plt.show() | |||||
# # plt.savefig('results/iam/mutag_median.fit_costs2.001.nb' + str(nb_median) + | |||||
## plt.savefig('results/iam/paper_compare/monoter_y' + str(y_class) + | |||||
## '_repeat' + str(repeat) + '_' + str(time.time()) + | |||||
## '.png', format="PNG") | |||||
# plt.clf() | |||||
# # print(G_gen_median_list[0].nodes(data=True)) | |||||
# # print(G_gen_median_list[0].edges(data=True)) | |||||
print('\nsods of the set median for this class:', sod_set_median_list[-1]) | |||||
print('\nsods in graph space for this class:', sod_gs_list[-1]) | |||||
# print('\ndistance in kernel space of set median for this class:', | |||||
# dis_ks_set_median_list[-1]) | |||||
# print('\nsmallest distances in kernel space for this class:', | |||||
# dis_ks_min_list[-1]) | |||||
print('\ntimes for this class:', time_list[-1]) | |||||
sod_set_median_list[-1] = np.mean(sod_set_median_list[-1]) | |||||
sod_gs_list[-1] = np.mean(sod_gs_list[-1]) | |||||
# dis_ks_set_median_list[-1] = np.mean(dis_ks_set_median_list[-1]) | |||||
# dis_ks_min_list[-1] = np.mean(dis_ks_min_list[-1]) | |||||
time_list[-1] = np.mean(time_list[-1]) | |||||
print() | |||||
print('\nmean sods of the set median for each class:', sod_set_median_list) | |||||
print('\nmean sods in graph space for each class:', sod_gs_list) | |||||
# print('\ndistances in kernel space of set median for each class:', | |||||
# dis_ks_set_median_list) | |||||
# print('\nmean smallest distances in kernel space for each class:', | |||||
# dis_ks_min_list) | |||||
print('\nmean times for each class:', time_list) | |||||
print('\nmean sods of the set median of all:', np.mean(sod_set_median_list)) | |||||
print('\nmean sods in graph space of all:', np.mean(sod_gs_list)) | |||||
# print('\nmean distances in kernel space of set median of all:', | |||||
# np.mean(dis_ks_set_median_list)) | |||||
# print('\nmean smallest distances in kernel space of all:', | |||||
# np.mean(dis_ks_min_list)) | |||||
print('\nmean times of all:', np.mean(time_list)) | |||||
def test_iam_monoterpenoides(): | |||||
ds = {'name': 'monoterpenoides', | |||||
'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset']) | |||||
# Gn = Gn[0:50] | |||||
gkernel = 'untilhpathkernel' | |||||
node_label = 'atom' | |||||
edge_label = 'bond_type' | |||||
# parameters for GED function from the IAM paper. | |||||
# fitted edit costs (Gaussian). | |||||
c_vi = 0.03620133402089074 | |||||
c_vr = 0.0417574590207099 | |||||
c_vs = 0.009992282328587499 | |||||
c_ei = 0.08293120042342755 | |||||
c_er = 0.09512220476358019 | |||||
c_es = 0.09222529696841467 | |||||
# # fitted edit costs (linear combinations). | |||||
# c_vi = 0.1749684054238749 | |||||
# c_vr = 0.0734054228711457 | |||||
# c_vs = 0.05017781726016715 | |||||
# c_ei = 0.1869431164806936 | |||||
# c_er = 0.32055856948274 | |||||
# c_es = 0.2569469379247611 | |||||
# # unfitted edit costs. | |||||
# c_vi = 3 | |||||
# c_vr = 3 | |||||
# c_vs = 1 | |||||
# c_ei = 3 | |||||
# c_er = 3 | |||||
# c_es = 1 | |||||
ite_max_iam = 50 | |||||
epsilon_iam = 0.001 | |||||
removeNodes = False | |||||
connected_iam = False | |||||
# parameters for IAM function | |||||
# ged_cost = 'CONSTANT' | |||||
ged_cost = 'CONSTANT' | |||||
ged_method = 'IPFP' | |||||
edit_cost_constant = [c_vi, c_vr, c_vs, c_ei, c_er, c_es] | |||||
# edit_cost_constant = [] | |||||
ged_stabilizer = 'min' | |||||
ged_repeat = 50 | |||||
params_ged = {'lib': 'gedlibpy', 'cost': ged_cost, 'method': ged_method, | |||||
'edit_cost_constant': edit_cost_constant, | |||||
'stabilizer': ged_stabilizer, 'repeat': ged_repeat} | |||||
# classify graphs according to letters. | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
dis_ks_set_median_list = [] | |||||
sod_gs_list = [] | |||||
g_best = [] | |||||
sod_set_median_list = [] | |||||
sod_list_list = [] | |||||
idx_dict = get_same_item_indices(y_all) | |||||
for y_class in idx_dict: | |||||
print('\n-------------------------------------------------------') | |||||
print('class of y:', y_class) | |||||
Gn_class = [Gn[i].copy() for i in idx_dict[y_class]] | |||||
time_list.append([]) | |||||
dis_ks_min_list.append([]) | |||||
dis_ks_set_median_list.append([]) | |||||
sod_gs_list.append([]) | |||||
g_best.append([]) | |||||
sod_set_median_list.append([]) | |||||
for repeat in range(50): | |||||
idx_rdm = random.sample(range(len(Gn_class)), 10) | |||||
print('graphs chosen:', idx_rdm) | |||||
Gn_median = [Gn_class[idx].copy() for idx in idx_rdm] | |||||
Gn_candidate = [g.copy() for g in Gn_median] | |||||
alpha_range = [1 / len(Gn_median)] * len(Gn_median) | |||||
time0 = time.time() | |||||
G_gen_median_list, sod_gen_median, sod_list, G_set_median_list, sod_set_median \ | |||||
= iam_upgraded(Gn_median, | |||||
Gn_candidate, c_ei=c_ei, c_er=c_er, c_es=c_es, ite_max=ite_max_iam, | |||||
epsilon=epsilon_iam, connected=connected_iam, removeNodes=removeNodes, | |||||
params_ged=params_ged) | |||||
time_total = time.time() - time0 | |||||
print('\ntime: ', time_total) | |||||
time_list[-1].append(time_total) | |||||
g_best[-1].append(G_gen_median_list[0]) | |||||
sod_set_median_list[-1].append(sod_set_median) | |||||
print('\nsmallest sod of the set median:', sod_set_median) | |||||
sod_gs_list[-1].append(sod_gen_median) | |||||
print('\nsmallest sod in graph space:', sod_gen_median) | |||||
sod_list_list.append(sod_list) | |||||
# show the best graph and save it to file. | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(G_gen_median_list[0], labels=nx.get_node_attributes(G_gen_median_list[0], 'atom'), | |||||
with_labels=True) | |||||
# plt.show() | |||||
# plt.savefig('results/iam/mutag_median.fit_costs2.001.nb' + str(nb_median) + | |||||
# plt.savefig('results/iam/paper_compare/monoter_y' + str(y_class) + | |||||
# '_repeat' + str(repeat) + '_' + str(time.time()) + | |||||
# '.png', format="PNG") | |||||
plt.clf() | |||||
# print(G_gen_median_list[0].nodes(data=True)) | |||||
# print(G_gen_median_list[0].edges(data=True)) | |||||
# compute distance between \psi and the set median graph. | |||||
knew_set_median = compute_kernel(G_set_median_list + Gn_median, | |||||
gkernel, node_label, edge_label, False) | |||||
dhat_new_set_median_list = [] | |||||
for idx, g_tmp in enumerate(G_set_median_list): | |||||
# @todo: the term3 below could use the one at the beginning of the function. | |||||
dhat_new_set_median_list.append(dis_gstar(idx, range(len(G_set_median_list), | |||||
len(G_set_median_list) + len(Gn_median) + 1), | |||||
alpha_range, knew_set_median, withterm3=False)) | |||||
print('\ndistance in kernel space of set median: ', dhat_new_set_median_list[0]) | |||||
dis_ks_set_median_list[-1].append(dhat_new_set_median_list[0]) | |||||
# compute distance between \psi and the new generated graphs. | |||||
knew = compute_kernel(G_gen_median_list + Gn_median, gkernel, node_label, | |||||
edge_label, False) | |||||
dhat_new_list = [] | |||||
for idx, g_tmp in enumerate(G_gen_median_list): | |||||
# @todo: the term3 below could use the one at the beginning of the function. | |||||
dhat_new_list.append(dis_gstar(idx, range(len(G_gen_median_list), | |||||
len(G_gen_median_list) + len(Gn_median) + 1), | |||||
alpha_range, knew, withterm3=False)) | |||||
print('\nsmallest distance in kernel space: ', dhat_new_list[0]) | |||||
dis_ks_min_list[-1].append(dhat_new_list[0]) | |||||
print('\nsods of the set median for this class:', sod_set_median_list[-1]) | |||||
print('\nsods in graph space for this class:', sod_gs_list[-1]) | |||||
print('\ndistance in kernel space of set median for this class:', | |||||
dis_ks_set_median_list[-1]) | |||||
print('\nsmallest distances in kernel space for this class:', | |||||
dis_ks_min_list[-1]) | |||||
print('\ntimes for this class:', time_list[-1]) | |||||
sod_set_median_list[-1] = np.mean(sod_set_median_list[-1]) | |||||
sod_gs_list[-1] = np.mean(sod_gs_list[-1]) | |||||
dis_ks_set_median_list[-1] = np.mean(dis_ks_set_median_list[-1]) | |||||
dis_ks_min_list[-1] = np.mean(dis_ks_min_list[-1]) | |||||
time_list[-1] = np.mean(time_list[-1]) | |||||
print() | |||||
print('\nmean sods of the set median for each class:', sod_set_median_list) | |||||
print('\nmean sods in graph space for each class:', sod_gs_list) | |||||
print('\ndistances in kernel space of set median for each class:', | |||||
dis_ks_set_median_list) | |||||
print('\nmean smallest distances in kernel space for each class:', | |||||
dis_ks_min_list) | |||||
print('\nmean times for each class:', time_list) | |||||
print('\nmean sods of the set median of all:', np.mean(sod_set_median_list)) | |||||
print('\nmean sods in graph space of all:', np.mean(sod_gs_list)) | |||||
print('\nmean distances in kernel space of set median of all:', | |||||
np.mean(dis_ks_set_median_list)) | |||||
print('\nmean smallest distances in kernel space of all:', | |||||
np.mean(dis_ks_min_list)) | |||||
print('\nmean times of all:', np.mean(time_list)) | |||||
nb_better_sods = 0 | |||||
nb_worse_sods = 0 | |||||
nb_same_sods = 0 | |||||
for sods in sod_list_list: | |||||
if sods[0] > sods[-1]: | |||||
nb_better_sods += 1 | |||||
elif sods[0] < sods[-1]: | |||||
nb_worse_sods += 1 | |||||
else: | |||||
nb_same_sods += 1 | |||||
print('\n In', str(len(sod_list_list)), 'sod lists,', str(nb_better_sods), | |||||
'are getting better,', str(nb_worse_sods), 'are getting worse,', | |||||
str(nb_same_sods), 'are not changed; ', str(nb_better_sods / len(sod_list_list)), | |||||
'sods are improved.') | |||||
def test_iam_mutag(): | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:50] | |||||
gkernel = 'untilhpathkernel' | |||||
node_label = 'atom' | |||||
edge_label = 'bond_type' | |||||
# parameters for GED function from the IAM paper. | |||||
# fitted edit costs. | |||||
c_vi = 0.03523843108436513 | |||||
c_vr = 0.03347339739350128 | |||||
c_vs = 0.06871290673612238 | |||||
c_ei = 0.08591999846720685 | |||||
c_er = 0.07962086440894103 | |||||
c_es = 0.08596855855478233 | |||||
# unfitted edit costs. | |||||
# c_vi = 3 | |||||
# c_vr = 3 | |||||
# c_vs = 1 | |||||
# c_ei = 3 | |||||
# c_er = 3 | |||||
# c_es = 1 | |||||
ite_max_iam = 50 | |||||
epsilon_iam = 0.001 | |||||
removeNodes = False | |||||
connected_iam = False | |||||
# parameters for IAM function | |||||
# ged_cost = 'CONSTANT' | |||||
ged_cost = 'CONSTANT' | |||||
ged_method = 'IPFP' | |||||
edit_cost_constant = [c_vi, c_vr, c_vs, c_ei, c_er, c_es] | |||||
# edit_cost_constant = [] | |||||
ged_stabilizer = 'min' | |||||
ged_repeat = 50 | |||||
params_ged = {'lib': 'gedlibpy', 'cost': ged_cost, 'method': ged_method, | |||||
'edit_cost_constant': edit_cost_constant, | |||||
'stabilizer': ged_stabilizer, 'repeat': ged_repeat} | |||||
# classify graphs according to letters. | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
dis_ks_set_median_list = [] | |||||
sod_gs_list = [] | |||||
g_best = [] | |||||
sod_set_median_list = [] | |||||
sod_list_list = [] | |||||
idx_dict = get_same_item_indices(y_all) | |||||
for y_class in idx_dict: | |||||
print('\n-------------------------------------------------------') | |||||
print('class of y:', y_class) | |||||
Gn_class = [Gn[i].copy() for i in idx_dict[y_class]] | |||||
time_list.append([]) | |||||
dis_ks_min_list.append([]) | |||||
dis_ks_set_median_list.append([]) | |||||
sod_gs_list.append([]) | |||||
g_best.append([]) | |||||
sod_set_median_list.append([]) | |||||
for repeat in range(50): | |||||
idx_rdm = random.sample(range(len(Gn_class)), 10) | |||||
print('graphs chosen:', idx_rdm) | |||||
Gn_median = [Gn_class[idx].copy() for idx in idx_rdm] | |||||
Gn_candidate = [g.copy() for g in Gn_median] | |||||
alpha_range = [1 / len(Gn_median)] * len(Gn_median) | |||||
time0 = time.time() | |||||
G_gen_median_list, sod_gen_median, sod_list, G_set_median_list, sod_set_median \ | |||||
= iam_upgraded(Gn_median, | |||||
Gn_candidate, c_ei=c_ei, c_er=c_er, c_es=c_es, ite_max=ite_max_iam, | |||||
epsilon=epsilon_iam, connected=connected_iam, removeNodes=removeNodes, | |||||
params_ged=params_ged) | |||||
time_total = time.time() - time0 | |||||
print('\ntime: ', time_total) | |||||
time_list[-1].append(time_total) | |||||
g_best[-1].append(G_gen_median_list[0]) | |||||
sod_set_median_list[-1].append(sod_set_median) | |||||
print('\nsmallest sod of the set median:', sod_set_median) | |||||
sod_gs_list[-1].append(sod_gen_median) | |||||
print('\nsmallest sod in graph space:', sod_gen_median) | |||||
sod_list_list.append(sod_list) | |||||
# show the best graph and save it to file. | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(G_gen_median_list[0], labels=nx.get_node_attributes(G_gen_median_list[0], 'atom'), | |||||
with_labels=True) | |||||
# plt.show() | |||||
# plt.savefig('results/iam/mutag_median.fit_costs2.001.nb' + str(nb_median) + | |||||
# plt.savefig('results/iam/paper_compare/mutag_y' + str(y_class) + | |||||
# '_repeat' + str(repeat) + '_' + str(time.time()) + | |||||
# '.png', format="PNG") | |||||
plt.clf() | |||||
# print(G_gen_median_list[0].nodes(data=True)) | |||||
# print(G_gen_median_list[0].edges(data=True)) | |||||
# compute distance between \psi and the set median graph. | |||||
knew_set_median = compute_kernel(G_set_median_list + Gn_median, | |||||
gkernel, node_label, edge_label, False) | |||||
dhat_new_set_median_list = [] | |||||
for idx, g_tmp in enumerate(G_set_median_list): | |||||
# @todo: the term3 below could use the one at the beginning of the function. | |||||
dhat_new_set_median_list.append(dis_gstar(idx, range(len(G_set_median_list), | |||||
len(G_set_median_list) + len(Gn_median) + 1), | |||||
alpha_range, knew_set_median, withterm3=False)) | |||||
print('\ndistance in kernel space of set median: ', dhat_new_set_median_list[0]) | |||||
dis_ks_set_median_list[-1].append(dhat_new_set_median_list[0]) | |||||
# compute distance between \psi and the new generated graphs. | |||||
knew = compute_kernel(G_gen_median_list + Gn_median, gkernel, node_label, | |||||
edge_label, False) | |||||
dhat_new_list = [] | |||||
for idx, g_tmp in enumerate(G_gen_median_list): | |||||
# @todo: the term3 below could use the one at the beginning of the function. | |||||
dhat_new_list.append(dis_gstar(idx, range(len(G_gen_median_list), | |||||
len(G_gen_median_list) + len(Gn_median) + 1), | |||||
alpha_range, knew, withterm3=False)) | |||||
print('\nsmallest distance in kernel space: ', dhat_new_list[0]) | |||||
dis_ks_min_list[-1].append(dhat_new_list[0]) | |||||
print('\nsods of the set median for this class:', sod_set_median_list[-1]) | |||||
print('\nsods in graph space for this class:', sod_gs_list[-1]) | |||||
print('\ndistance in kernel space of set median for this class:', | |||||
dis_ks_set_median_list[-1]) | |||||
print('\nsmallest distances in kernel space for this class:', | |||||
dis_ks_min_list[-1]) | |||||
print('\ntimes for this class:', time_list[-1]) | |||||
sod_set_median_list[-1] = np.mean(sod_set_median_list[-1]) | |||||
sod_gs_list[-1] = np.mean(sod_gs_list[-1]) | |||||
dis_ks_set_median_list[-1] = np.mean(dis_ks_set_median_list[-1]) | |||||
dis_ks_min_list[-1] = np.mean(dis_ks_min_list[-1]) | |||||
time_list[-1] = np.mean(time_list[-1]) | |||||
print() | |||||
print('\nmean sods of the set median for each class:', sod_set_median_list) | |||||
print('\nmean sods in graph space for each class:', sod_gs_list) | |||||
print('\ndistances in kernel space of set median for each class:', | |||||
dis_ks_set_median_list) | |||||
print('\nmean smallest distances in kernel space for each class:', | |||||
dis_ks_min_list) | |||||
print('\nmean times for each class:', time_list) | |||||
print('\nmean sods of the set median of all:', np.mean(sod_set_median_list)) | |||||
print('\nmean sods in graph space of all:', np.mean(sod_gs_list)) | |||||
print('\nmean distances in kernel space of set median of all:', | |||||
np.mean(dis_ks_set_median_list)) | |||||
print('\nmean smallest distances in kernel space of all:', | |||||
np.mean(dis_ks_min_list)) | |||||
print('\nmean times of all:', np.mean(time_list)) | |||||
nb_better_sods = 0 | |||||
nb_worse_sods = 0 | |||||
nb_same_sods = 0 | |||||
for sods in sod_list_list: | |||||
if sods[0] > sods[-1]: | |||||
nb_better_sods += 1 | |||||
elif sods[0] < sods[-1]: | |||||
nb_worse_sods += 1 | |||||
else: | |||||
nb_same_sods += 1 | |||||
print('\n In', str(len(sod_list_list)), 'sod lists,', str(nb_better_sods), | |||||
'are getting better,', str(nb_worse_sods), 'are getting worse,', | |||||
str(nb_same_sods), 'are not changed; ', str(nb_better_sods / len(sod_list_list)), | |||||
'sods are improved.') | |||||
############################################################################### | |||||
# tests on different numbers of median-sets. | |||||
def test_iam_median_nb(): | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:50] | |||||
remove_edges(Gn) | |||||
gkernel = 'marginalizedkernel' | |||||
lmbda = 0.03 # termination probalility | |||||
# # parameters for GED function | |||||
# c_vi = 0.037 | |||||
# c_vr = 0.038 | |||||
# c_vs = 0.075 | |||||
# c_ei = 0.001 | |||||
# c_er = 0.001 | |||||
# c_es = 0.0 | |||||
# ite_max_iam = 50 | |||||
# epsilon_iam = 0.001 | |||||
# removeNodes = False | |||||
# connected_iam = False | |||||
# # parameters for IAM function | |||||
# ged_cost = 'CONSTANT' | |||||
# ged_method = 'IPFP' | |||||
# edit_cost_constant = [c_vi, c_vr, c_vs, c_ei, c_er, c_es] | |||||
# ged_stabilizer = 'min' | |||||
# ged_repeat = 50 | |||||
# params_ged = {'lib': 'gedlibpy', 'cost': ged_cost, 'method': ged_method, | |||||
# 'edit_cost_constant': edit_cost_constant, | |||||
# 'stabilizer': ged_stabilizer, 'repeat': ged_repeat} | |||||
# parameters for GED function | |||||
c_vi = 4 | |||||
c_vr = 4 | |||||
c_vs = 2 | |||||
c_ei = 1 | |||||
c_er = 1 | |||||
c_es = 1 | |||||
ite_max_iam = 50 | |||||
epsilon_iam = 0.001 | |||||
removeNodes = False | |||||
connected_iam = False | |||||
# parameters for IAM function | |||||
ged_cost = 'CHEM_1' | |||||
ged_method = 'IPFP' | |||||
edit_cost_constant = [] | |||||
ged_stabilizer = 'min' | |||||
ged_repeat = 50 | |||||
params_ged = {'lib': 'gedlibpy', 'cost': ged_cost, 'method': ged_method, | |||||
'edit_cost_constant': edit_cost_constant, | |||||
'stabilizer': ged_stabilizer, 'repeat': ged_repeat} | |||||
# find out all the graphs classified to positive group 1. | |||||
idx_dict = get_same_item_indices(y_all) | |||||
Gn = [Gn[i] for i in idx_dict[1]] | |||||
# number of graphs; we what to compute the median of these graphs. | |||||
# nb_median_range = [2, 3, 4, 5, 10, 20, 30, 40, 50, 100] | |||||
nb_median_range = [len(Gn)] | |||||
# # compute Gram matrix. | |||||
# time0 = time.time() | |||||
# km = compute_kernel(Gn, gkernel, True) | |||||
# time_km = time.time() - time0 | |||||
# # write Gram matrix to file. | |||||
# np.savez('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm', gm=km, gmtime=time_km) | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
sod_gs_list = [] | |||||
# sod_gs_min_list = [] | |||||
# nb_updated_list = [] | |||||
# nb_updated_k_list = [] | |||||
g_best = [] | |||||
for nb_median in nb_median_range: | |||||
print('\n-------------------------------------------------------') | |||||
print('number of median graphs =', nb_median) | |||||
random.seed(1) | |||||
idx_rdm = random.sample(range(len(Gn)), nb_median) | |||||
print('graphs chosen:', idx_rdm) | |||||
Gn_median = [Gn[idx].copy() for idx in idx_rdm] | |||||
Gn_candidate = [g.copy() for g in Gn] | |||||
# for g in Gn_median: | |||||
# nx.draw(g, labels=nx.get_node_attributes(g, 'atom'), with_labels=True) | |||||
## plt.savefig("results/preimage_mix/mutag.png", format="PNG") | |||||
# plt.show() | |||||
# plt.clf() | |||||
################################################################### | |||||
# gmfile = np.load('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm.npz') | |||||
# km_tmp = gmfile['gm'] | |||||
# time_km = gmfile['gmtime'] | |||||
# # modify mixed gram matrix. | |||||
# km = np.zeros((len(Gn) + nb_median, len(Gn) + nb_median)) | |||||
# for i in range(len(Gn)): | |||||
# for j in range(i, len(Gn)): | |||||
# km[i, j] = km_tmp[i, j] | |||||
# km[j, i] = km[i, j] | |||||
# for i in range(len(Gn)): | |||||
# for j, idx in enumerate(idx_rdm): | |||||
# km[i, len(Gn) + j] = km[i, idx] | |||||
# km[len(Gn) + j, i] = km[i, idx] | |||||
# for i, idx1 in enumerate(idx_rdm): | |||||
# for j, idx2 in enumerate(idx_rdm): | |||||
# km[len(Gn) + i, len(Gn) + j] = km[idx1, idx2] | |||||
################################################################### | |||||
alpha_range = [1 / nb_median] * nb_median | |||||
time0 = time.time() | |||||
ghat_new_list, sod_min = iam_upgraded(Gn_median, Gn_candidate, | |||||
c_ei=c_ei, c_er=c_er, c_es=c_es, ite_max=ite_max_iam, | |||||
epsilon=epsilon_iam, connected=connected_iam, removeNodes=removeNodes, | |||||
params_ged=params_ged) | |||||
time_total = time.time() - time0 | |||||
print('\ntime: ', time_total) | |||||
time_list.append(time_total) | |||||
# compute distance between \psi and the new generated graphs. | |||||
knew = compute_kernel(ghat_new_list + Gn_median, gkernel, False) | |||||
dhat_new_list = [] | |||||
for idx, g_tmp in enumerate(ghat_new_list): | |||||
# @todo: the term3 below could use the one at the beginning of the function. | |||||
dhat_new_list.append(dis_gstar(idx, range(len(ghat_new_list), | |||||
len(ghat_new_list) + len(Gn_median) + 1), | |||||
alpha_range, knew, withterm3=False)) | |||||
print('\nsmallest distance in kernel space: ', dhat_new_list[0]) | |||||
dis_ks_min_list.append(dhat_new_list[0]) | |||||
g_best.append(ghat_new_list[0]) | |||||
# show the best graph and save it to file. | |||||
# print('the shortest distance is', dhat) | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(ghat_new_list[0], labels=nx.get_node_attributes(ghat_new_list[0], 'atom'), | |||||
with_labels=True) | |||||
plt.show() | |||||
# plt.savefig('results/iam/mutag_median.fit_costs2.001.nb' + str(nb_median) + | |||||
plt.savefig('results/iam/mutag_median_unfit2.nb' + str(nb_median) + | |||||
'.png', format="PNG") | |||||
plt.clf() | |||||
# print(ghat_list[0].nodes(data=True)) | |||||
# print(ghat_list[0].edges(data=True)) | |||||
sod_gs_list.append(sod_min) | |||||
# sod_gs_min_list.append(np.min(sod_min)) | |||||
print('\nsmallest sod in graph space: ', sod_min) | |||||
print('\nsods in graph space: ', sod_gs_list) | |||||
# print('\nsmallest sod in graph space for each set of median graphs: ', sod_gs_min_list) | |||||
print('\nsmallest distance in kernel space for each set of median graphs: ', | |||||
dis_ks_min_list) | |||||
# print('\nnumber of updates of the best graph for each set of median graphs by IAM: ', | |||||
# nb_updated_list) | |||||
# print('\nnumber of updates of k nearest graphs for each set of median graphs by IAM: ', | |||||
# nb_updated_k_list) | |||||
print('\ntimes:', time_list) | |||||
def test_iam_letter_h(): | |||||
from median import draw_Letter_graph | |||||
ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', | |||||
'extra_params': {}} # node nsymb | |||||
# ds = {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt', | |||||
# 'extra_params': {}} # node nsymb | |||||
# Gn = Gn[0:50] | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
gkernel = 'structuralspkernel' | |||||
# parameters for GED function from the IAM paper. | |||||
c_vi = 3 | |||||
c_vr = 3 | |||||
c_vs = 1 | |||||
c_ei = 3 | |||||
c_er = 3 | |||||
c_es = 1 | |||||
ite_max_iam = 50 | |||||
epsilon_iam = 0.001 | |||||
removeNodes = False | |||||
connected_iam = False | |||||
# parameters for IAM function | |||||
# ged_cost = 'CONSTANT' | |||||
ged_cost = 'LETTER' | |||||
ged_method = 'IPFP' | |||||
# edit_cost_constant = [c_vi, c_vr, c_vs, c_ei, c_er, c_es] | |||||
edit_cost_constant = [] | |||||
ged_stabilizer = 'min' | |||||
ged_repeat = 50 | |||||
params_ged = {'lib': 'gedlibpy', 'cost': ged_cost, 'method': ged_method, | |||||
'edit_cost_constant': edit_cost_constant, | |||||
'stabilizer': ged_stabilizer, 'repeat': ged_repeat} | |||||
# classify graphs according to letters. | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
sod_gs_list = [] | |||||
g_best = [] | |||||
sod_set_median_list = [] | |||||
idx_dict = get_same_item_indices(y_all) | |||||
for letter in idx_dict: | |||||
print('\n-------------------------------------------------------') | |||||
print('letter', letter) | |||||
Gn_let = [Gn[i].copy() for i in idx_dict[letter]] | |||||
time_list.append([]) | |||||
dis_ks_min_list.append([]) | |||||
sod_gs_list.append([]) | |||||
g_best.append([]) | |||||
sod_set_median_list.append([]) | |||||
for repeat in range(50): | |||||
idx_rdm = random.sample(range(len(Gn_let)), 50) | |||||
print('graphs chosen:', idx_rdm) | |||||
Gn_median = [Gn_let[idx].copy() for idx in idx_rdm] | |||||
Gn_candidate = [g.copy() for g in Gn_median] | |||||
alpha_range = [1 / len(Gn_median)] * len(Gn_median) | |||||
time0 = time.time() | |||||
ghat_new_list, sod_min, sod_set_median = iam_upgraded(Gn_median, | |||||
Gn_candidate, c_ei=c_ei, c_er=c_er, c_es=c_es, ite_max=ite_max_iam, | |||||
epsilon=epsilon_iam, connected=connected_iam, removeNodes=removeNodes, | |||||
params_ged=params_ged) | |||||
time_total = time.time() - time0 | |||||
print('\ntime: ', time_total) | |||||
time_list[-1].append(time_total) | |||||
g_best[-1].append(ghat_new_list[0]) | |||||
sod_set_median_list[-1].append(sod_set_median) | |||||
print('\nsmallest sod of the set median:', sod_set_median) | |||||
sod_gs_list[-1].append(sod_min) | |||||
print('\nsmallest sod in graph space:', sod_min) | |||||
# show the best graph and save it to file. | |||||
print('one of the possible corresponding pre-images is') | |||||
draw_Letter_graph(ghat_new_list[0], savepath='results/iam/paper_compare/') | |||||
# compute distance between \psi and the new generated graphs. | |||||
knew = compute_kernel(ghat_new_list + Gn_median, gkernel, False) | |||||
dhat_new_list = [] | |||||
for idx, g_tmp in enumerate(ghat_new_list): | |||||
# @todo: the term3 below could use the one at the beginning of the function. | |||||
dhat_new_list.append(dis_gstar(idx, range(len(ghat_new_list), | |||||
len(ghat_new_list) + len(Gn_median) + 1), | |||||
alpha_range, knew, withterm3=False)) | |||||
print('\nsmallest distance in kernel space: ', dhat_new_list[0]) | |||||
dis_ks_min_list[-1].append(dhat_new_list[0]) | |||||
print('\nsods of the set median for this letter:', sod_set_median_list[-1]) | |||||
print('\nsods in graph space for this letter:', sod_gs_list[-1]) | |||||
print('\nsmallest distances in kernel space for this letter:', | |||||
dis_ks_min_list[-1]) | |||||
print('\ntimes for this letter:', time_list[-1]) | |||||
sod_set_median_list[-1] = np.mean(sod_set_median_list[-1]) | |||||
sod_gs_list[-1] = np.mean(sod_gs_list[-1]) | |||||
dis_ks_min_list[-1] = np.mean(dis_ks_min_list[-1]) | |||||
time_list[-1] = np.mean(time_list[-1]) | |||||
print('\nmean sods of the set median for each letter:', sod_set_median_list) | |||||
print('\nmean sods in graph space for each letter:', sod_gs_list) | |||||
print('\nmean smallest distances in kernel space for each letter:', | |||||
dis_ks_min_list) | |||||
print('\nmean times for each letter:', time_list) | |||||
print('\nmean sods of the set median of all:', np.mean(sod_set_median_list)) | |||||
print('\nmean sods in graph space of all:', np.mean(sod_gs_list)) | |||||
print('\nmean smallest distances in kernel space of all:', | |||||
np.mean(dis_ks_min_list)) | |||||
print('\nmean times of all:', np.mean(time_list)) | |||||
def test_iam_fitdistance(): | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:50] | |||||
# remove_edges(Gn) | |||||
gkernel = 'marginalizedkernel' | |||||
node_label = 'atom' | |||||
edge_label = 'bond_type' | |||||
# lmbda = 0.03 # termination probalility | |||||
# # parameters for GED function | |||||
# c_vi = 0.037 | |||||
# c_vr = 0.038 | |||||
# c_vs = 0.075 | |||||
# c_ei = 0.001 | |||||
# c_er = 0.001 | |||||
# c_es = 0.0 | |||||
# ite_max_iam = 50 | |||||
# epsilon_iam = 0.001 | |||||
# removeNodes = False | |||||
# connected_iam = False | |||||
# # parameters for IAM function | |||||
# ged_cost = 'CONSTANT' | |||||
# ged_method = 'IPFP' | |||||
# edit_cost_constant = [c_vi, c_vr, c_vs, c_ei, c_er, c_es] | |||||
# ged_stabilizer = 'min' | |||||
# ged_repeat = 50 | |||||
# params_ged = {'lib': 'gedlibpy', 'cost': ged_cost, 'method': ged_method, | |||||
# 'edit_cost_constant': edit_cost_constant, | |||||
# 'stabilizer': ged_stabilizer, 'repeat': ged_repeat} | |||||
# parameters for GED function | |||||
c_vi = 4 | |||||
c_vr = 4 | |||||
c_vs = 2 | |||||
c_ei = 1 | |||||
c_er = 1 | |||||
c_es = 1 | |||||
ite_max_iam = 50 | |||||
epsilon_iam = 0.001 | |||||
removeNodes = False | |||||
connected_iam = False | |||||
# parameters for IAM function | |||||
ged_cost = 'CHEM_1' | |||||
ged_method = 'IPFP' | |||||
edit_cost_constant = [] | |||||
ged_stabilizer = 'min' | |||||
ged_repeat = 50 | |||||
params_ged = {'lib': 'gedlibpy', 'cost': ged_cost, 'method': ged_method, | |||||
'edit_cost_constant': edit_cost_constant, | |||||
'stabilizer': ged_stabilizer, 'repeat': ged_repeat} | |||||
# find out all the graphs classified to positive group 1. | |||||
idx_dict = get_same_item_indices(y_all) | |||||
Gn = [Gn[i] for i in idx_dict[1]] | |||||
# number of graphs; we what to compute the median of these graphs. | |||||
# nb_median_range = [2, 3, 4, 5, 10, 20, 30, 40, 50, 100] | |||||
nb_median_range = [10] | |||||
# # compute Gram matrix. | |||||
# time0 = time.time() | |||||
# km = compute_kernel(Gn, gkernel, True) | |||||
# time_km = time.time() - time0 | |||||
# # write Gram matrix to file. | |||||
# np.savez('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm', gm=km, gmtime=time_km) | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
dis_ks_gen_median_list = [] | |||||
sod_gs_list = [] | |||||
# sod_gs_min_list = [] | |||||
# nb_updated_list = [] | |||||
# nb_updated_k_list = [] | |||||
g_best = [] | |||||
for nb_median in nb_median_range: | |||||
print('\n-------------------------------------------------------') | |||||
print('number of median graphs =', nb_median) | |||||
random.seed(1) | |||||
idx_rdm = random.sample(range(len(Gn)), nb_median) | |||||
print('graphs chosen:', idx_rdm) | |||||
Gn_median = [Gn[idx].copy() for idx in idx_rdm] | |||||
Gn_candidate = [g.copy() for g in Gn_median] | |||||
# for g in Gn_median: | |||||
# nx.draw(g, labels=nx.get_node_attributes(g, 'atom'), with_labels=True) | |||||
## plt.savefig("results/preimage_mix/mutag.png", format="PNG") | |||||
# plt.show() | |||||
# plt.clf() | |||||
################################################################### | |||||
# gmfile = np.load('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm.npz') | |||||
# km_tmp = gmfile['gm'] | |||||
# time_km = gmfile['gmtime'] | |||||
# # modify mixed gram matrix. | |||||
# km = np.zeros((len(Gn) + nb_median, len(Gn) + nb_median)) | |||||
# for i in range(len(Gn)): | |||||
# for j in range(i, len(Gn)): | |||||
# km[i, j] = km_tmp[i, j] | |||||
# km[j, i] = km[i, j] | |||||
# for i in range(len(Gn)): | |||||
# for j, idx in enumerate(idx_rdm): | |||||
# km[i, len(Gn) + j] = km[i, idx] | |||||
# km[len(Gn) + j, i] = km[i, idx] | |||||
# for i, idx1 in enumerate(idx_rdm): | |||||
# for j, idx2 in enumerate(idx_rdm): | |||||
# km[len(Gn) + i, len(Gn) + j] = km[idx1, idx2] | |||||
################################################################### | |||||
alpha_range = [1 / nb_median] * nb_median | |||||
time0 = time.time() | |||||
G_gen_median_list, sod_gen_median, sod_list, G_set_median_list, sod_set_median \ | |||||
= iam_upgraded(Gn_median, Gn_candidate, | |||||
c_ei=c_ei, c_er=c_er, c_es=c_es, ite_max=ite_max_iam, | |||||
epsilon=epsilon_iam, connected=connected_iam, removeNodes=removeNodes, | |||||
params_ged=params_ged) | |||||
time_total = time.time() - time0 | |||||
print('\ntime: ', time_total) | |||||
time_list.append(time_total) | |||||
# compute distance between \psi and the new generated graphs. | |||||
knew = compute_kernel(G_gen_median_list + Gn_median, gkernel, node_label, | |||||
edge_label, False) | |||||
dhat_new_list = [] | |||||
for idx, g_tmp in enumerate(G_gen_median_list): | |||||
# @todo: the term3 below could use the one at the beginning of the function. | |||||
dhat_new_list.append(dis_gstar(idx, range(len(G_gen_median_list), | |||||
len(G_gen_median_list) + len(Gn_median) + 1), | |||||
alpha_range, knew, withterm3=False)) | |||||
print('\nsmallest distance in kernel space: ', dhat_new_list[0]) | |||||
dis_ks_min_list.append(dhat_new_list[0]) | |||||
g_best.append(G_gen_median_list[0]) | |||||
# show the best graph and save it to file. | |||||
# print('the shortest distance is', dhat) | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(G_gen_median_list[0], labels=nx.get_node_attributes(G_gen_median_list[0], 'atom'), | |||||
with_labels=True) | |||||
plt.show() | |||||
# plt.savefig('results/iam/mutag_median.fit_costs2.001.nb' + str(nb_median) + | |||||
# plt.savefig('results/iam/mutag_median_unfit2.nb' + str(nb_median) + | |||||
# '.png', format="PNG") | |||||
plt.clf() | |||||
# print(ghat_list[0].nodes(data=True)) | |||||
# print(ghat_list[0].edges(data=True)) | |||||
sod_gs_list.append(sod_gen_median) | |||||
# sod_gs_min_list.append(np.min(sod_gen_median)) | |||||
print('\nsmallest sod in graph space: ', sod_gen_median) | |||||
print('\nsmallest sod of set median in graph space: ', sod_set_median) | |||||
print('\nsods in graph space: ', sod_gs_list) | |||||
# print('\nsmallest sod in graph space for each set of median graphs: ', sod_gs_min_list) | |||||
print('\nsmallest distance in kernel space for each set of median graphs: ', | |||||
dis_ks_min_list) | |||||
# print('\nnumber of updates of the best graph for each set of median graphs by IAM: ', | |||||
# nb_updated_list) | |||||
# print('\nnumber of updates of k nearest graphs for each set of median graphs by IAM: ', | |||||
# nb_updated_k_list) | |||||
print('\ntimes:', time_list) | |||||
############################################################################### | |||||
if __name__ == '__main__': | |||||
############################################################################### | |||||
# tests on different numbers of median-sets. | |||||
# test_iam_median_nb() | |||||
# test_iam_letter_h() | |||||
# test_iam_monoterpenoides() | |||||
# test_iam_mutag() | |||||
# test_iam_fitdistance() | |||||
# print("test log") | |||||
test_iam_monoterpenoides_with_init40() |
@@ -1,462 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Mon Dec 16 11:53:54 2019 | |||||
@author: ljia | |||||
""" | |||||
import numpy as np | |||||
import math | |||||
import networkx as nx | |||||
import matplotlib.pyplot as plt | |||||
import time | |||||
import random | |||||
from tqdm import tqdm | |||||
from itertools import combinations, islice | |||||
import multiprocessing | |||||
from multiprocessing import Pool | |||||
from functools import partial | |||||
from gklearn.utils.graphfiles import loadDataset, loadGXL | |||||
#from gklearn.utils.logger2file import * | |||||
from gklearn.preimage.iam import iam_upgraded, iam_bash | |||||
from gklearn.preimage.utils import compute_kernel, dis_gstar, kernel_distance_matrix | |||||
from gklearn.preimage.fitDistance import fit_GED_to_kernel_distance | |||||
#from gklearn.preimage.ged import ged_median | |||||
def fit_edit_cost_constants(fit_method, edit_cost_name, | |||||
edit_cost_constants=None, initial_solutions=1, | |||||
Gn_median=None, node_label=None, edge_label=None, | |||||
gkernel=None, dataset=None, init_ecc=None, | |||||
Gn=None, Kmatrix_median=None): | |||||
"""fit edit cost constants. | |||||
""" | |||||
if fit_method == 'random': # random | |||||
if edit_cost_name == 'LETTER': | |||||
edit_cost_constants = random.sample(range(1, 10), 3) | |||||
edit_cost_constants = [item * 0.1 for item in edit_cost_constants] | |||||
elif edit_cost_name == 'LETTER2': | |||||
random.seed(time.time()) | |||||
edit_cost_constants = random.sample(range(1, 10), 5) | |||||
# edit_cost_constants = [item * 0.1 for item in edit_cost_constants] | |||||
elif edit_cost_name == 'NON_SYMBOLIC': | |||||
edit_cost_constants = random.sample(range(1, 10), 6) | |||||
if Gn_median[0].graph['node_attrs'] == []: | |||||
edit_cost_constants[2] = 0 | |||||
if Gn_median[0].graph['edge_attrs'] == []: | |||||
edit_cost_constants[5] = 0 | |||||
else: | |||||
edit_cost_constants = random.sample(range(1, 10), 6) | |||||
print('edit cost constants used:', edit_cost_constants) | |||||
elif fit_method == 'expert': # expert | |||||
if init_ecc is None: | |||||
if edit_cost_name == 'LETTER': | |||||
edit_cost_constants = [0.9, 1.7, 0.75] | |||||
elif edit_cost_name == 'LETTER2': | |||||
edit_cost_constants = [0.675, 0.675, 0.75, 0.425, 0.425] | |||||
else: | |||||
edit_cost_constants = [3, 3, 1, 3, 3, 1] | |||||
else: | |||||
edit_cost_constants = init_ecc | |||||
elif fit_method == 'k-graphs': | |||||
itr_max = 6 | |||||
if init_ecc is None: | |||||
if edit_cost_name == 'LETTER': | |||||
init_costs = [0.9, 1.7, 0.75] | |||||
elif edit_cost_name == 'LETTER2': | |||||
init_costs = [0.675, 0.675, 0.75, 0.425, 0.425] | |||||
elif edit_cost_name == 'NON_SYMBOLIC': | |||||
init_costs = [0, 0, 1, 1, 1, 0] | |||||
if Gn_median[0].graph['node_attrs'] == []: | |||||
init_costs[2] = 0 | |||||
if Gn_median[0].graph['edge_attrs'] == []: | |||||
init_costs[5] = 0 | |||||
else: | |||||
init_costs = [3, 3, 1, 3, 3, 1] | |||||
else: | |||||
init_costs = init_ecc | |||||
algo_options = '--threads 1 --initial-solutions ' \ | |||||
+ str(initial_solutions) + ' --ratio-runs-from-initial-solutions 1' | |||||
params_ged = {'lib': 'gedlibpy', 'cost': edit_cost_name, 'method': 'IPFP', | |||||
'algo_options': algo_options, 'stabilizer': None} | |||||
# fit on k-graph subset | |||||
edit_cost_constants, _, _, _, _, _, _ = fit_GED_to_kernel_distance(Gn_median, | |||||
node_label, edge_label, gkernel, itr_max, params_ged=params_ged, | |||||
init_costs=init_costs, dataset=dataset, Kmatrix=Kmatrix_median, | |||||
parallel=True) | |||||
elif fit_method == 'whole-dataset': | |||||
itr_max = 6 | |||||
if init_ecc is None: | |||||
if edit_cost_name == 'LETTER': | |||||
init_costs = [0.9, 1.7, 0.75] | |||||
elif edit_cost_name == 'LETTER2': | |||||
init_costs = [0.675, 0.675, 0.75, 0.425, 0.425] | |||||
else: | |||||
init_costs = [3, 3, 1, 3, 3, 1] | |||||
else: | |||||
init_costs = init_ecc | |||||
algo_options = '--threads 1 --initial-solutions ' \ | |||||
+ str(initial_solutions) + ' --ratio-runs-from-initial-solutions 1' | |||||
params_ged = {'lib': 'gedlibpy', 'cost': edit_cost_name, 'method': 'IPFP', | |||||
'algo_options': algo_options, 'stabilizer': None} | |||||
# fit on all subset | |||||
edit_cost_constants, _, _, _, _, _, _ = fit_GED_to_kernel_distance(Gn, | |||||
node_label, edge_label, gkernel, itr_max, params_ged=params_ged, | |||||
init_costs=init_costs, dataset=dataset, parallel=True) | |||||
elif fit_method == 'precomputed': | |||||
pass | |||||
return edit_cost_constants | |||||
def compute_distances_to_true_median(Gn_median, fname_sm, fname_gm, | |||||
gkernel, edit_cost_name, | |||||
Kmatrix_median=None): | |||||
# reform graphs. | |||||
set_median = loadGXL(fname_sm) | |||||
gen_median = loadGXL(fname_gm) | |||||
# print(gen_median.nodes(data=True)) | |||||
# print(gen_median.edges(data=True)) | |||||
if edit_cost_name == 'LETTER' or edit_cost_name == 'LETTER2' or edit_cost_name == 'NON_SYMBOLIC': | |||||
# dataset == 'Fingerprint': | |||||
# for g in Gn_median: | |||||
# reform_attributes(g) | |||||
reform_attributes(set_median, Gn_median[0].graph['node_attrs'], | |||||
Gn_median[0].graph['edge_attrs']) | |||||
reform_attributes(gen_median, Gn_median[0].graph['node_attrs'], | |||||
Gn_median[0].graph['edge_attrs']) | |||||
if edit_cost_name == 'LETTER' or edit_cost_name == 'LETTER2' or edit_cost_name == 'NON_SYMBOLIC': | |||||
node_label = None | |||||
edge_label = None | |||||
else: | |||||
node_label = 'chem' | |||||
edge_label = 'valence' | |||||
# compute Gram matrix for median set. | |||||
if Kmatrix_median is None: | |||||
Kmatrix_median = compute_kernel(Gn_median, gkernel, node_label, edge_label, False) | |||||
# compute distance in kernel space for set median. | |||||
kernel_sm = [] | |||||
for G_median in Gn_median: | |||||
km_tmp = compute_kernel([set_median, G_median], gkernel, node_label, edge_label, False) | |||||
kernel_sm.append(km_tmp[0, 1]) | |||||
Kmatrix_sm = np.concatenate((np.array([kernel_sm]), np.copy(Kmatrix_median)), axis=0) | |||||
Kmatrix_sm = np.concatenate((np.array([[km_tmp[0, 0]] + kernel_sm]).T, Kmatrix_sm), axis=1) | |||||
# Kmatrix_sm = compute_kernel([set_median] + Gn_median, gkernel, | |||||
# node_label, edge_label, False) | |||||
dis_k_sm = dis_gstar(0, range(1, 1+len(Gn_median)), | |||||
[1 / len(Gn_median)] * len(Gn_median), Kmatrix_sm, withterm3=False) | |||||
# print(gen_median.nodes(data=True)) | |||||
# print(gen_median.edges(data=True)) | |||||
# print(set_median.nodes(data=True)) | |||||
# print(set_median.edges(data=True)) | |||||
# compute distance in kernel space for generalized median. | |||||
kernel_gm = [] | |||||
for G_median in Gn_median: | |||||
km_tmp = compute_kernel([gen_median, G_median], gkernel, node_label, edge_label, False) | |||||
kernel_gm.append(km_tmp[0, 1]) | |||||
Kmatrix_gm = np.concatenate((np.array([kernel_gm]), np.copy(Kmatrix_median)), axis=0) | |||||
Kmatrix_gm = np.concatenate((np.array([[km_tmp[0, 0]] + kernel_gm]).T, Kmatrix_gm), axis=1) | |||||
# Kmatrix_gm = compute_kernel([gen_median] + Gn_median, gkernel, | |||||
# node_label, edge_label, False) | |||||
dis_k_gm = dis_gstar(0, range(1, 1+len(Gn_median)), | |||||
[1 / len(Gn_median)] * len(Gn_median), Kmatrix_gm, withterm3=False) | |||||
# compute distance in kernel space for each graph in median set. | |||||
dis_k_gi = [] | |||||
for idx in range(len(Gn_median)): | |||||
dis_k_gi.append(dis_gstar(idx+1, range(1, 1+len(Gn_median)), | |||||
[1 / len(Gn_median)] * len(Gn_median), Kmatrix_gm, withterm3=False)) | |||||
print('dis_k_sm:', dis_k_sm) | |||||
print('dis_k_gm:', dis_k_gm) | |||||
print('dis_k_gi:', dis_k_gi) | |||||
idx_dis_k_gi_min = np.argmin(dis_k_gi) | |||||
dis_k_gi_min = dis_k_gi[idx_dis_k_gi_min] | |||||
print('min dis_k_gi:', dis_k_gi_min) | |||||
return dis_k_sm, dis_k_gm, dis_k_gi, dis_k_gi_min, idx_dis_k_gi_min | |||||
def median_on_k_closest_graphs(Gn, node_label, edge_label, gkernel, k, fit_method, | |||||
graph_dir=None, initial_solutions=1, | |||||
edit_cost_constants=None, group_min=None, | |||||
dataset=None, edit_cost_name=None, init_ecc=None, | |||||
Kmatrix=None, parallel=True): | |||||
# dataset = dataset.lower() | |||||
# # compute distances in kernel space. | |||||
# dis_mat, _, _, _ = kernel_distance_matrix(Gn, node_label, edge_label, | |||||
# Kmatrix=None, gkernel=gkernel) | |||||
# # ged. | |||||
# gmfile = np.load('results/test_k_closest_graphs/ged_mat.fit_on_whole_dataset.with_medians.gm.npz') | |||||
# ged_mat = gmfile['ged_mat'] | |||||
# dis_mat = ged_mat[0:len(Gn), 0:len(Gn)] | |||||
# # choose k closest graphs | |||||
# time0 = time.time() | |||||
# sod_ks_min, group_min = get_closest_k_graphs(dis_mat, k, parallel) | |||||
# time_spent = time.time() - time0 | |||||
# print('closest graphs:', sod_ks_min, group_min) | |||||
# print('time spent:', time_spent) | |||||
# group_min = (12, 13, 22, 29) # closest w.r.t path kernel | |||||
# group_min = (77, 85, 160, 171) # closest w.r.t ged | |||||
# group_min = (0,1,2,3,4,5,6,7,8,9,10,11) # closest w.r.t treelet kernel | |||||
Gn_median = [Gn[g].copy() for g in group_min] | |||||
if Kmatrix is not None: | |||||
Kmatrix_median = np.copy(Kmatrix[group_min,:]) | |||||
Kmatrix_median = Kmatrix_median[:,group_min] | |||||
else: | |||||
Kmatrix_median = None | |||||
# 1. fit edit cost constants. | |||||
time0 = time.time() | |||||
edit_cost_constants = fit_edit_cost_constants(fit_method, edit_cost_name, | |||||
edit_cost_constants=edit_cost_constants, initial_solutions=initial_solutions, | |||||
Gn_median=Gn_median, node_label=node_label, edge_label=edge_label, | |||||
gkernel=gkernel, dataset=dataset, init_ecc=init_ecc, | |||||
Gn=Gn, Kmatrix_median=Kmatrix_median) | |||||
time_fitting = time.time() - time0 | |||||
# 2. compute set median and gen median using IAM (C++ through bash). | |||||
print('\nstart computing set median and gen median using IAM (C++ through bash)...\n') | |||||
group_fnames = [Gn[g].graph['filename'] for g in group_min] | |||||
time0 = time.time() | |||||
sod_sm, sod_gm, fname_sm, fname_gm = iam_bash(group_fnames, edit_cost_constants, | |||||
cost=edit_cost_name, initial_solutions=initial_solutions, | |||||
graph_dir=graph_dir, dataset=dataset) | |||||
time_generating = time.time() - time0 | |||||
print('\nmedians computed.\n') | |||||
# 3. compute distances to the true median. | |||||
print('\nstart computing distances to true median....\n') | |||||
Gn_median = [Gn[g].copy() for g in group_min] | |||||
dis_k_sm, dis_k_gm, dis_k_gi, dis_k_gi_min, idx_dis_k_gi_min = \ | |||||
compute_distances_to_true_median(Gn_median, fname_sm, fname_gm, | |||||
gkernel, edit_cost_name, | |||||
Kmatrix_median=Kmatrix_median) | |||||
idx_dis_k_gi_min = group_min[idx_dis_k_gi_min] | |||||
print('index min dis_k_gi:', idx_dis_k_gi_min) | |||||
print('sod_sm:', sod_sm) | |||||
print('sod_gm:', sod_gm) | |||||
# collect return values. | |||||
return (sod_sm, sod_gm), \ | |||||
(dis_k_sm, dis_k_gm, dis_k_gi, dis_k_gi_min, idx_dis_k_gi_min), \ | |||||
(time_fitting, time_generating) | |||||
def reform_attributes(G, na_names=[], ea_names=[]): | |||||
if not na_names == []: | |||||
for node in G.nodes: | |||||
G.nodes[node]['attributes'] = [G.node[node][a_name] for a_name in na_names] | |||||
if not ea_names == []: | |||||
for edge in G.edges: | |||||
G.edges[edge]['attributes'] = [G.edge[edge][a_name] for a_name in ea_names] | |||||
def get_closest_k_graphs(dis_mat, k, parallel): | |||||
k_graph_groups = combinations(range(0, len(dis_mat)), k) | |||||
sod_ks_min = np.inf | |||||
if parallel: | |||||
len_combination = get_combination_length(len(dis_mat), k) | |||||
len_itr_max = int(len_combination if len_combination < 1e7 else 1e7) | |||||
# pos_cur = 0 | |||||
graph_groups_slices = split_iterable(k_graph_groups, len_itr_max, len_combination) | |||||
for graph_groups_cur in graph_groups_slices: | |||||
# while True: | |||||
# graph_groups_cur = islice(k_graph_groups, pos_cur, pos_cur + len_itr_max) | |||||
graph_groups_cur_list = list(graph_groups_cur) | |||||
print('current position:', graph_groups_cur_list[0]) | |||||
len_itr_cur = len(graph_groups_cur_list) | |||||
# if len_itr_cur < len_itr_max: | |||||
# break | |||||
itr = zip(graph_groups_cur_list, range(0, len_itr_cur)) | |||||
sod_k_list = np.empty(len_itr_cur) | |||||
graphs_list = [None] * len_itr_cur | |||||
n_jobs = multiprocessing.cpu_count() | |||||
chunksize = int(len_itr_max / n_jobs + 1) | |||||
n_jobs = multiprocessing.cpu_count() | |||||
def init_worker(dis_mat_toshare): | |||||
global G_dis_mat | |||||
G_dis_mat = dis_mat_toshare | |||||
pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(dis_mat,)) | |||||
# iterator = tqdm(pool.imap_unordered(_get_closest_k_graphs_parallel, | |||||
# itr, chunksize), | |||||
# desc='Choosing k closest graphs', file=sys.stdout) | |||||
iterator = pool.imap_unordered(_get_closest_k_graphs_parallel, itr, chunksize) | |||||
for graphs, i, sod_ks in iterator: | |||||
sod_k_list[i] = sod_ks | |||||
graphs_list[i] = graphs | |||||
pool.close() | |||||
pool.join() | |||||
arg_min = np.argmin(sod_k_list) | |||||
sod_ks_cur = sod_k_list[arg_min] | |||||
group_cur = graphs_list[arg_min] | |||||
if sod_ks_cur < sod_ks_min: | |||||
sod_ks_min = sod_ks_cur | |||||
group_min = group_cur | |||||
print('get closer graphs:', sod_ks_min, group_min) | |||||
else: | |||||
for items in tqdm(k_graph_groups, desc='Choosing k closest graphs', file=sys.stdout): | |||||
# if items[0] != itmp: | |||||
# itmp = items[0] | |||||
# print(items) | |||||
k_graph_pairs = combinations(items, 2) | |||||
sod_ks = 0 | |||||
for i1, i2 in k_graph_pairs: | |||||
sod_ks += dis_mat[i1, i2] | |||||
if sod_ks < sod_ks_min: | |||||
sod_ks_min = sod_ks | |||||
group_min = items | |||||
print('get closer graphs:', sod_ks_min, group_min) | |||||
return sod_ks_min, group_min | |||||
def _get_closest_k_graphs_parallel(itr): | |||||
k_graph_pairs = combinations(itr[0], 2) | |||||
sod_ks = 0 | |||||
for i1, i2 in k_graph_pairs: | |||||
sod_ks += G_dis_mat[i1, i2] | |||||
return itr[0], itr[1], sod_ks | |||||
def split_iterable(iterable, n, len_iter): | |||||
it = iter(iterable) | |||||
for i in range(0, len_iter, n): | |||||
piece = islice(it, n) | |||||
yield piece | |||||
def get_combination_length(n, k): | |||||
len_combination = 1 | |||||
for i in range(n, n - k, -1): | |||||
len_combination *= i | |||||
return int(len_combination / math.factorial(k)) | |||||
############################################################################### | |||||
def test_k_closest_graphs(): | |||||
ds = {'name': 'monoterpenoides', | |||||
'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset']) | |||||
# Gn = Gn[0:50] | |||||
# gkernel = 'untilhpathkernel' | |||||
# gkernel = 'weisfeilerlehmankernel' | |||||
gkernel = 'treeletkernel' | |||||
node_label = 'atom' | |||||
edge_label = 'bond_type' | |||||
k = 5 | |||||
edit_costs = [0.16229209837639536, 0.06612870523413916, 0.04030113378793905, 0.20723547009415202, 0.3338607220394598, 0.27054392518077297] | |||||
# sod_sm, sod_gm, dis_k_sm, dis_k_gm, dis_k_gi, dis_k_gi_min \ | |||||
# = median_on_k_closest_graphs(Gn, node_label, edge_label, gkernel, k, | |||||
# 'precomputed', edit_costs=edit_costs, | |||||
## 'k-graphs', | |||||
# parallel=False) | |||||
# | |||||
# sod_sm, sod_gm, dis_k_sm, dis_k_gm, dis_k_gi, dis_k_gi_min \ | |||||
# = median_on_k_closest_graphs(Gn, node_label, edge_label, gkernel, k, | |||||
# 'expert', parallel=False) | |||||
sod_sm, sod_gm, dis_k_sm, dis_k_gm, dis_k_gi, dis_k_gi_min \ | |||||
= median_on_k_closest_graphs(Gn, node_label, edge_label, gkernel, k, | |||||
'expert', parallel=False) | |||||
return | |||||
def test_k_closest_graphs_with_cv(): | |||||
gkernel = 'untilhpathkernel' | |||||
node_label = 'atom' | |||||
edge_label = 'bond_type' | |||||
k = 4 | |||||
y_all = ['3', '1', '4', '6', '7', '8', '9', '2'] | |||||
repeats = 50 | |||||
collection_path = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/generated_datsets/monoterpenoides/' | |||||
graph_dir = collection_path + 'gxl/' | |||||
sod_sm_list = [] | |||||
sod_gm_list = [] | |||||
dis_k_sm_list = [] | |||||
dis_k_gm_list = [] | |||||
dis_k_gi_min_list = [] | |||||
for y in y_all: | |||||
print('\n-------------------------------------------------------') | |||||
print('class of y:', y) | |||||
sod_sm_list.append([]) | |||||
sod_gm_list.append([]) | |||||
dis_k_sm_list.append([]) | |||||
dis_k_gm_list.append([]) | |||||
dis_k_gi_min_list.append([]) | |||||
for repeat in range(repeats): | |||||
print('\nrepeat ', repeat) | |||||
collection_file = collection_path + 'monoterpenoides_' + y + '_' + str(repeat) + '.xml' | |||||
Gn, _ = loadDataset(collection_file, extra_params=graph_dir) | |||||
sod_sm, sod_gm, dis_k_sm, dis_k_gm, dis_k_gi, dis_k_gi_min \ | |||||
= median_on_k_closest_graphs(Gn, node_label, edge_label, gkernel, | |||||
k, 'whole-dataset', graph_dir=graph_dir, | |||||
parallel=False) | |||||
sod_sm_list[-1].append(sod_sm) | |||||
sod_gm_list[-1].append(sod_gm) | |||||
dis_k_sm_list[-1].append(dis_k_sm) | |||||
dis_k_gm_list[-1].append(dis_k_gm) | |||||
dis_k_gi_min_list[-1].append(dis_k_gi_min) | |||||
print('\nsods of the set median for this class:', sod_sm_list[-1]) | |||||
print('\nsods of the gen median for this class:', sod_gm_list[-1]) | |||||
print('\ndistances in kernel space of set median for this class:', | |||||
dis_k_sm_list[-1]) | |||||
print('\ndistances in kernel space of gen median for this class:', | |||||
dis_k_gm_list[-1]) | |||||
print('\ndistances in kernel space of min graph for this class:', | |||||
dis_k_gi_min_list[-1]) | |||||
sod_sm_list[-1] = np.mean(sod_sm_list[-1]) | |||||
sod_gm_list[-1] = np.mean(sod_gm_list[-1]) | |||||
dis_k_sm_list[-1] = np.mean(dis_k_sm_list[-1]) | |||||
dis_k_gm_list[-1] = np.mean(dis_k_gm_list[-1]) | |||||
dis_k_gi_min_list[-1] = np.mean(dis_k_gi_min_list[-1]) | |||||
print() | |||||
print('\nmean sods of the set median for each class:', sod_sm_list) | |||||
print('\nmean sods of the gen median for each class:', sod_gm_list) | |||||
print('\nmean distance in kernel space of set median for each class:', | |||||
dis_k_sm_list) | |||||
print('\nmean distances in kernel space of gen median for each class:', | |||||
dis_k_gm_list) | |||||
print('\nmean distances in kernel space of min graph for each class:', | |||||
dis_k_gi_min_list) | |||||
print('\nmean sods of the set median of all:', np.mean(sod_sm_list)) | |||||
print('\nmean sods of the gen median of all:', np.mean(sod_gm_list)) | |||||
print('\nmean distances in kernel space of set median of all:', | |||||
np.mean(dis_k_sm_list)) | |||||
print('\nmean distances in kernel space of gen median of all:', | |||||
np.mean(dis_k_gm_list)) | |||||
print('\nmean distances in kernel space of min graph of all:', | |||||
np.mean(dis_k_gi_min_list)) | |||||
return | |||||
if __name__ == '__main__': | |||||
test_k_closest_graphs() | |||||
# test_k_closest_graphs_with_cv() |
@@ -1,69 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Fri Mar 27 17:30:55 2020 | |||||
@author: ljia | |||||
""" | |||||
import multiprocessing | |||||
import functools | |||||
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||||
from gklearn.preimage import MedianPreimageGenerator | |||||
from gklearn.utils import Dataset | |||||
def test_median_preimage_generator(): | |||||
# 1. set parameters. | |||||
print('1. setting parameters...') | |||||
ds_name = 'Letter-high' | |||||
mpg = MedianPreimageGenerator() | |||||
mpg_options = {'fit_method': 'k-graphs', | |||||
'init_ecc': [3, 3, 1, 3, 3], | |||||
'ds_name': 'Letter-high', | |||||
'parallel': True, | |||||
'time_limit_in_sec': 0, | |||||
'max_itrs': 100, | |||||
'max_itrs_without_update': 3, | |||||
'epsilon_ratio': 0.01, | |||||
'verbose': 2} | |||||
mpg.set_options(**mpg_options) | |||||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||||
mpg.kernel_options = {'name': 'structuralspkernel', | |||||
'edge_weight': None, | |||||
'node_kernels': sub_kernels, | |||||
'edge_kernels': sub_kernels, | |||||
'compute_method': 'naive', | |||||
'parallel': 'imap_unordered', | |||||
# 'parallel': None, | |||||
'n_jobs': multiprocessing.cpu_count(), | |||||
'normalize': True, | |||||
'verbose': 2} | |||||
mpg.ged_options = {'method': 'IPFP', | |||||
'initial_solutions': 40, | |||||
'edit_cost': 'LETTER2', | |||||
'attr_distance': 'euclidean', | |||||
'ratio_runs_from_initial_solutions': 1, | |||||
'threads': multiprocessing.cpu_count(), | |||||
'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'} | |||||
mpg.mge_options = {'init_type': 'MEDOID', | |||||
'random_inits': 10, | |||||
'time_limit': 600, | |||||
'verbose': 2, | |||||
'refine': False} | |||||
# 2. get dataset. | |||||
print('2. getting dataset...') | |||||
mpg.dataset = Dataset() | |||||
mpg.dataset.load_predefined_dataset(ds_name) | |||||
mpg.dataset.cut_graphs(range(0, 10)) | |||||
# 3. compute median preimage. | |||||
print('3. computing median preimage...') | |||||
mpg.run() | |||||
if __name__ == '__main__': | |||||
test_median_preimage_generator() |
@@ -1,686 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Thu Jul 4 12:20:16 2019 | |||||
@author: ljia | |||||
""" | |||||
import numpy as np | |||||
import networkx as nx | |||||
import matplotlib.pyplot as plt | |||||
import time | |||||
from tqdm import tqdm | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
from gklearn.preimage.median import draw_Letter_graph | |||||
from gklearn.preimage.ged import GED, ged_median | |||||
from gklearn.preimage.utils import get_same_item_indices, compute_kernel, gram2distances, \ | |||||
dis_gstar, remove_edges | |||||
# --------------------------- These are tests --------------------------------# | |||||
def test_who_is_the_closest_in_kernel_space(Gn): | |||||
idx_gi = [0, 6] | |||||
g1 = Gn[idx_gi[0]] | |||||
g2 = Gn[idx_gi[1]] | |||||
# create the "median" graph. | |||||
gnew = g2.copy() | |||||
gnew.remove_node(0) | |||||
nx.draw_networkx(gnew) | |||||
plt.show() | |||||
print(gnew.nodes(data=True)) | |||||
Gn = [gnew] + Gn | |||||
# compute gram matrix | |||||
Kmatrix = compute_kernel(Gn, 'untilhpathkernel', True) | |||||
# the distance matrix | |||||
dmatrix = gram2distances(Kmatrix) | |||||
print(np.sort(dmatrix[idx_gi[0] + 1])) | |||||
print(np.argsort(dmatrix[idx_gi[0] + 1])) | |||||
print(np.sort(dmatrix[idx_gi[1] + 1])) | |||||
print(np.argsort(dmatrix[idx_gi[1] + 1])) | |||||
# for all g in Gn, compute (d(g1, g) + d(g2, g)) / 2 | |||||
dis_median = [(dmatrix[i, idx_gi[0] + 1] + dmatrix[i, idx_gi[1] + 1]) / 2 for i in range(len(Gn))] | |||||
print(np.sort(dis_median)) | |||||
print(np.argsort(dis_median)) | |||||
return | |||||
def test_who_is_the_closest_in_GED_space(Gn): | |||||
idx_gi = [0, 6] | |||||
g1 = Gn[idx_gi[0]] | |||||
g2 = Gn[idx_gi[1]] | |||||
# create the "median" graph. | |||||
gnew = g2.copy() | |||||
gnew.remove_node(0) | |||||
nx.draw_networkx(gnew) | |||||
plt.show() | |||||
print(gnew.nodes(data=True)) | |||||
Gn = [gnew] + Gn | |||||
# compute GEDs | |||||
ged_matrix = np.zeros((len(Gn), len(Gn))) | |||||
for i1 in tqdm(range(len(Gn)), desc='computing GEDs', file=sys.stdout): | |||||
for i2 in range(len(Gn)): | |||||
dis, _, _ = GED(Gn[i1], Gn[i2], lib='gedlib') | |||||
ged_matrix[i1, i2] = dis | |||||
print(np.sort(ged_matrix[idx_gi[0] + 1])) | |||||
print(np.argsort(ged_matrix[idx_gi[0] + 1])) | |||||
print(np.sort(ged_matrix[idx_gi[1] + 1])) | |||||
print(np.argsort(ged_matrix[idx_gi[1] + 1])) | |||||
# for all g in Gn, compute (GED(g1, g) + GED(g2, g)) / 2 | |||||
dis_median = [(ged_matrix[i, idx_gi[0] + 1] + ged_matrix[i, idx_gi[1] + 1]) / 2 for i in range(len(Gn))] | |||||
print(np.sort(dis_median)) | |||||
print(np.argsort(dis_median)) | |||||
return | |||||
def test_will_IAM_give_the_median_graph_we_wanted(Gn): | |||||
idx_gi = [0, 6] | |||||
g1 = Gn[idx_gi[0]].copy() | |||||
g2 = Gn[idx_gi[1]].copy() | |||||
# del Gn[idx_gi[0]] | |||||
# del Gn[idx_gi[1] - 1] | |||||
g_median = test_iam_with_more_graphs_as_init([g1, g2], [g1, g2], c_ei=1, c_er=1, c_es=1) | |||||
# g_median = test_iam_with_more_graphs_as_init(Gn, Gn, c_ei=1, c_er=1, c_es=1) | |||||
nx.draw_networkx(g_median) | |||||
plt.show() | |||||
print(g_median.nodes(data=True)) | |||||
print(g_median.edges(data=True)) | |||||
def test_new_IAM_allGraph_deleteNodes(Gn): | |||||
idx_gi = [0, 6] | |||||
# g1 = Gn[idx_gi[0]].copy() | |||||
# g2 = Gn[idx_gi[1]].copy() | |||||
# g1 = nx.Graph(name='haha') | |||||
# g1.add_nodes_from([(0, {'atom': 'C'}), (1, {'atom': 'O'}), (2, {'atom': 'C'})]) | |||||
# g1.add_edges_from([(0, 1, {'bond_type': '1'}), (1, 2, {'bond_type': '1'})]) | |||||
# g2 = nx.Graph(name='hahaha') | |||||
# g2.add_nodes_from([(0, {'atom': 'C'}), (1, {'atom': 'O'}), (2, {'atom': 'C'}), | |||||
# (3, {'atom': 'O'}), (4, {'atom': 'C'})]) | |||||
# g2.add_edges_from([(0, 1, {'bond_type': '1'}), (1, 2, {'bond_type': '1'}), | |||||
# (2, 3, {'bond_type': '1'}), (3, 4, {'bond_type': '1'})]) | |||||
g1 = nx.Graph(name='haha') | |||||
g1.add_nodes_from([(0, {'atom': 'C'}), (1, {'atom': 'C'}), (2, {'atom': 'C'}), | |||||
(3, {'atom': 'S'}), (4, {'atom': 'S'})]) | |||||
g1.add_edges_from([(0, 1, {'bond_type': '1'}), (1, 2, {'bond_type': '1'}), | |||||
(2, 3, {'bond_type': '1'}), (2, 4, {'bond_type': '1'})]) | |||||
g2 = nx.Graph(name='hahaha') | |||||
g2.add_nodes_from([(0, {'atom': 'C'}), (1, {'atom': 'C'}), (2, {'atom': 'C'}), | |||||
(3, {'atom': 'O'}), (4, {'atom': 'O'})]) | |||||
g2.add_edges_from([(0, 1, {'bond_type': '1'}), (1, 2, {'bond_type': '1'}), | |||||
(2, 3, {'bond_type': '1'}), (2, 4, {'bond_type': '1'})]) | |||||
# g2 = g1.copy() | |||||
# g2.add_nodes_from([(3, {'atom': 'O'})]) | |||||
# g2.add_nodes_from([(4, {'atom': 'C'})]) | |||||
# g2.add_edges_from([(1, 3, {'bond_type': '1'})]) | |||||
# g2.add_edges_from([(3, 4, {'bond_type': '1'})]) | |||||
# del Gn[idx_gi[0]] | |||||
# del Gn[idx_gi[1] - 1] | |||||
nx.draw_networkx(g1) | |||||
plt.show() | |||||
print(g1.nodes(data=True)) | |||||
print(g1.edges(data=True)) | |||||
nx.draw_networkx(g2) | |||||
plt.show() | |||||
print(g2.nodes(data=True)) | |||||
print(g2.edges(data=True)) | |||||
g_median = test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations([g1, g2], [g1, g2], c_ei=1, c_er=1, c_es=1) | |||||
# g_median = test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations(Gn, Gn, c_ei=1, c_er=1, c_es=1) | |||||
nx.draw_networkx(g_median) | |||||
plt.show() | |||||
print(g_median.nodes(data=True)) | |||||
print(g_median.edges(data=True)) | |||||
def test_the_simple_two(Gn, gkernel): | |||||
from gk_iam import gk_iam_nearest_multi | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 10 # recursions | |||||
l = 500 | |||||
alpha_range = np.linspace(0.5, 0.5, 1) | |||||
k = 2 # k nearest neighbors | |||||
# randomly select two molecules | |||||
np.random.seed(1) | |||||
idx_gi = [0, 6] # np.random.randint(0, len(Gn), 2) | |||||
g1 = Gn[idx_gi[0]] | |||||
g2 = Gn[idx_gi[1]] | |||||
Gn_mix = [g.copy() for g in Gn] | |||||
Gn_mix.append(g1.copy()) | |||||
Gn_mix.append(g2.copy()) | |||||
# g_tmp = iam([g1, g2]) | |||||
# nx.draw_networkx(g_tmp) | |||||
# plt.show() | |||||
# compute | |||||
# k_list = [] # kernel between each graph and itself. | |||||
# k_g1_list = [] # kernel between each graph and g1 | |||||
# k_g2_list = [] # kernel between each graph and g2 | |||||
# for ig, g in tqdm(enumerate(Gn), desc='computing self kernels', file=sys.stdout): | |||||
# ktemp = compute_kernel([g, g1, g2], 'marginalizedkernel', False) | |||||
# k_list.append(ktemp[0][0, 0]) | |||||
# k_g1_list.append(ktemp[0][0, 1]) | |||||
# k_g2_list.append(ktemp[0][0, 2]) | |||||
km = compute_kernel(Gn_mix, gkernel, True) | |||||
# k_list = np.diag(km) # kernel between each graph and itself. | |||||
# k_g1_list = km[idx_gi[0]] # kernel between each graph and g1 | |||||
# k_g2_list = km[idx_gi[1]] # kernel between each graph and g2 | |||||
g_best = [] | |||||
dis_best = [] | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('alpha =', alpha) | |||||
dhat, ghat_list = gk_iam_nearest_multi(Gn, [g1, g2], [alpha, 1 - alpha], | |||||
range(len(Gn), len(Gn) + 2), km, | |||||
k, r_max,gkernel) | |||||
dis_best.append(dhat) | |||||
g_best.append(ghat_list) | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', dis_best[idx]) | |||||
print('the corresponding pre-images are') | |||||
for g in g_best[idx]: | |||||
nx.draw_networkx(g) | |||||
plt.show() | |||||
print(g.nodes(data=True)) | |||||
print(g.edges(data=True)) | |||||
def test_remove_bests(Gn, gkernel): | |||||
from gk_iam import gk_iam_nearest_multi | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 10 # recursions | |||||
l = 500 | |||||
alpha_range = np.linspace(0.5, 0.5, 1) | |||||
k = 20 # k nearest neighbors | |||||
# randomly select two molecules | |||||
np.random.seed(1) | |||||
idx_gi = [0, 6] # np.random.randint(0, len(Gn), 2) | |||||
g1 = Gn[idx_gi[0]] | |||||
g2 = Gn[idx_gi[1]] | |||||
# remove the best 2 graphs. | |||||
del Gn[idx_gi[0]] | |||||
del Gn[idx_gi[1] - 1] | |||||
# del Gn[8] | |||||
Gn_mix = [g.copy() for g in Gn] | |||||
Gn_mix.append(g1.copy()) | |||||
Gn_mix.append(g2.copy()) | |||||
# compute | |||||
km = compute_kernel(Gn_mix, gkernel, True) | |||||
g_best = [] | |||||
dis_best = [] | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('alpha =', alpha) | |||||
dhat, ghat_list = gk_iam_nearest_multi(Gn, [g1, g2], [alpha, 1 - alpha], | |||||
range(len(Gn), len(Gn) + 2), km, | |||||
k, r_max, gkernel) | |||||
dis_best.append(dhat) | |||||
g_best.append(ghat_list) | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', dis_best[idx]) | |||||
print('the corresponding pre-images are') | |||||
for g in g_best[idx]: | |||||
draw_Letter_graph(g) | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
print(g.nodes(data=True)) | |||||
print(g.edges(data=True)) | |||||
############################################################################### | |||||
# Tests on dataset Letter-H. | |||||
def test_gkiam_letter_h(): | |||||
from gk_iam import gk_iam_nearest_multi | |||||
ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', | |||||
'extra_params': {}} # node nsymb | |||||
# ds = {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt', | |||||
# 'extra_params': {}} # node nsymb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
gkernel = 'structuralspkernel' | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 3 # recursions | |||||
# alpha_range = np.linspace(0.5, 0.5, 1) | |||||
k = 10 # k nearest neighbors | |||||
# classify graphs according to letters. | |||||
idx_dict = get_same_item_indices(y_all) | |||||
time_list = [] | |||||
sod_ks_min_list = [] | |||||
sod_gs_list = [] | |||||
sod_gs_min_list = [] | |||||
nb_updated_list = [] | |||||
for letter in idx_dict: | |||||
print('\n-------------------------------------------------------\n') | |||||
Gn_let = [Gn[i].copy() for i in idx_dict[letter]] | |||||
Gn_mix = Gn_let + [g.copy() for g in Gn_let] | |||||
alpha_range = np.linspace(1 / len(Gn_let), 1 / len(Gn_let), 1) | |||||
# compute | |||||
time0 = time.time() | |||||
km = compute_kernel(Gn_mix, gkernel, True) | |||||
g_best = [] | |||||
dis_best = [] | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('alpha =', alpha) | |||||
dhat, ghat_list, sod_ks, nb_updated = gk_iam_nearest_multi(Gn_let, | |||||
Gn_let, [alpha] * len(Gn_let), range(len(Gn_let), len(Gn_mix)), | |||||
km, k, r_max, gkernel, c_ei=1.7, c_er=1.7, c_es=1.7, | |||||
ged_cost='LETTER', ged_method='IPFP', saveGXL='gedlib-letter') | |||||
dis_best.append(dhat) | |||||
g_best.append(ghat_list) | |||||
time_list.append(time.time() - time0) | |||||
# show best graphs and save them to file. | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', dis_best[idx]) | |||||
print('the corresponding pre-images are') | |||||
for g in g_best[idx]: | |||||
draw_Letter_graph(g, savepath='results/gk_iam/') | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
print(g.nodes(data=True)) | |||||
print(g.edges(data=True)) | |||||
# compute the corresponding sod in graph space. (alpha range not considered.) | |||||
sod_tmp, _ = ged_median(g_best[0], Gn_let, ged_cost='LETTER', | |||||
ged_method='IPFP', saveGXL='gedlib-letter') | |||||
sod_gs_list.append(sod_tmp) | |||||
sod_gs_min_list.append(np.min(sod_tmp)) | |||||
sod_ks_min_list.append(sod_ks) | |||||
nb_updated_list.append(nb_updated) | |||||
print('\nsods in graph space: ', sod_gs_list) | |||||
print('\nsmallest sod in graph space for each letter: ', sod_gs_min_list) | |||||
print('\nsmallest sod in kernel space for each letter: ', sod_ks_min_list) | |||||
print('\nnumber of updates for each letter: ', nb_updated_list) | |||||
print('\ntimes:', time_list) | |||||
#def compute_letter_median_by_average(Gn): | |||||
# return g_median | |||||
def test_iam_letter_h(): | |||||
from iam import test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations | |||||
ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', | |||||
'extra_params': {}} # node nsymb | |||||
# ds = {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt', | |||||
# 'extra_params': {}} # node nsymb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
lmbda = 0.03 # termination probalility | |||||
# alpha_range = np.linspace(0.5, 0.5, 1) | |||||
# classify graphs according to letters. | |||||
idx_dict = get_same_item_indices(y_all) | |||||
time_list = [] | |||||
sod_list = [] | |||||
sod_min_list = [] | |||||
for letter in idx_dict: | |||||
Gn_let = [Gn[i].copy() for i in idx_dict[letter]] | |||||
alpha_range = np.linspace(1 / len(Gn_let), 1 / len(Gn_let), 1) | |||||
# compute | |||||
g_best = [] | |||||
dis_best = [] | |||||
time0 = time.time() | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('alpha =', alpha) | |||||
ghat_list, dhat = test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||||
Gn_let, Gn_let, c_ei=1.7, c_er=1.7, c_es=1.7, | |||||
ged_cost='LETTER', ged_method='IPFP', saveGXL='gedlib-letter') | |||||
dis_best.append(dhat) | |||||
g_best.append(ghat_list) | |||||
time_list.append(time.time() - time0) | |||||
# show best graphs and save them to file. | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', dis_best[idx]) | |||||
print('the corresponding pre-images are') | |||||
for g in g_best[idx]: | |||||
draw_Letter_graph(g, savepath='results/iam/') | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
print(g.nodes(data=True)) | |||||
print(g.edges(data=True)) | |||||
# compute the corresponding sod in kernel space. (alpha range not considered.) | |||||
gkernel = 'structuralspkernel' | |||||
sod_tmp = [] | |||||
Gn_mix = g_best[0] + Gn_let | |||||
km = compute_kernel(Gn_mix, gkernel, True) | |||||
for ig, g in tqdm(enumerate(g_best[0]), desc='computing kernel sod', file=sys.stdout): | |||||
dtemp = dis_gstar(ig, range(len(g_best[0]), len(Gn_mix)), | |||||
[alpha_range[0]] * len(Gn_let), km, withterm3=False) | |||||
sod_tmp.append(dtemp) | |||||
sod_list.append(sod_tmp) | |||||
sod_min_list.append(np.min(sod_tmp)) | |||||
print('\nsods in kernel space: ', sod_list) | |||||
print('\nsmallest sod in kernel space for each letter: ', sod_min_list) | |||||
print('\ntimes:', time_list) | |||||
def test_random_preimage_letter_h(): | |||||
from preimage_random import preimage_random | |||||
ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', | |||||
'extra_params': {}} # node nsymb | |||||
# ds = {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt', | |||||
# 'extra_params': {}} # node nsymb | |||||
# ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
# 'extra_params': {}} # node/edge symb | |||||
# ds = {'name': 'Acyclic', 'dataset': '../datasets/monoterpenoides/trainset_9.ds', | |||||
# 'extra_params': {}} | |||||
# ds = {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
# 'extra_params': {}} # node symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
gkernel = 'structuralspkernel' | |||||
# lmbda = 0.03 # termination probalility | |||||
r_max = 3 # 10 # recursions | |||||
l = 500 | |||||
# alpha_range = np.linspace(0.5, 0.5, 1) | |||||
#alpha_range = np.linspace(0.1, 0.9, 9) | |||||
k = 10 # 5 # k nearest neighbors | |||||
# classify graphs according to letters. | |||||
idx_dict = get_same_item_indices(y_all) | |||||
time_list = [] | |||||
sod_list = [] | |||||
sod_min_list = [] | |||||
for letter in idx_dict: | |||||
print('\n-------------------------------------------------------\n') | |||||
Gn_let = [Gn[i].copy() for i in idx_dict[letter]] | |||||
Gn_mix = Gn_let + [g.copy() for g in Gn_let] | |||||
alpha_range = np.linspace(1 / len(Gn_let), 1 / len(Gn_let), 1) | |||||
# compute | |||||
time0 = time.time() | |||||
km = compute_kernel(Gn_mix, gkernel, True) | |||||
g_best = [] | |||||
dis_best = [] | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('alpha =', alpha) | |||||
dhat, ghat_list = preimage_random(Gn_let, Gn_let, [alpha] * len(Gn_let), | |||||
range(len(Gn_let), len(Gn_mix)), km, | |||||
k, r_max, gkernel, c_ei=1.7, | |||||
c_er=1.7, c_es=1.7) | |||||
dis_best.append(dhat) | |||||
g_best.append(ghat_list) | |||||
time_list.append(time.time() - time0) | |||||
# show best graphs and save them to file. | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', dis_best[idx]) | |||||
print('the corresponding pre-images are') | |||||
for g in g_best[idx]: | |||||
draw_Letter_graph(g, savepath='results/gk_iam/') | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
print(g.nodes(data=True)) | |||||
print(g.edges(data=True)) | |||||
# compute the corresponding sod in graph space. (alpha range not considered.) | |||||
sod_tmp, _ = ged_median(g_best[0], Gn_let) | |||||
sod_list.append(sod_tmp) | |||||
sod_min_list.append(np.min(sod_tmp)) | |||||
print('\nsods in graph space: ', sod_list) | |||||
print('\nsmallest sod in graph space for each letter: ', sod_min_list) | |||||
print('\ntimes:', time_list) | |||||
def test_gkiam_mutag(): | |||||
from gk_iam import gk_iam_nearest_multi | |||||
ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', | |||||
'extra_params': {}} # node nsymb | |||||
# ds = {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt', | |||||
# 'extra_params': {}} # node nsymb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
gkernel = 'structuralspkernel' | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 3 # recursions | |||||
# alpha_range = np.linspace(0.5, 0.5, 1) | |||||
k = 20 # k nearest neighbors | |||||
# classify graphs according to letters. | |||||
idx_dict = get_same_item_indices(y_all) | |||||
time_list = [] | |||||
sod_ks_min_list = [] | |||||
sod_gs_list = [] | |||||
sod_gs_min_list = [] | |||||
nb_updated_list = [] | |||||
for letter in idx_dict: | |||||
print('\n-------------------------------------------------------\n') | |||||
Gn_let = [Gn[i].copy() for i in idx_dict[letter]] | |||||
Gn_mix = Gn_let + [g.copy() for g in Gn_let] | |||||
alpha_range = np.linspace(1 / len(Gn_let), 1 / len(Gn_let), 1) | |||||
# compute | |||||
time0 = time.time() | |||||
km = compute_kernel(Gn_mix, gkernel, True) | |||||
g_best = [] | |||||
dis_best = [] | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('alpha =', alpha) | |||||
dhat, ghat_list, sod_ks, nb_updated = gk_iam_nearest_multi(Gn_let, Gn_let, [alpha] * len(Gn_let), | |||||
range(len(Gn_let), len(Gn_mix)), km, | |||||
k, r_max, gkernel, c_ei=1.7, | |||||
c_er=1.7, c_es=1.7) | |||||
dis_best.append(dhat) | |||||
g_best.append(ghat_list) | |||||
time_list.append(time.time() - time0) | |||||
# show best graphs and save them to file. | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', dis_best[idx]) | |||||
print('the corresponding pre-images are') | |||||
for g in g_best[idx]: | |||||
draw_Letter_graph(g, savepath='results/gk_iam/') | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
print(g.nodes(data=True)) | |||||
print(g.edges(data=True)) | |||||
# compute the corresponding sod in graph space. (alpha range not considered.) | |||||
sod_tmp, _ = ged_median(g_best[0], Gn_let) | |||||
sod_gs_list.append(sod_tmp) | |||||
sod_gs_min_list.append(np.min(sod_tmp)) | |||||
sod_ks_min_list.append(sod_ks) | |||||
nb_updated_list.append(nb_updated) | |||||
print('\nsods in graph space: ', sod_gs_list) | |||||
print('\nsmallest sod in graph space for each letter: ', sod_gs_min_list) | |||||
print('\nsmallest sod in kernel space for each letter: ', sod_ks_min_list) | |||||
print('\nnumber of updates for each letter: ', nb_updated_list) | |||||
print('\ntimes:', time_list) | |||||
############################################################################### | |||||
# Re-test. | |||||
def retest_the_simple_two(): | |||||
from gk_iam import gk_iam_nearest_multi | |||||
# The two simple graphs. | |||||
# g1 = nx.Graph(name='haha') | |||||
# g1.add_nodes_from([(0, {'atom': 'C'}), (1, {'atom': 'O'}), (2, {'atom': 'C'})]) | |||||
# g1.add_edges_from([(0, 1, {'bond_type': '1'}), (1, 2, {'bond_type': '1'})]) | |||||
# g2 = nx.Graph(name='hahaha') | |||||
# g2.add_nodes_from([(0, {'atom': 'C'}), (1, {'atom': 'O'}), (2, {'atom': 'C'}), | |||||
# (3, {'atom': 'O'}), (4, {'atom': 'C'})]) | |||||
# g2.add_edges_from([(0, 1, {'bond_type': '1'}), (1, 2, {'bond_type': '1'}), | |||||
# (2, 3, {'bond_type': '1'}), (3, 4, {'bond_type': '1'})]) | |||||
g1 = nx.Graph(name='haha') | |||||
g1.add_nodes_from([(0, {'atom': 'C'}), (1, {'atom': 'C'}), (2, {'atom': 'C'}), | |||||
(3, {'atom': 'S'}), (4, {'atom': 'S'})]) | |||||
g1.add_edges_from([(0, 1, {'bond_type': '1'}), (1, 2, {'bond_type': '1'}), | |||||
(2, 3, {'bond_type': '1'}), (2, 4, {'bond_type': '1'})]) | |||||
g2 = nx.Graph(name='hahaha') | |||||
g2.add_nodes_from([(0, {'atom': 'C'}), (1, {'atom': 'C'}), (2, {'atom': 'C'}), | |||||
(3, {'atom': 'O'}), (4, {'atom': 'O'})]) | |||||
g2.add_edges_from([(0, 1, {'bond_type': '1'}), (1, 2, {'bond_type': '1'}), | |||||
(2, 3, {'bond_type': '1'}), (2, 4, {'bond_type': '1'})]) | |||||
# # randomly select two molecules | |||||
# np.random.seed(1) | |||||
# idx_gi = [0, 6] # np.random.randint(0, len(Gn), 2) | |||||
# g1 = Gn[idx_gi[0]] | |||||
# g2 = Gn[idx_gi[1]] | |||||
# Gn_mix = [g.copy() for g in Gn] | |||||
# Gn_mix.append(g1.copy()) | |||||
# Gn_mix.append(g2.copy()) | |||||
Gn = [g1.copy(), g2.copy()] | |||||
remove_edges(Gn) | |||||
gkernel = 'marginalizedkernel' | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 10 # recursions | |||||
# l = 500 | |||||
alpha_range = np.linspace(0.5, 0.5, 1) | |||||
k = 2 # k nearest neighbors | |||||
epsilon = 1e-6 | |||||
ged_cost='CHEM_1' | |||||
ged_method='IPFP' | |||||
saveGXL='gedlib' | |||||
c_ei=1 | |||||
c_er=1 | |||||
c_es=1 | |||||
Gn_mix = Gn + [g1.copy(), g2.copy()] | |||||
# compute | |||||
time0 = time.time() | |||||
km = compute_kernel(Gn_mix, gkernel, True) | |||||
time_km = time.time() - time0 | |||||
time_list = [] | |||||
sod_ks_min_list = [] | |||||
sod_gs_list = [] | |||||
sod_gs_min_list = [] | |||||
nb_updated_list = [] | |||||
g_best = [] | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('\n-------------------------------------------------------\n') | |||||
print('alpha =', alpha) | |||||
time0 = time.time() | |||||
dhat, ghat_list, sod_ks, nb_updated = gk_iam_nearest_multi(Gn, [g1, g2], | |||||
[alpha, 1 - alpha], range(len(Gn), len(Gn) + 2), km, k, r_max, | |||||
gkernel, c_ei=c_ei, c_er=c_er, c_es=c_es, epsilon=epsilon, | |||||
ged_cost=ged_cost, ged_method=ged_method, saveGXL=saveGXL) | |||||
time_total = time.time() - time0 + time_km | |||||
print('time: ', time_total) | |||||
time_list.append(time_total) | |||||
sod_ks_min_list.append(dhat) | |||||
g_best.append(ghat_list) | |||||
nb_updated_list.append(nb_updated) | |||||
# show best graphs and save them to file. | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', sod_ks_min_list[idx]) | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(g_best[idx][0], labels=nx.get_node_attributes(g_best[idx][0], 'atom'), | |||||
with_labels=True) | |||||
plt.savefig('results/gk_iam/mutag_alpha' + str(item) + '.png', format="PNG") | |||||
plt.show() | |||||
print(g_best[idx][0].nodes(data=True)) | |||||
print(g_best[idx][0].edges(data=True)) | |||||
# for g in g_best[idx]: | |||||
# draw_Letter_graph(g, savepath='results/gk_iam/') | |||||
## nx.draw_networkx(g) | |||||
## plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# compute the corresponding sod in graph space. | |||||
for idx, item in enumerate(alpha_range): | |||||
sod_tmp, _ = ged_median(g_best[0], [g1, g2], ged_cost=ged_cost, | |||||
ged_method=ged_method, saveGXL=saveGXL) | |||||
sod_gs_list.append(sod_tmp) | |||||
sod_gs_min_list.append(np.min(sod_tmp)) | |||||
print('\nsods in graph space: ', sod_gs_list) | |||||
print('\nsmallest sod in graph space for each alpha: ', sod_gs_min_list) | |||||
print('\nsmallest sod in kernel space for each alpha: ', sod_ks_min_list) | |||||
print('\nnumber of updates for each alpha: ', nb_updated_list) | |||||
print('\ntimes:', time_list) | |||||
if __name__ == '__main__': | |||||
# ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
# 'extra_params': {}} # node/edge symb | |||||
# ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', | |||||
# 'extra_params': {}} # node nsymb | |||||
# ds = {'name': 'Acyclic', 'dataset': '../datasets/monoterpenoides/trainset_9.ds', | |||||
# 'extra_params': {}} | |||||
# ds = {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
# 'extra_params': {}} # node symb | |||||
# Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:20] | |||||
# import networkx.algorithms.isomorphism as iso | |||||
# G1 = nx.MultiDiGraph() | |||||
# G2 = nx.MultiDiGraph() | |||||
# G1.add_nodes_from([1,2,3], fill='red') | |||||
# G2.add_nodes_from([10,20,30,40], fill='red') | |||||
# nx.add_path(G1, [1,2,3,4], weight=3, linewidth=2.5) | |||||
# nx.add_path(G2, [10,20,30,40], weight=3) | |||||
# nm = iso.categorical_node_match('fill', 'red') | |||||
# print(nx.is_isomorphic(G1, G2, node_match=nm)) | |||||
# | |||||
# test_new_IAM_allGraph_deleteNodes(Gn) | |||||
# test_will_IAM_give_the_median_graph_we_wanted(Gn) | |||||
# test_who_is_the_closest_in_GED_space(Gn) | |||||
# test_who_is_the_closest_in_kernel_space(Gn) | |||||
# test_the_simple_two(Gn, 'untilhpathkernel') | |||||
# test_remove_bests(Gn, 'untilhpathkernel') | |||||
# test_gkiam_letter_h() | |||||
# test_iam_letter_h() | |||||
# test_random_preimage_letter_h | |||||
############################################################################### | |||||
# retests. | |||||
retest_the_simple_two() |
@@ -1,620 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Thu Sep 5 15:59:00 2019 | |||||
@author: ljia | |||||
""" | |||||
import numpy as np | |||||
import networkx as nx | |||||
import matplotlib.pyplot as plt | |||||
import time | |||||
import random | |||||
#from tqdm import tqdm | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
from gklearn.preimage.utils import remove_edges, compute_kernel, get_same_item_indices | |||||
from gklearn.preimage.ged import ged_median | |||||
from gklearn.preimage.preimage_iam import preimage_iam | |||||
############################################################################### | |||||
# tests on different values on grid of median-sets and k. | |||||
def test_preimage_iam_grid_k_median_nb(): | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:50] | |||||
remove_edges(Gn) | |||||
gkernel = 'marginalizedkernel' | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 5 # iteration limit for pre-image. | |||||
# alpha_range = np.linspace(0.5, 0.5, 1) | |||||
# k = 5 # k nearest neighbors | |||||
epsilon = 1e-6 | |||||
InitIAMWithAllDk = True | |||||
# parameters for GED function | |||||
ged_cost='CHEM_1' | |||||
ged_method='IPFP' | |||||
saveGXL='gedlib' | |||||
# parameters for IAM function | |||||
c_ei=1 | |||||
c_er=1 | |||||
c_es=1 | |||||
ite_max_iam = 50 | |||||
epsilon_iam = 0.001 | |||||
removeNodes = True | |||||
connected_iam = False | |||||
# number of graphs; we what to compute the median of these graphs. | |||||
nb_median_range = [2, 3, 4, 5, 10, 20, 30, 40, 50, 100] | |||||
# number of nearest neighbors. | |||||
k_range = [5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100] | |||||
# find out all the graphs classified to positive group 1. | |||||
idx_dict = get_same_item_indices(y_all) | |||||
Gn = [Gn[i] for i in idx_dict[1]] | |||||
# # compute Gram matrix. | |||||
# time0 = time.time() | |||||
# km = compute_kernel(Gn, gkernel, True) | |||||
# time_km = time.time() - time0 | |||||
# # write Gram matrix to file. | |||||
# np.savez('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm', gm=km, gmtime=time_km) | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
sod_gs_list = [] | |||||
sod_gs_min_list = [] | |||||
nb_updated_list = [] | |||||
nb_updated_k_list = [] | |||||
g_best = [] | |||||
for idx_nb, nb_median in enumerate(nb_median_range): | |||||
print('\n-------------------------------------------------------') | |||||
print('number of median graphs =', nb_median) | |||||
random.seed(1) | |||||
idx_rdm = random.sample(range(len(Gn)), nb_median) | |||||
print('graphs chosen:', idx_rdm) | |||||
Gn_median = [Gn[idx].copy() for idx in idx_rdm] | |||||
# for g in Gn_median: | |||||
# nx.draw(g, labels=nx.get_node_attributes(g, 'atom'), with_labels=True) | |||||
## plt.savefig("results/preimage_mix/mutag.png", format="PNG") | |||||
# plt.show() | |||||
# plt.clf() | |||||
################################################################### | |||||
gmfile = np.load('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm.npz') | |||||
km_tmp = gmfile['gm'] | |||||
time_km = gmfile['gmtime'] | |||||
# modify mixed gram matrix. | |||||
km = np.zeros((len(Gn) + nb_median, len(Gn) + nb_median)) | |||||
for i in range(len(Gn)): | |||||
for j in range(i, len(Gn)): | |||||
km[i, j] = km_tmp[i, j] | |||||
km[j, i] = km[i, j] | |||||
for i in range(len(Gn)): | |||||
for j, idx in enumerate(idx_rdm): | |||||
km[i, len(Gn) + j] = km[i, idx] | |||||
km[len(Gn) + j, i] = km[i, idx] | |||||
for i, idx1 in enumerate(idx_rdm): | |||||
for j, idx2 in enumerate(idx_rdm): | |||||
km[len(Gn) + i, len(Gn) + j] = km[idx1, idx2] | |||||
################################################################### | |||||
alpha_range = [1 / nb_median] * nb_median | |||||
time_list.append([]) | |||||
dis_ks_min_list.append([]) | |||||
sod_gs_list.append([]) | |||||
sod_gs_min_list.append([]) | |||||
nb_updated_list.append([]) | |||||
nb_updated_k_list.append([]) | |||||
g_best.append([]) | |||||
for k in k_range: | |||||
print('\n++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n') | |||||
print('k =', k) | |||||
time0 = time.time() | |||||
dhat, ghat_list, dis_of_each_itr, nb_updated, nb_updated_k = \ | |||||
preimage_iam(Gn, Gn_median, | |||||
alpha_range, range(len(Gn), len(Gn) + nb_median), km, k, r_max, | |||||
gkernel, epsilon=epsilon, InitIAMWithAllDk=InitIAMWithAllDk, | |||||
params_iam={'c_ei': c_ei, 'c_er': c_er, 'c_es': c_es, | |||||
'ite_max': ite_max_iam, 'epsilon': epsilon_iam, | |||||
'removeNodes': removeNodes, 'connected': connected_iam}, | |||||
params_ged={'ged_cost': ged_cost, 'ged_method': ged_method, | |||||
'saveGXL': saveGXL}) | |||||
time_total = time.time() - time0 + time_km | |||||
print('time: ', time_total) | |||||
time_list[idx_nb].append(time_total) | |||||
print('\nsmallest distance in kernel space: ', dhat) | |||||
dis_ks_min_list[idx_nb].append(dhat) | |||||
g_best[idx_nb].append(ghat_list) | |||||
print('\nnumber of updates of the best graph by IAM: ', nb_updated) | |||||
nb_updated_list[idx_nb].append(nb_updated) | |||||
print('\nnumber of updates of k nearest graphs by IAM: ', nb_updated_k) | |||||
nb_updated_k_list[idx_nb].append(nb_updated_k) | |||||
# show the best graph and save it to file. | |||||
print('the shortest distance is', dhat) | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(ghat_list[0], labels=nx.get_node_attributes(ghat_list[0], 'atom'), | |||||
with_labels=True) | |||||
plt.savefig('results/preimage_iam/mutag_median_nb' + str(nb_median) + | |||||
'_k' + str(k) + '.png', format="PNG") | |||||
# plt.show() | |||||
plt.clf() | |||||
# print(ghat_list[0].nodes(data=True)) | |||||
# print(ghat_list[0].edges(data=True)) | |||||
# compute the corresponding sod in graph space. | |||||
sod_tmp, _ = ged_median([ghat_list[0]], Gn_median, ged_cost=ged_cost, | |||||
ged_method=ged_method, saveGXL=saveGXL) | |||||
sod_gs_list[idx_nb].append(sod_tmp) | |||||
sod_gs_min_list[idx_nb].append(np.min(sod_tmp)) | |||||
print('\nsmallest sod in graph space: ', np.min(sod_tmp)) | |||||
print('\nsods in graph space: ', sod_gs_list) | |||||
print('\nsmallest sod in graph space for each set of median graphs and k: ', | |||||
sod_gs_min_list) | |||||
print('\nsmallest distance in kernel space for each set of median graphs and k: ', | |||||
dis_ks_min_list) | |||||
print('\nnumber of updates of the best graph for each set of median graphs and k by IAM: ', | |||||
nb_updated_list) | |||||
print('\nnumber of updates of k nearest graphs for each set of median graphs and k by IAM: ', | |||||
nb_updated_k_list) | |||||
print('\ntimes:', time_list) | |||||
############################################################################### | |||||
# tests on different numbers of median-sets. | |||||
def test_preimage_iam_median_nb(): | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:50] | |||||
remove_edges(Gn) | |||||
gkernel = 'marginalizedkernel' | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 3 # iteration limit for pre-image. | |||||
# alpha_range = np.linspace(0.5, 0.5, 1) | |||||
k = 5 # k nearest neighbors | |||||
epsilon = 1e-6 | |||||
InitIAMWithAllDk = True | |||||
# parameters for IAM function | |||||
# c_vi = 0.037 | |||||
# c_vr = 0.038 | |||||
# c_vs = 0.075 | |||||
# c_ei = 0.001 | |||||
# c_er = 0.001 | |||||
# c_es = 0.0 | |||||
c_vi = 4 | |||||
c_vr = 4 | |||||
c_vs = 2 | |||||
c_ei = 1 | |||||
c_er = 1 | |||||
c_es = 1 | |||||
ite_max_iam = 50 | |||||
epsilon_iam = 0.001 | |||||
removeNodes = True | |||||
connected_iam = False | |||||
# parameters for GED function | |||||
# ged_cost='CHEM_1' | |||||
ged_cost = 'CONSTANT' | |||||
ged_method = 'IPFP' | |||||
edit_cost_constant = [c_vi, c_vr, c_vs, c_ei, c_er, c_es] | |||||
ged_stabilizer = 'min' | |||||
ged_repeat = 50 | |||||
params_ged = {'lib': 'gedlibpy', 'cost': ged_cost, 'method': ged_method, | |||||
'edit_cost_constant': edit_cost_constant, | |||||
'stabilizer': ged_stabilizer, 'repeat': ged_repeat} | |||||
# number of graphs; we what to compute the median of these graphs. | |||||
# nb_median_range = [2, 3, 4, 5, 10, 20, 30, 40, 50, 100] | |||||
nb_median_range = [2] | |||||
# find out all the graphs classified to positive group 1. | |||||
idx_dict = get_same_item_indices(y_all) | |||||
Gn = [Gn[i] for i in idx_dict[1]] | |||||
# # compute Gram matrix. | |||||
# time0 = time.time() | |||||
# km = compute_kernel(Gn, gkernel, True) | |||||
# time_km = time.time() - time0 | |||||
# # write Gram matrix to file. | |||||
# np.savez('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm', gm=km, gmtime=time_km) | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
sod_gs_list = [] | |||||
sod_gs_min_list = [] | |||||
nb_updated_list = [] | |||||
nb_updated_k_list = [] | |||||
g_best = [] | |||||
for nb_median in nb_median_range: | |||||
print('\n-------------------------------------------------------') | |||||
print('number of median graphs =', nb_median) | |||||
random.seed(1) | |||||
idx_rdm = random.sample(range(len(Gn)), nb_median) | |||||
print('graphs chosen:', idx_rdm) | |||||
Gn_median = [Gn[idx].copy() for idx in idx_rdm] | |||||
# for g in Gn_median: | |||||
# nx.draw(g, labels=nx.get_node_attributes(g, 'atom'), with_labels=True) | |||||
## plt.savefig("results/preimage_mix/mutag.png", format="PNG") | |||||
# plt.show() | |||||
# plt.clf() | |||||
################################################################### | |||||
gmfile = np.load('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm.npz') | |||||
km_tmp = gmfile['gm'] | |||||
time_km = gmfile['gmtime'] | |||||
# modify mixed gram matrix. | |||||
km = np.zeros((len(Gn) + nb_median, len(Gn) + nb_median)) | |||||
for i in range(len(Gn)): | |||||
for j in range(i, len(Gn)): | |||||
km[i, j] = km_tmp[i, j] | |||||
km[j, i] = km[i, j] | |||||
for i in range(len(Gn)): | |||||
for j, idx in enumerate(idx_rdm): | |||||
km[i, len(Gn) + j] = km[i, idx] | |||||
km[len(Gn) + j, i] = km[i, idx] | |||||
for i, idx1 in enumerate(idx_rdm): | |||||
for j, idx2 in enumerate(idx_rdm): | |||||
km[len(Gn) + i, len(Gn) + j] = km[idx1, idx2] | |||||
################################################################### | |||||
alpha_range = [1 / nb_median] * nb_median | |||||
time0 = time.time() | |||||
dhat, ghat_list, dis_of_each_itr, nb_updated, nb_updated_k = \ | |||||
preimage_iam(Gn, Gn_median, | |||||
alpha_range, range(len(Gn), len(Gn) + nb_median), km, k, r_max, | |||||
gkernel, epsilon=epsilon, InitIAMWithAllDk=InitIAMWithAllDk, | |||||
params_iam={'c_ei': c_ei, 'c_er': c_er, 'c_es': c_es, | |||||
'ite_max': ite_max_iam, 'epsilon': epsilon_iam, | |||||
'removeNodes': removeNodes, 'connected': connected_iam}, | |||||
params_ged=params_ged) | |||||
time_total = time.time() - time0 + time_km | |||||
print('\ntime: ', time_total) | |||||
time_list.append(time_total) | |||||
print('\nsmallest distance in kernel space: ', dhat) | |||||
dis_ks_min_list.append(dhat) | |||||
g_best.append(ghat_list) | |||||
print('\nnumber of updates of the best graph: ', nb_updated) | |||||
nb_updated_list.append(nb_updated) | |||||
print('\nnumber of updates of k nearest graphs: ', nb_updated_k) | |||||
nb_updated_k_list.append(nb_updated_k) | |||||
# show the best graph and save it to file. | |||||
print('the shortest distance is', dhat) | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(ghat_list[0], labels=nx.get_node_attributes(ghat_list[0], 'atom'), | |||||
with_labels=True) | |||||
plt.show() | |||||
# plt.savefig('results/preimage_iam/mutag_median_cs.001_nb' + str(nb_median) + | |||||
# '.png', format="PNG") | |||||
plt.clf() | |||||
# print(ghat_list[0].nodes(data=True)) | |||||
# print(ghat_list[0].edges(data=True)) | |||||
# compute the corresponding sod in graph space. | |||||
sod_tmp, _ = ged_median([ghat_list[0]], Gn_median, params_ged=params_ged) | |||||
sod_gs_list.append(sod_tmp) | |||||
sod_gs_min_list.append(np.min(sod_tmp)) | |||||
print('\nsmallest sod in graph space: ', np.min(sod_tmp)) | |||||
print('\nsods in graph space: ', sod_gs_list) | |||||
print('\nsmallest sod in graph space for each set of median graphs: ', sod_gs_min_list) | |||||
print('\nsmallest distance in kernel space for each set of median graphs: ', | |||||
dis_ks_min_list) | |||||
print('\nnumber of updates of the best graph for each set of median graphs by IAM: ', | |||||
nb_updated_list) | |||||
print('\nnumber of updates of k nearest graphs for each set of median graphs by IAM: ', | |||||
nb_updated_k_list) | |||||
print('\ntimes:', time_list) | |||||
############################################################################### | |||||
# test on the combination of the two randomly chosen graphs. (the same as in the | |||||
# random pre-image paper.) | |||||
def test_gkiam_2combination_all_pairs(): | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:50] | |||||
remove_edges(Gn) | |||||
gkernel = 'marginalizedkernel' | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 10 # iteration limit for pre-image. | |||||
alpha_range = np.linspace(0.5, 0.5, 1) | |||||
k = 5 # k nearest neighbors | |||||
epsilon = 1e-6 | |||||
InitIAMWithAllDk = False | |||||
# parameters for GED function | |||||
ged_cost='CHEM_1' | |||||
ged_method='IPFP' | |||||
saveGXL='gedlib' | |||||
# parameters for IAM function | |||||
c_ei=1 | |||||
c_er=1 | |||||
c_es=1 | |||||
ite_max_iam = 50 | |||||
epsilon_iam = 0.001 | |||||
removeNodes = True | |||||
connected_iam = False | |||||
nb_update_mat = np.full((len(Gn), len(Gn)), np.inf) | |||||
# test on each pair of graphs. | |||||
# for idx1 in range(len(Gn) - 1, -1, -1): | |||||
# for idx2 in range(idx1, -1, -1): | |||||
for idx1 in range(187, 188): | |||||
for idx2 in range(167, 168): | |||||
g1 = Gn[idx1].copy() | |||||
g2 = Gn[idx2].copy() | |||||
# Gn[10] = [] | |||||
# Gn[10] = [] | |||||
nx.draw(g1, labels=nx.get_node_attributes(g1, 'atom'), with_labels=True) | |||||
plt.savefig("results/gk_iam/all_pairs/mutag187.png", format="PNG") | |||||
plt.show() | |||||
plt.clf() | |||||
nx.draw(g2, labels=nx.get_node_attributes(g2, 'atom'), with_labels=True) | |||||
plt.savefig("results/gk_iam/all_pairs/mutag167.png", format="PNG") | |||||
plt.show() | |||||
plt.clf() | |||||
################################################################### | |||||
# Gn_mix = [g.copy() for g in Gn] | |||||
# Gn_mix.append(g1.copy()) | |||||
# Gn_mix.append(g2.copy()) | |||||
# | |||||
# # compute | |||||
# time0 = time.time() | |||||
# km = compute_kernel(Gn_mix, gkernel, True) | |||||
# time_km = time.time() - time0 | |||||
# | |||||
# # write Gram matrix to file and read it. | |||||
# np.savez('results/gram_matrix_uhpath_itr7_pq0.8.gm', gm=km, gmtime=time_km) | |||||
################################################################### | |||||
gmfile = np.load('results/gram_matrix_marg_itr10_pq0.03.gm.npz') | |||||
km = gmfile['gm'] | |||||
time_km = gmfile['gmtime'] | |||||
# modify mixed gram matrix. | |||||
for i in range(len(Gn)): | |||||
km[i, len(Gn)] = km[i, idx1] | |||||
km[i, len(Gn) + 1] = km[i, idx2] | |||||
km[len(Gn), i] = km[i, idx1] | |||||
km[len(Gn) + 1, i] = km[i, idx2] | |||||
km[len(Gn), len(Gn)] = km[idx1, idx1] | |||||
km[len(Gn), len(Gn) + 1] = km[idx1, idx2] | |||||
km[len(Gn) + 1, len(Gn)] = km[idx2, idx1] | |||||
km[len(Gn) + 1, len(Gn) + 1] = km[idx2, idx2] | |||||
################################################################### | |||||
# # use only the two graphs in median set as candidates. | |||||
# Gn = [g1.copy(), g2.copy()] | |||||
# Gn_mix = Gn + [g1.copy(), g2.copy()] | |||||
# # compute | |||||
# time0 = time.time() | |||||
# km = compute_kernel(Gn_mix, gkernel, True) | |||||
# time_km = time.time() - time0 | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
sod_gs_list = [] | |||||
sod_gs_min_list = [] | |||||
nb_updated_list = [] | |||||
nb_updated_k_list = [] | |||||
g_best = [] | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('\n-------------------------------------------------------\n') | |||||
print('alpha =', alpha) | |||||
time0 = time.time() | |||||
dhat, ghat_list, sod_ks, nb_updated, nb_updated_k = \ | |||||
preimage_iam(Gn, [g1, g2], | |||||
[alpha, 1 - alpha], range(len(Gn), len(Gn) + 2), km, k, r_max, | |||||
gkernel, epsilon=epsilon, InitIAMWithAllDk=InitIAMWithAllDk, | |||||
params_iam={'c_ei': c_ei, 'c_er': c_er, 'c_es': c_es, | |||||
'ite_max': ite_max_iam, 'epsilon': epsilon_iam, | |||||
'removeNodes': removeNodes, 'connected': connected_iam}, | |||||
params_ged={'ged_cost': ged_cost, 'ged_method': ged_method, | |||||
'saveGXL': saveGXL}) | |||||
time_total = time.time() - time0 + time_km | |||||
print('time: ', time_total) | |||||
time_list.append(time_total) | |||||
dis_ks_min_list.append(dhat) | |||||
g_best.append(ghat_list) | |||||
nb_updated_list.append(nb_updated) | |||||
nb_updated_k_list.append(nb_updated_k) | |||||
# show best graphs and save them to file. | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', dis_ks_min_list[idx]) | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(g_best[idx][0], labels=nx.get_node_attributes(g_best[idx][0], 'atom'), | |||||
with_labels=True) | |||||
plt.savefig('results/gk_iam/mutag' + str(idx1) + '_' + str(idx2) | |||||
+ '_alpha' + str(item) + '.png', format="PNG") | |||||
# plt.show() | |||||
plt.clf() | |||||
# print(g_best[idx][0].nodes(data=True)) | |||||
# print(g_best[idx][0].edges(data=True)) | |||||
# for g in g_best[idx]: | |||||
# draw_Letter_graph(g, savepath='results/gk_iam/') | |||||
## nx.draw_networkx(g) | |||||
## plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# compute the corresponding sod in graph space. | |||||
for idx, item in enumerate(alpha_range): | |||||
sod_tmp, _ = ged_median([g_best[0]], [g1, g2], ged_cost=ged_cost, | |||||
ged_method=ged_method, saveGXL=saveGXL) | |||||
sod_gs_list.append(sod_tmp) | |||||
sod_gs_min_list.append(np.min(sod_tmp)) | |||||
print('\nsods in graph space: ', sod_gs_list) | |||||
print('\nsmallest sod in graph space for each alpha: ', sod_gs_min_list) | |||||
print('\nsmallest distance in kernel space for each alpha: ', dis_ks_min_list) | |||||
print('\nnumber of updates of the best graph for each alpha: ', | |||||
nb_updated_list) | |||||
print('\nnumber of updates of the k nearest graphs for each alpha: ', | |||||
nb_updated_k_list) | |||||
print('\ntimes:', time_list) | |||||
nb_update_mat[idx1, idx2] = nb_updated_list[0] | |||||
str_fw = 'graphs %d and %d: %d.\n' % (idx1, idx2, nb_updated_list[0]) | |||||
with open('results/gk_iam/all_pairs/nb_updates.txt', 'r+') as file: | |||||
content = file.read() | |||||
file.seek(0, 0) | |||||
file.write(str_fw + content) | |||||
def test_gkiam_2combination(): | |||||
from gk_iam import gk_iam_nearest_multi | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:50] | |||||
remove_edges(Gn) | |||||
gkernel = 'marginalizedkernel' | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 10 # iteration limit for pre-image. | |||||
alpha_range = np.linspace(0.5, 0.5, 1) | |||||
k = 20 # k nearest neighbors | |||||
epsilon = 1e-6 | |||||
ged_cost='CHEM_1' | |||||
ged_method='IPFP' | |||||
saveGXL='gedlib' | |||||
c_ei=1 | |||||
c_er=1 | |||||
c_es=1 | |||||
# randomly select two molecules | |||||
np.random.seed(1) | |||||
idx_gi = [10, 11] # np.random.randint(0, len(Gn), 2) | |||||
g1 = Gn[idx_gi[0]].copy() | |||||
g2 = Gn[idx_gi[1]].copy() | |||||
# Gn[10] = [] | |||||
# Gn[10] = [] | |||||
# nx.draw(g1, labels=nx.get_node_attributes(g1, 'atom'), with_labels=True) | |||||
# plt.savefig("results/random_preimage/mutag10.png", format="PNG") | |||||
# plt.show() | |||||
# nx.draw(g2, labels=nx.get_node_attributes(g2, 'atom'), with_labels=True) | |||||
# plt.savefig("results/random_preimage/mutag11.png", format="PNG") | |||||
# plt.show() | |||||
Gn_mix = [g.copy() for g in Gn] | |||||
Gn_mix.append(g1.copy()) | |||||
Gn_mix.append(g2.copy()) | |||||
# compute | |||||
# time0 = time.time() | |||||
# km = compute_kernel(Gn_mix, gkernel, True) | |||||
# time_km = time.time() - time0 | |||||
# write Gram matrix to file and read it. | |||||
# np.savez('results/gram_matrix.gm', gm=km, gmtime=time_km) | |||||
gmfile = np.load('results/gram_matrix.gm.npz') | |||||
km = gmfile['gm'] | |||||
time_km = gmfile['gmtime'] | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
sod_gs_list = [] | |||||
sod_gs_min_list = [] | |||||
nb_updated_list = [] | |||||
g_best = [] | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('\n-------------------------------------------------------\n') | |||||
print('alpha =', alpha) | |||||
time0 = time.time() | |||||
dhat, ghat_list, sod_ks, nb_updated = gk_iam_nearest_multi(Gn, [g1, g2], | |||||
[alpha, 1 - alpha], range(len(Gn), len(Gn) + 2), km, k, r_max, | |||||
gkernel, c_ei=c_ei, c_er=c_er, c_es=c_es, epsilon=epsilon, | |||||
ged_cost=ged_cost, ged_method=ged_method, saveGXL=saveGXL) | |||||
time_total = time.time() - time0 + time_km | |||||
print('time: ', time_total) | |||||
time_list.append(time_total) | |||||
dis_ks_min_list.append(dhat) | |||||
g_best.append(ghat_list) | |||||
nb_updated_list.append(nb_updated) | |||||
# show best graphs and save them to file. | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', dis_ks_min_list[idx]) | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(g_best[idx][0], labels=nx.get_node_attributes(g_best[idx][0], 'atom'), | |||||
with_labels=True) | |||||
plt.savefig('results/gk_iam/mutag_alpha' + str(item) + '.png', format="PNG") | |||||
plt.show() | |||||
print(g_best[idx][0].nodes(data=True)) | |||||
print(g_best[idx][0].edges(data=True)) | |||||
# for g in g_best[idx]: | |||||
# draw_Letter_graph(g, savepath='results/gk_iam/') | |||||
## nx.draw_networkx(g) | |||||
## plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# compute the corresponding sod in graph space. | |||||
for idx, item in enumerate(alpha_range): | |||||
sod_tmp, _ = ged_median([g_best[0]], [g1, g2], ged_cost=ged_cost, | |||||
ged_method=ged_method, saveGXL=saveGXL) | |||||
sod_gs_list.append(sod_tmp) | |||||
sod_gs_min_list.append(np.min(sod_tmp)) | |||||
print('\nsods in graph space: ', sod_gs_list) | |||||
print('\nsmallest sod in graph space for each alpha: ', sod_gs_min_list) | |||||
print('\nsmallest distance in kernel space for each alpha: ', dis_ks_min_list) | |||||
print('\nnumber of updates for each alpha: ', nb_updated_list) | |||||
print('\ntimes:', time_list) | |||||
############################################################################### | |||||
if __name__ == '__main__': | |||||
############################################################################### | |||||
# test on the combination of the two randomly chosen graphs. (the same as in the | |||||
# random pre-image paper.) | |||||
# test_gkiam_2combination() | |||||
# test_gkiam_2combination_all_pairs() | |||||
############################################################################### | |||||
# tests on different numbers of median-sets. | |||||
test_preimage_iam_median_nb() | |||||
############################################################################### | |||||
# tests on different values on grid of median-sets and k. | |||||
# test_preimage_iam_grid_k_median_nb() |
@@ -1,539 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Thu Sep 5 15:59:00 2019 | |||||
@author: ljia | |||||
""" | |||||
import numpy as np | |||||
import networkx as nx | |||||
import matplotlib.pyplot as plt | |||||
import time | |||||
import random | |||||
#from tqdm import tqdm | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
from gklearn.preimage.ged import ged_median | |||||
from gklearn.preimage.utils import compute_kernel, get_same_item_indices, remove_edges | |||||
from gklearn.preimage.preimage_iam import preimage_iam_random_mix | |||||
############################################################################### | |||||
# tests on different values on grid of median-sets and k. | |||||
def test_preimage_mix_grid_k_median_nb(): | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:50] | |||||
remove_edges(Gn) | |||||
gkernel = 'marginalizedkernel' | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 5 # iteration limit for pre-image. | |||||
l_max = 500 # update limit for random generation | |||||
# alpha_range = np.linspace(0.5, 0.5, 1) | |||||
# k = 5 # k nearest neighbors | |||||
epsilon = 1e-6 | |||||
InitIAMWithAllDk = True | |||||
InitRandomWithAllDk = True | |||||
# parameters for GED function | |||||
ged_cost='CHEM_1' | |||||
ged_method='IPFP' | |||||
saveGXL='gedlib' | |||||
# parameters for IAM function | |||||
c_ei=1 | |||||
c_er=1 | |||||
c_es=1 | |||||
ite_max_iam = 50 | |||||
epsilon_iam = 0.001 | |||||
removeNodes = True | |||||
connected_iam = False | |||||
# number of graphs; we what to compute the median of these graphs. | |||||
nb_median_range = [2, 3, 4, 5, 10, 20, 30, 40, 50, 100] | |||||
# number of nearest neighbors. | |||||
k_range = [5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100] | |||||
# find out all the graphs classified to positive group 1. | |||||
idx_dict = get_same_item_indices(y_all) | |||||
Gn = [Gn[i] for i in idx_dict[1]] | |||||
# # compute Gram matrix. | |||||
# time0 = time.time() | |||||
# km = compute_kernel(Gn, gkernel, True) | |||||
# time_km = time.time() - time0 | |||||
# # write Gram matrix to file. | |||||
# np.savez('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm', gm=km, gmtime=time_km) | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
sod_gs_list = [] | |||||
sod_gs_min_list = [] | |||||
nb_updated_list_iam = [] | |||||
nb_updated_list_random = [] | |||||
nb_updated_k_list_iam = [] | |||||
nb_updated_k_list_random = [] | |||||
g_best = [] | |||||
for idx_nb, nb_median in enumerate(nb_median_range): | |||||
print('\n-------------------------------------------------------') | |||||
print('number of median graphs =', nb_median) | |||||
random.seed(1) | |||||
idx_rdm = random.sample(range(len(Gn)), nb_median) | |||||
print('graphs chosen:', idx_rdm) | |||||
Gn_median = [Gn[idx].copy() for idx in idx_rdm] | |||||
# for g in Gn_median: | |||||
# nx.draw(g, labels=nx.get_node_attributes(g, 'atom'), with_labels=True) | |||||
## plt.savefig("results/preimage_mix/mutag.png", format="PNG") | |||||
# plt.show() | |||||
# plt.clf() | |||||
################################################################### | |||||
gmfile = np.load('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm.npz') | |||||
km_tmp = gmfile['gm'] | |||||
time_km = gmfile['gmtime'] | |||||
# modify mixed gram matrix. | |||||
km = np.zeros((len(Gn) + nb_median, len(Gn) + nb_median)) | |||||
for i in range(len(Gn)): | |||||
for j in range(i, len(Gn)): | |||||
km[i, j] = km_tmp[i, j] | |||||
km[j, i] = km[i, j] | |||||
for i in range(len(Gn)): | |||||
for j, idx in enumerate(idx_rdm): | |||||
km[i, len(Gn) + j] = km[i, idx] | |||||
km[len(Gn) + j, i] = km[i, idx] | |||||
for i, idx1 in enumerate(idx_rdm): | |||||
for j, idx2 in enumerate(idx_rdm): | |||||
km[len(Gn) + i, len(Gn) + j] = km[idx1, idx2] | |||||
################################################################### | |||||
alpha_range = [1 / nb_median] * nb_median | |||||
time_list.append([]) | |||||
dis_ks_min_list.append([]) | |||||
sod_gs_list.append([]) | |||||
sod_gs_min_list.append([]) | |||||
nb_updated_list_iam.append([]) | |||||
nb_updated_list_random.append([]) | |||||
nb_updated_k_list_iam.append([]) | |||||
nb_updated_k_list_random.append([]) | |||||
g_best.append([]) | |||||
for k in k_range: | |||||
print('\n++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n') | |||||
print('k =', k) | |||||
time0 = time.time() | |||||
dhat, ghat_list, dis_of_each_itr, nb_updated_iam, nb_updated_random, \ | |||||
nb_updated_k_iam, nb_updated_k_random = \ | |||||
preimage_iam_random_mix(Gn, Gn_median, | |||||
alpha_range, range(len(Gn), len(Gn) + nb_median), km, k, r_max, | |||||
l_max, gkernel, epsilon=epsilon, InitIAMWithAllDk=InitIAMWithAllDk, | |||||
InitRandomWithAllDk=InitRandomWithAllDk, | |||||
params_iam={'c_ei': c_ei, 'c_er': c_er, 'c_es': c_es, | |||||
'ite_max': ite_max_iam, 'epsilon': epsilon_iam, | |||||
'removeNodes': removeNodes, 'connected': connected_iam}, | |||||
params_ged={'ged_cost': ged_cost, 'ged_method': ged_method, | |||||
'saveGXL': saveGXL}) | |||||
time_total = time.time() - time0 + time_km | |||||
print('time: ', time_total) | |||||
time_list[idx_nb].append(time_total) | |||||
print('\nsmallest distance in kernel space: ', dhat) | |||||
dis_ks_min_list[idx_nb].append(dhat) | |||||
g_best[idx_nb].append(ghat_list) | |||||
print('\nnumber of updates of the best graph by IAM: ', nb_updated_iam) | |||||
nb_updated_list_iam[idx_nb].append(nb_updated_iam) | |||||
print('\nnumber of updates of the best graph by random generation: ', | |||||
nb_updated_random) | |||||
nb_updated_list_random[idx_nb].append(nb_updated_random) | |||||
print('\nnumber of updates of k nearest graphs by IAM: ', nb_updated_k_iam) | |||||
nb_updated_k_list_iam[idx_nb].append(nb_updated_k_iam) | |||||
print('\nnumber of updates of k nearest graphs by random generation: ', | |||||
nb_updated_k_random) | |||||
nb_updated_k_list_random[idx_nb].append(nb_updated_k_random) | |||||
# show the best graph and save it to file. | |||||
print('the shortest distance is', dhat) | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(ghat_list[0], labels=nx.get_node_attributes(ghat_list[0], 'atom'), | |||||
with_labels=True) | |||||
plt.savefig('results/preimage_mix/mutag_median_nb' + str(nb_median) + | |||||
'_k' + str(k) + '.png', format="PNG") | |||||
# plt.show() | |||||
plt.clf() | |||||
# print(ghat_list[0].nodes(data=True)) | |||||
# print(ghat_list[0].edges(data=True)) | |||||
# compute the corresponding sod in graph space. | |||||
sod_tmp, _ = ged_median([ghat_list[0]], Gn_median, ged_cost=ged_cost, | |||||
ged_method=ged_method, saveGXL=saveGXL) | |||||
sod_gs_list[idx_nb].append(sod_tmp) | |||||
sod_gs_min_list[idx_nb].append(np.min(sod_tmp)) | |||||
print('\nsmallest sod in graph space: ', np.min(sod_tmp)) | |||||
print('\nsods in graph space: ', sod_gs_list) | |||||
print('\nsmallest sod in graph space for each set of median graphs and k: ', | |||||
sod_gs_min_list) | |||||
print('\nsmallest distance in kernel space for each set of median graphs and k: ', | |||||
dis_ks_min_list) | |||||
print('\nnumber of updates of the best graph for each set of median graphs and k by IAM: ', | |||||
nb_updated_list_iam) | |||||
print('\nnumber of updates of the best graph for each set of median graphs and k by random generation: ', | |||||
nb_updated_list_random) | |||||
print('\nnumber of updates of k nearest graphs for each set of median graphs and k by IAM: ', | |||||
nb_updated_k_list_iam) | |||||
print('\nnumber of updates of k nearest graphs for each set of median graphs and k by random generation: ', | |||||
nb_updated_k_list_random) | |||||
print('\ntimes:', time_list) | |||||
############################################################################### | |||||
# tests on different numbers of median-sets. | |||||
def test_preimage_mix_median_nb(): | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:50] | |||||
remove_edges(Gn) | |||||
gkernel = 'marginalizedkernel' | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 5 # iteration limit for pre-image. | |||||
l_max = 500 # update limit for random generation | |||||
# alpha_range = np.linspace(0.5, 0.5, 1) | |||||
k = 5 # k nearest neighbors | |||||
epsilon = 1e-6 | |||||
InitIAMWithAllDk = True | |||||
InitRandomWithAllDk = True | |||||
# parameters for GED function | |||||
ged_cost='CHEM_1' | |||||
ged_method='IPFP' | |||||
saveGXL='gedlib' | |||||
# parameters for IAM function | |||||
c_ei=1 | |||||
c_er=1 | |||||
c_es=1 | |||||
ite_max_iam = 50 | |||||
epsilon_iam = 0.001 | |||||
removeNodes = True | |||||
connected_iam = False | |||||
# number of graphs; we what to compute the median of these graphs. | |||||
nb_median_range = [2, 3, 4, 5, 10, 20, 30, 40, 50, 100] | |||||
# find out all the graphs classified to positive group 1. | |||||
idx_dict = get_same_item_indices(y_all) | |||||
Gn = [Gn[i] for i in idx_dict[1]] | |||||
# # compute Gram matrix. | |||||
# time0 = time.time() | |||||
# km = compute_kernel(Gn, gkernel, True) | |||||
# time_km = time.time() - time0 | |||||
# # write Gram matrix to file. | |||||
# np.savez('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm', gm=km, gmtime=time_km) | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
sod_gs_list = [] | |||||
sod_gs_min_list = [] | |||||
nb_updated_list_iam = [] | |||||
nb_updated_list_random = [] | |||||
nb_updated_k_list_iam = [] | |||||
nb_updated_k_list_random = [] | |||||
g_best = [] | |||||
for nb_median in nb_median_range: | |||||
print('\n-------------------------------------------------------') | |||||
print('number of median graphs =', nb_median) | |||||
random.seed(1) | |||||
idx_rdm = random.sample(range(len(Gn)), nb_median) | |||||
print('graphs chosen:', idx_rdm) | |||||
Gn_median = [Gn[idx].copy() for idx in idx_rdm] | |||||
# for g in Gn_median: | |||||
# nx.draw(g, labels=nx.get_node_attributes(g, 'atom'), with_labels=True) | |||||
## plt.savefig("results/preimage_mix/mutag.png", format="PNG") | |||||
# plt.show() | |||||
# plt.clf() | |||||
################################################################### | |||||
gmfile = np.load('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm.npz') | |||||
km_tmp = gmfile['gm'] | |||||
time_km = gmfile['gmtime'] | |||||
# modify mixed gram matrix. | |||||
km = np.zeros((len(Gn) + nb_median, len(Gn) + nb_median)) | |||||
for i in range(len(Gn)): | |||||
for j in range(i, len(Gn)): | |||||
km[i, j] = km_tmp[i, j] | |||||
km[j, i] = km[i, j] | |||||
for i in range(len(Gn)): | |||||
for j, idx in enumerate(idx_rdm): | |||||
km[i, len(Gn) + j] = km[i, idx] | |||||
km[len(Gn) + j, i] = km[i, idx] | |||||
for i, idx1 in enumerate(idx_rdm): | |||||
for j, idx2 in enumerate(idx_rdm): | |||||
km[len(Gn) + i, len(Gn) + j] = km[idx1, idx2] | |||||
################################################################### | |||||
alpha_range = [1 / nb_median] * nb_median | |||||
time0 = time.time() | |||||
dhat, ghat_list, dis_of_each_itr, nb_updated_iam, nb_updated_random, \ | |||||
nb_updated_k_iam, nb_updated_k_random = \ | |||||
preimage_iam_random_mix(Gn, Gn_median, | |||||
alpha_range, range(len(Gn), len(Gn) + nb_median), km, k, r_max, | |||||
l_max, gkernel, epsilon=epsilon, InitIAMWithAllDk=InitIAMWithAllDk, | |||||
InitRandomWithAllDk=InitRandomWithAllDk, | |||||
params_iam={'c_ei': c_ei, 'c_er': c_er, 'c_es': c_es, | |||||
'ite_max': ite_max_iam, 'epsilon': epsilon_iam, | |||||
'removeNodes': removeNodes, 'connected': connected_iam}, | |||||
params_ged={'ged_cost': ged_cost, 'ged_method': ged_method, | |||||
'saveGXL': saveGXL}) | |||||
time_total = time.time() - time0 + time_km | |||||
print('time: ', time_total) | |||||
time_list.append(time_total) | |||||
print('\nsmallest distance in kernel space: ', dhat) | |||||
dis_ks_min_list.append(dhat) | |||||
g_best.append(ghat_list) | |||||
print('\nnumber of updates of the best graph by IAM: ', nb_updated_iam) | |||||
nb_updated_list_iam.append(nb_updated_iam) | |||||
print('\nnumber of updates of the best graph by random generation: ', | |||||
nb_updated_random) | |||||
nb_updated_list_random.append(nb_updated_random) | |||||
print('\nnumber of updates of k nearest graphs by IAM: ', nb_updated_k_iam) | |||||
nb_updated_k_list_iam.append(nb_updated_k_iam) | |||||
print('\nnumber of updates of k nearest graphs by random generation: ', | |||||
nb_updated_k_random) | |||||
nb_updated_k_list_random.append(nb_updated_k_random) | |||||
# show the best graph and save it to file. | |||||
print('the shortest distance is', dhat) | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(ghat_list[0], labels=nx.get_node_attributes(ghat_list[0], 'atom'), | |||||
with_labels=True) | |||||
plt.savefig('results/preimage_mix/mutag_median_nb' + str(nb_median) + | |||||
'.png', format="PNG") | |||||
# plt.show() | |||||
plt.clf() | |||||
# print(ghat_list[0].nodes(data=True)) | |||||
# print(ghat_list[0].edges(data=True)) | |||||
# compute the corresponding sod in graph space. | |||||
sod_tmp, _ = ged_median([ghat_list[0]], Gn_median, ged_cost=ged_cost, | |||||
ged_method=ged_method, saveGXL=saveGXL) | |||||
sod_gs_list.append(sod_tmp) | |||||
sod_gs_min_list.append(np.min(sod_tmp)) | |||||
print('\nsmallest sod in graph space: ', np.min(sod_tmp)) | |||||
print('\nsods in graph space: ', sod_gs_list) | |||||
print('\nsmallest sod in graph space for each set of median graphs: ', sod_gs_min_list) | |||||
print('\nsmallest distance in kernel space for each set of median graphs: ', | |||||
dis_ks_min_list) | |||||
print('\nnumber of updates of the best graph for each set of median graphs by IAM: ', | |||||
nb_updated_list_iam) | |||||
print('\nnumber of updates of the best graph for each set of median graphs by random generation: ', | |||||
nb_updated_list_random) | |||||
print('\nnumber of updates of k nearest graphs for each set of median graphs by IAM: ', | |||||
nb_updated_k_list_iam) | |||||
print('\nnumber of updates of k nearest graphs for each set of median graphs by random generation: ', | |||||
nb_updated_k_list_random) | |||||
print('\ntimes:', time_list) | |||||
############################################################################### | |||||
# test on the combination of the two randomly chosen graphs. (the same as in the | |||||
# random pre-image paper.) | |||||
def test_preimage_mix_2combination_all_pairs(): | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:50] | |||||
remove_edges(Gn) | |||||
gkernel = 'marginalizedkernel' | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 10 # iteration limit for pre-image. | |||||
l_max = 500 # update limit for random generation | |||||
alpha_range = np.linspace(0.5, 0.5, 1) | |||||
k = 5 # k nearest neighbors | |||||
epsilon = 1e-6 | |||||
InitIAMWithAllDk = True | |||||
InitRandomWithAllDk = True | |||||
# parameters for GED function | |||||
ged_cost='CHEM_1' | |||||
ged_method='IPFP' | |||||
saveGXL='gedlib' | |||||
# parameters for IAM function | |||||
c_ei=1 | |||||
c_er=1 | |||||
c_es=1 | |||||
ite_max_iam = 50 | |||||
epsilon_iam = 0.001 | |||||
removeNodes = True | |||||
connected_iam = False | |||||
nb_update_mat_iam = np.full((len(Gn), len(Gn)), np.inf) | |||||
nb_update_mat_random = np.full((len(Gn), len(Gn)), np.inf) | |||||
# test on each pair of graphs. | |||||
# for idx1 in range(len(Gn) - 1, -1, -1): | |||||
# for idx2 in range(idx1, -1, -1): | |||||
for idx1 in range(187, 188): | |||||
for idx2 in range(167, 168): | |||||
g1 = Gn[idx1].copy() | |||||
g2 = Gn[idx2].copy() | |||||
# Gn[10] = [] | |||||
# Gn[10] = [] | |||||
nx.draw(g1, labels=nx.get_node_attributes(g1, 'atom'), with_labels=True) | |||||
plt.savefig("results/preimage_mix/mutag187.png", format="PNG") | |||||
plt.show() | |||||
plt.clf() | |||||
nx.draw(g2, labels=nx.get_node_attributes(g2, 'atom'), with_labels=True) | |||||
plt.savefig("results/preimage_mix/mutag167.png", format="PNG") | |||||
plt.show() | |||||
plt.clf() | |||||
################################################################### | |||||
# Gn_mix = [g.copy() for g in Gn] | |||||
# Gn_mix.append(g1.copy()) | |||||
# Gn_mix.append(g2.copy()) | |||||
# | |||||
# # compute | |||||
# time0 = time.time() | |||||
# km = compute_kernel(Gn_mix, gkernel, True) | |||||
# time_km = time.time() - time0 | |||||
# | |||||
# # write Gram matrix to file and read it. | |||||
# np.savez('results/gram_matrix_uhpath_itr7_pq0.8.gm', gm=km, gmtime=time_km) | |||||
################################################################### | |||||
gmfile = np.load('results/gram_matrix_marg_itr10_pq0.03.gm.npz') | |||||
km = gmfile['gm'] | |||||
time_km = gmfile['gmtime'] | |||||
# modify mixed gram matrix. | |||||
for i in range(len(Gn)): | |||||
km[i, len(Gn)] = km[i, idx1] | |||||
km[i, len(Gn) + 1] = km[i, idx2] | |||||
km[len(Gn), i] = km[i, idx1] | |||||
km[len(Gn) + 1, i] = km[i, idx2] | |||||
km[len(Gn), len(Gn)] = km[idx1, idx1] | |||||
km[len(Gn), len(Gn) + 1] = km[idx1, idx2] | |||||
km[len(Gn) + 1, len(Gn)] = km[idx2, idx1] | |||||
km[len(Gn) + 1, len(Gn) + 1] = km[idx2, idx2] | |||||
################################################################### | |||||
# # use only the two graphs in median set as candidates. | |||||
# Gn = [g1.copy(), g2.copy()] | |||||
# Gn_mix = Gn + [g1.copy(), g2.copy()] | |||||
# # compute | |||||
# time0 = time.time() | |||||
# km = compute_kernel(Gn_mix, gkernel, True) | |||||
# time_km = time.time() - time0 | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
sod_gs_list = [] | |||||
sod_gs_min_list = [] | |||||
nb_updated_list_iam = [] | |||||
nb_updated_list_random = [] | |||||
nb_updated_k_list_iam = [] | |||||
nb_updated_k_list_random = [] | |||||
g_best = [] | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('\n-------------------------------------------------------\n') | |||||
print('alpha =', alpha) | |||||
time0 = time.time() | |||||
dhat, ghat_list, dis_of_each_itr, nb_updated_iam, nb_updated_random, \ | |||||
nb_updated_k_iam, nb_updated_k_random = \ | |||||
preimage_iam_random_mix(Gn, [g1, g2], | |||||
[alpha, 1 - alpha], range(len(Gn), len(Gn) + 2), km, k, r_max, | |||||
l_max, gkernel, epsilon=epsilon, InitIAMWithAllDk=InitIAMWithAllDk, | |||||
InitRandomWithAllDk=InitRandomWithAllDk, | |||||
params_iam={'c_ei': c_ei, 'c_er': c_er, 'c_es': c_es, | |||||
'ite_max': ite_max_iam, 'epsilon': epsilon_iam, | |||||
'removeNodes': removeNodes, 'connected': connected_iam}, | |||||
params_ged={'ged_cost': ged_cost, 'ged_method': ged_method, | |||||
'saveGXL': saveGXL}) | |||||
time_total = time.time() - time0 + time_km | |||||
print('time: ', time_total) | |||||
time_list.append(time_total) | |||||
dis_ks_min_list.append(dhat) | |||||
g_best.append(ghat_list) | |||||
nb_updated_list_iam.append(nb_updated_iam) | |||||
nb_updated_list_random.append(nb_updated_random) | |||||
nb_updated_k_list_iam.append(nb_updated_k_iam) | |||||
nb_updated_k_list_random.append(nb_updated_k_random) | |||||
# show best graphs and save them to file. | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', dis_ks_min_list[idx]) | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(g_best[idx][0], labels=nx.get_node_attributes(g_best[idx][0], 'atom'), | |||||
with_labels=True) | |||||
plt.savefig('results/preimage_mix/mutag' + str(idx1) + '_' + str(idx2) | |||||
+ '_alpha' + str(item) + '.png', format="PNG") | |||||
# plt.show() | |||||
plt.clf() | |||||
# print(g_best[idx][0].nodes(data=True)) | |||||
# print(g_best[idx][0].edges(data=True)) | |||||
# for g in g_best[idx]: | |||||
# draw_Letter_graph(g, savepath='results/gk_iam/') | |||||
## nx.draw_networkx(g) | |||||
## plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# compute the corresponding sod in graph space. | |||||
for idx, item in enumerate(alpha_range): | |||||
sod_tmp, _ = ged_median([g_best[0]], [g1, g2], ged_cost=ged_cost, | |||||
ged_method=ged_method, saveGXL=saveGXL) | |||||
sod_gs_list.append(sod_tmp) | |||||
sod_gs_min_list.append(np.min(sod_tmp)) | |||||
print('\nsods in graph space: ', sod_gs_list) | |||||
print('\nsmallest sod in graph space for each alpha: ', sod_gs_min_list) | |||||
print('\nsmallest distance in kernel space for each alpha: ', dis_ks_min_list) | |||||
print('\nnumber of updates of the best graph for each alpha by IAM: ', nb_updated_list_iam) | |||||
print('\nnumber of updates of the best graph for each alpha by random generation: ', | |||||
nb_updated_list_random) | |||||
print('\nnumber of updates of k nearest graphs for each alpha by IAM: ', | |||||
nb_updated_k_list_iam) | |||||
print('\nnumber of updates of k nearest graphs for each alpha by random generation: ', | |||||
nb_updated_k_list_random) | |||||
print('\ntimes:', time_list) | |||||
nb_update_mat_iam[idx1, idx2] = nb_updated_list_iam[0] | |||||
nb_update_mat_random[idx1, idx2] = nb_updated_list_random[0] | |||||
str_fw = 'graphs %d and %d: %d times by IAM, %d times by random generation.\n' \ | |||||
% (idx1, idx2, nb_updated_list_iam[0], nb_updated_list_random[0]) | |||||
with open('results/preimage_mix/nb_updates.txt', 'r+') as file: | |||||
content = file.read() | |||||
file.seek(0, 0) | |||||
file.write(str_fw + content) | |||||
############################################################################### | |||||
if __name__ == '__main__': | |||||
############################################################################### | |||||
# test on the combination of the two randomly chosen graphs. (the same as in the | |||||
# random pre-image paper.) | |||||
# test_preimage_mix_2combination_all_pairs() | |||||
############################################################################### | |||||
# tests on different numbers of median-sets. | |||||
# test_preimage_mix_median_nb() | |||||
############################################################################### | |||||
# tests on different values on grid of median-sets and k. | |||||
test_preimage_mix_grid_k_median_nb() |
@@ -1,398 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Thu Sep 5 15:59:00 2019 | |||||
@author: ljia | |||||
""" | |||||
import numpy as np | |||||
import networkx as nx | |||||
import matplotlib.pyplot as plt | |||||
import time | |||||
import random | |||||
#from tqdm import tqdm | |||||
from gklearn.utils.graphfiles import loadDataset | |||||
from gklearn.preimage.preimage_random import preimage_random | |||||
from gklearn.preimage.ged import ged_median | |||||
from gklearn.preimage.utils import compute_kernel, get_same_item_indices, remove_edges | |||||
############################################################################### | |||||
# tests on different values on grid of median-sets and k. | |||||
def test_preimage_random_grid_k_median_nb(): | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:50] | |||||
remove_edges(Gn) | |||||
gkernel = 'marginalizedkernel' | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 5 # iteration limit for pre-image. | |||||
l = 500 # update limit for random generation | |||||
# alpha_range = np.linspace(0.5, 0.5, 1) | |||||
# k = 5 # k nearest neighbors | |||||
# parameters for GED function | |||||
ged_cost='CHEM_1' | |||||
ged_method='IPFP' | |||||
saveGXL='gedlib' | |||||
# number of graphs; we what to compute the median of these graphs. | |||||
nb_median_range = [2, 3, 4, 5, 10, 20, 30, 40, 50, 100] | |||||
# number of nearest neighbors. | |||||
k_range = [5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100] | |||||
# find out all the graphs classified to positive group 1. | |||||
idx_dict = get_same_item_indices(y_all) | |||||
Gn = [Gn[i] for i in idx_dict[1]] | |||||
# # compute Gram matrix. | |||||
# time0 = time.time() | |||||
# km = compute_kernel(Gn, gkernel, True) | |||||
# time_km = time.time() - time0 | |||||
# # write Gram matrix to file. | |||||
# np.savez('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm', gm=km, gmtime=time_km) | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
sod_gs_list = [] | |||||
sod_gs_min_list = [] | |||||
nb_updated_list = [] | |||||
g_best = [] | |||||
for idx_nb, nb_median in enumerate(nb_median_range): | |||||
print('\n-------------------------------------------------------') | |||||
print('number of median graphs =', nb_median) | |||||
random.seed(1) | |||||
idx_rdm = random.sample(range(len(Gn)), nb_median) | |||||
print('graphs chosen:', idx_rdm) | |||||
Gn_median = [Gn[idx].copy() for idx in idx_rdm] | |||||
# for g in Gn_median: | |||||
# nx.draw(g, labels=nx.get_node_attributes(g, 'atom'), with_labels=True) | |||||
## plt.savefig("results/preimage_mix/mutag.png", format="PNG") | |||||
# plt.show() | |||||
# plt.clf() | |||||
################################################################### | |||||
gmfile = np.load('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm.npz') | |||||
km_tmp = gmfile['gm'] | |||||
time_km = gmfile['gmtime'] | |||||
# modify mixed gram matrix. | |||||
km = np.zeros((len(Gn) + nb_median, len(Gn) + nb_median)) | |||||
for i in range(len(Gn)): | |||||
for j in range(i, len(Gn)): | |||||
km[i, j] = km_tmp[i, j] | |||||
km[j, i] = km[i, j] | |||||
for i in range(len(Gn)): | |||||
for j, idx in enumerate(idx_rdm): | |||||
km[i, len(Gn) + j] = km[i, idx] | |||||
km[len(Gn) + j, i] = km[i, idx] | |||||
for i, idx1 in enumerate(idx_rdm): | |||||
for j, idx2 in enumerate(idx_rdm): | |||||
km[len(Gn) + i, len(Gn) + j] = km[idx1, idx2] | |||||
################################################################### | |||||
alpha_range = [1 / nb_median] * nb_median | |||||
time_list.append([]) | |||||
dis_ks_min_list.append([]) | |||||
sod_gs_list.append([]) | |||||
sod_gs_min_list.append([]) | |||||
nb_updated_list.append([]) | |||||
g_best.append([]) | |||||
for k in k_range: | |||||
print('\n++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n') | |||||
print('k =', k) | |||||
time0 = time.time() | |||||
dhat, ghat, nb_updated = preimage_random(Gn, Gn_median, alpha_range, | |||||
range(len(Gn), len(Gn) + nb_median), km, k, r_max, l, gkernel) | |||||
time_total = time.time() - time0 + time_km | |||||
print('time: ', time_total) | |||||
time_list[idx_nb].append(time_total) | |||||
print('\nsmallest distance in kernel space: ', dhat) | |||||
dis_ks_min_list[idx_nb].append(dhat) | |||||
g_best[idx_nb].append(ghat) | |||||
print('\nnumber of updates of the best graph: ', nb_updated) | |||||
nb_updated_list[idx_nb].append(nb_updated) | |||||
# show the best graph and save it to file. | |||||
print('the shortest distance is', dhat) | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(ghat, labels=nx.get_node_attributes(ghat, 'atom'), | |||||
with_labels=True) | |||||
plt.savefig('results/preimage_random/mutag_median_nb' + str(nb_median) + | |||||
'_k' + str(k) + '.png', format="PNG") | |||||
# plt.show() | |||||
plt.clf() | |||||
# print(ghat_list[0].nodes(data=True)) | |||||
# print(ghat_list[0].edges(data=True)) | |||||
# compute the corresponding sod in graph space. | |||||
sod_tmp, _ = ged_median([ghat], Gn_median, ged_cost=ged_cost, | |||||
ged_method=ged_method, saveGXL=saveGXL) | |||||
sod_gs_list[idx_nb].append(sod_tmp) | |||||
sod_gs_min_list[idx_nb].append(np.min(sod_tmp)) | |||||
print('\nsmallest sod in graph space: ', np.min(sod_tmp)) | |||||
print('\nsods in graph space: ', sod_gs_list) | |||||
print('\nsmallest sod in graph space for each set of median graphs and k: ', | |||||
sod_gs_min_list) | |||||
print('\nsmallest distance in kernel space for each set of median graphs and k: ', | |||||
dis_ks_min_list) | |||||
print('\nnumber of updates of the best graph for each set of median graphs and k by IAM: ', | |||||
nb_updated_list) | |||||
print('\ntimes:', time_list) | |||||
############################################################################### | |||||
# tests on different numbers of median-sets. | |||||
def test_preimage_random_median_nb(): | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:50] | |||||
remove_edges(Gn) | |||||
gkernel = 'marginalizedkernel' | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 5 # iteration limit for pre-image. | |||||
l = 500 # update limit for random generation | |||||
# alpha_range = np.linspace(0.5, 0.5, 1) | |||||
k = 5 # k nearest neighbors | |||||
# parameters for GED function | |||||
ged_cost='CHEM_1' | |||||
ged_method='IPFP' | |||||
saveGXL='gedlib' | |||||
# number of graphs; we what to compute the median of these graphs. | |||||
nb_median_range = [2, 3, 4, 5, 10, 20, 30, 40, 50, 100] | |||||
# find out all the graphs classified to positive group 1. | |||||
idx_dict = get_same_item_indices(y_all) | |||||
Gn = [Gn[i] for i in idx_dict[1]] | |||||
# # compute Gram matrix. | |||||
# time0 = time.time() | |||||
# km = compute_kernel(Gn, gkernel, True) | |||||
# time_km = time.time() - time0 | |||||
# # write Gram matrix to file. | |||||
# np.savez('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm', gm=km, gmtime=time_km) | |||||
time_list = [] | |||||
dis_ks_min_list = [] | |||||
sod_gs_list = [] | |||||
sod_gs_min_list = [] | |||||
nb_updated_list = [] | |||||
g_best = [] | |||||
for nb_median in nb_median_range: | |||||
print('\n-------------------------------------------------------') | |||||
print('number of median graphs =', nb_median) | |||||
random.seed(1) | |||||
idx_rdm = random.sample(range(len(Gn)), nb_median) | |||||
print('graphs chosen:', idx_rdm) | |||||
Gn_median = [Gn[idx].copy() for idx in idx_rdm] | |||||
# for g in Gn_median: | |||||
# nx.draw(g, labels=nx.get_node_attributes(g, 'atom'), with_labels=True) | |||||
## plt.savefig("results/preimage_mix/mutag.png", format="PNG") | |||||
# plt.show() | |||||
# plt.clf() | |||||
################################################################### | |||||
gmfile = np.load('results/gram_matrix_marg_itr10_pq0.03_mutag_positive.gm.npz') | |||||
km_tmp = gmfile['gm'] | |||||
time_km = gmfile['gmtime'] | |||||
# modify mixed gram matrix. | |||||
km = np.zeros((len(Gn) + nb_median, len(Gn) + nb_median)) | |||||
for i in range(len(Gn)): | |||||
for j in range(i, len(Gn)): | |||||
km[i, j] = km_tmp[i, j] | |||||
km[j, i] = km[i, j] | |||||
for i in range(len(Gn)): | |||||
for j, idx in enumerate(idx_rdm): | |||||
km[i, len(Gn) + j] = km[i, idx] | |||||
km[len(Gn) + j, i] = km[i, idx] | |||||
for i, idx1 in enumerate(idx_rdm): | |||||
for j, idx2 in enumerate(idx_rdm): | |||||
km[len(Gn) + i, len(Gn) + j] = km[idx1, idx2] | |||||
################################################################### | |||||
alpha_range = [1 / nb_median] * nb_median | |||||
time0 = time.time() | |||||
dhat, ghat, nb_updated = preimage_random(Gn, Gn_median, alpha_range, | |||||
range(len(Gn), len(Gn) + nb_median), km, k, r_max, l, gkernel) | |||||
time_total = time.time() - time0 + time_km | |||||
print('time: ', time_total) | |||||
time_list.append(time_total) | |||||
print('\nsmallest distance in kernel space: ', dhat) | |||||
dis_ks_min_list.append(dhat) | |||||
g_best.append(ghat) | |||||
print('\nnumber of updates of the best graph: ', nb_updated) | |||||
nb_updated_list.append(nb_updated) | |||||
# show the best graph and save it to file. | |||||
print('the shortest distance is', dhat) | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(ghat, labels=nx.get_node_attributes(ghat, 'atom'), | |||||
with_labels=True) | |||||
plt.savefig('results/preimage_random/mutag_median_nb' + str(nb_median) + | |||||
'.png', format="PNG") | |||||
# plt.show() | |||||
plt.clf() | |||||
# print(ghat_list[0].nodes(data=True)) | |||||
# print(ghat_list[0].edges(data=True)) | |||||
# compute the corresponding sod in graph space. | |||||
sod_tmp, _ = ged_median([ghat], Gn_median, ged_cost=ged_cost, | |||||
ged_method=ged_method, saveGXL=saveGXL) | |||||
sod_gs_list.append(sod_tmp) | |||||
sod_gs_min_list.append(np.min(sod_tmp)) | |||||
print('\nsmallest sod in graph space: ', np.min(sod_tmp)) | |||||
print('\nsods in graph space: ', sod_gs_list) | |||||
print('\nsmallest sod in graph space for each set of median graphs: ', sod_gs_min_list) | |||||
print('\nsmallest distance in kernel space for each set of median graphs: ', | |||||
dis_ks_min_list) | |||||
print('\nnumber of updates of the best graph for each set of median graphs: ', | |||||
nb_updated_list) | |||||
print('\ntimes:', time_list) | |||||
############################################################################### | |||||
# test on the combination of the two randomly chosen graphs. (the same as in the | |||||
# random pre-image paper.) | |||||
def test_random_preimage_2combination(): | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
'extra_params': {}} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:12] | |||||
remove_edges(Gn) | |||||
gkernel = 'marginalizedkernel' | |||||
# dis_mat, dis_max, dis_min, dis_mean = kernel_distance_matrix(Gn, gkernel=gkernel) | |||||
# print(dis_max, dis_min, dis_mean) | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 10 # iteration limit for pre-image. | |||||
l = 500 | |||||
alpha_range = np.linspace(0, 1, 11) | |||||
k = 5 # k nearest neighbors | |||||
# randomly select two molecules | |||||
np.random.seed(1) | |||||
idx_gi = [187, 167] # np.random.randint(0, len(Gn), 2) | |||||
g1 = Gn[idx_gi[0]].copy() | |||||
g2 = Gn[idx_gi[1]].copy() | |||||
# nx.draw(g1, labels=nx.get_node_attributes(g1, 'atom'), with_labels=True) | |||||
# plt.savefig("results/random_preimage/mutag10.png", format="PNG") | |||||
# plt.show() | |||||
# nx.draw(g2, labels=nx.get_node_attributes(g2, 'atom'), with_labels=True) | |||||
# plt.savefig("results/random_preimage/mutag11.png", format="PNG") | |||||
# plt.show() | |||||
###################################################################### | |||||
# Gn_mix = [g.copy() for g in Gn] | |||||
# Gn_mix.append(g1.copy()) | |||||
# Gn_mix.append(g2.copy()) | |||||
# | |||||
## g_tmp = iam([g1, g2]) | |||||
## nx.draw_networkx(g_tmp) | |||||
## plt.show() | |||||
# | |||||
# # compute | |||||
# time0 = time.time() | |||||
# km = compute_kernel(Gn_mix, gkernel, True) | |||||
# time_km = time.time() - time0 | |||||
################################################################### | |||||
idx1 = idx_gi[0] | |||||
idx2 = idx_gi[1] | |||||
gmfile = np.load('results/gram_matrix_marg_itr10_pq0.03.gm.npz') | |||||
km = gmfile['gm'] | |||||
time_km = gmfile['gmtime'] | |||||
# modify mixed gram matrix. | |||||
for i in range(len(Gn)): | |||||
km[i, len(Gn)] = km[i, idx1] | |||||
km[i, len(Gn) + 1] = km[i, idx2] | |||||
km[len(Gn), i] = km[i, idx1] | |||||
km[len(Gn) + 1, i] = km[i, idx2] | |||||
km[len(Gn), len(Gn)] = km[idx1, idx1] | |||||
km[len(Gn), len(Gn) + 1] = km[idx1, idx2] | |||||
km[len(Gn) + 1, len(Gn)] = km[idx2, idx1] | |||||
km[len(Gn) + 1, len(Gn) + 1] = km[idx2, idx2] | |||||
################################################################### | |||||
time_list = [] | |||||
nb_updated_list = [] | |||||
g_best = [] | |||||
dis_ks_min_list = [] | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('\n-------------------------------------------------------\n') | |||||
print('alpha =', alpha) | |||||
time0 = time.time() | |||||
dhat, ghat, nb_updated = preimage_random(Gn, [g1, g2], [alpha, 1 - alpha], | |||||
range(len(Gn), len(Gn) + 2), km, | |||||
k, r_max, l, gkernel) | |||||
time_total = time.time() - time0 + time_km | |||||
print('time: ', time_total) | |||||
time_list.append(time_total) | |||||
dis_ks_min_list.append(dhat) | |||||
g_best.append(ghat) | |||||
nb_updated_list.append(nb_updated) | |||||
# show best graphs and save them to file. | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', dis_ks_min_list[idx]) | |||||
print('one of the possible corresponding pre-images is') | |||||
nx.draw(g_best[idx], labels=nx.get_node_attributes(g_best[idx], 'atom'), | |||||
with_labels=True) | |||||
plt.show() | |||||
plt.savefig('results/random_preimage/mutag_alpha' + str(item) + '.png', format="PNG") | |||||
plt.clf() | |||||
print(g_best[idx].nodes(data=True)) | |||||
print(g_best[idx].edges(data=True)) | |||||
# # compute the corresponding sod in graph space. (alpha range not considered.) | |||||
# sod_tmp, _ = median_distance(g_best[0], Gn_let) | |||||
# sod_gs_list.append(sod_tmp) | |||||
# sod_gs_min_list.append(np.min(sod_tmp)) | |||||
# sod_ks_min_list.append(sod_ks) | |||||
# nb_updated_list.append(nb_updated) | |||||
# print('\nsmallest sod in graph space for each alpha: ', sod_gs_min_list) | |||||
print('\nsmallest distance in kernel space for each alpha: ', dis_ks_min_list) | |||||
print('\nnumber of updates for each alpha: ', nb_updated_list) | |||||
print('\ntimes:', time_list) | |||||
############################################################################### | |||||
if __name__ == '__main__': | |||||
############################################################################### | |||||
# test on the combination of the two randomly chosen graphs. (the same as in the | |||||
# random pre-image paper.) | |||||
# test_random_preimage_2combination() | |||||
############################################################################### | |||||
# tests all algorithms on different numbers of median-sets. | |||||
test_preimage_random_median_nb() | |||||
############################################################################### | |||||
# tests all algorithms on different values on grid of median-sets and k. | |||||
# test_preimage_random_grid_k_median_nb() |
@@ -1,935 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Tue Jan 14 15:39:29 2020 | |||||
@author: ljia | |||||
""" | |||||
import numpy as np | |||||
import random | |||||
import csv | |||||
from shutil import copyfile | |||||
import networkx as nx | |||||
import matplotlib.pyplot as plt | |||||
import os | |||||
import time | |||||
from gklearn.utils.graphfiles import loadDataset, loadGXL, saveGXL | |||||
from gklearn.preimage.test_k_closest_graphs import median_on_k_closest_graphs, reform_attributes | |||||
from gklearn.preimage.utils import get_same_item_indices, kernel_distance_matrix, compute_kernel | |||||
from gklearn.preimage.find_best_k import getRelations | |||||
def get_dataset(ds_name): | |||||
if ds_name == 'Letter-high': # node non-symb | |||||
dataset = 'cpp_ext/data/collections/Letter.xml' | |||||
graph_dir = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/data/datasets/Letter/HIGH/' | |||||
Gn, y_all = loadDataset(dataset, extra_params=graph_dir) | |||||
for G in Gn: | |||||
reform_attributes(G, na_names=['x', 'y']) | |||||
G.graph['node_labels'] = [] | |||||
G.graph['edge_labels'] = [] | |||||
G.graph['node_attrs'] = ['x', 'y'] | |||||
G.graph['edge_attrs'] = [] | |||||
elif ds_name == 'Letter-med': # node non-symb | |||||
dataset = 'cpp_ext/data/collections/Letter.xml' | |||||
graph_dir = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/data/datasets/Letter/MED/' | |||||
Gn, y_all = loadDataset(dataset, extra_params=graph_dir) | |||||
for G in Gn: | |||||
reform_attributes(G, na_names=['x', 'y']) | |||||
G.graph['node_labels'] = [] | |||||
G.graph['edge_labels'] = [] | |||||
G.graph['node_attrs'] = ['x', 'y'] | |||||
G.graph['edge_attrs'] = [] | |||||
elif ds_name == 'Letter-low': # node non-symb | |||||
dataset = 'cpp_ext/data/collections/Letter.xml' | |||||
graph_dir = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/data/datasets/Letter/LOW/' | |||||
Gn, y_all = loadDataset(dataset, extra_params=graph_dir) | |||||
for G in Gn: | |||||
reform_attributes(G, na_names=['x', 'y']) | |||||
G.graph['node_labels'] = [] | |||||
G.graph['edge_labels'] = [] | |||||
G.graph['node_attrs'] = ['x', 'y'] | |||||
G.graph['edge_attrs'] = [] | |||||
elif ds_name == 'Fingerprint': | |||||
# dataset = 'cpp_ext/data/collections/Fingerprint.xml' | |||||
# graph_dir = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/generated_datsets/Fingerprint/node_attrs/' | |||||
# Gn, y_all = loadDataset(dataset, extra_params=graph_dir) | |||||
# for G in Gn: | |||||
# reform_attributes(G) | |||||
dataset = '../../datasets/Fingerprint/Fingerprint_A.txt' | |||||
graph_dir = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/generated_datsets/Fingerprint/node_attrs/' | |||||
Gn, y_all = loadDataset(dataset) | |||||
elif ds_name == 'SYNTHETIC': | |||||
pass | |||||
elif ds_name == 'SYNTHETICnew': | |||||
dataset = '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt' | |||||
graph_dir = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/generated_datsets/SYNTHETICnew' | |||||
# dataset = '../../datasets/Letter-high/Letter-high_A.txt' | |||||
# graph_dir = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/data/datasets/Letter/HIGH/' | |||||
Gn, y_all = loadDataset(dataset) | |||||
elif ds_name == 'Synthie': | |||||
pass | |||||
elif ds_name == 'COIL-DEL': | |||||
dataset = '../../datasets/COIL-DEL/COIL-DEL_A.txt' | |||||
graph_dir = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/generated_datsets/COIL-DEL/' | |||||
Gn, y_all = loadDataset(dataset) | |||||
elif ds_name == 'COIL-RAG': | |||||
pass | |||||
elif ds_name == 'COLORS-3': | |||||
pass | |||||
elif ds_name == 'FRANKENSTEIN': | |||||
pass | |||||
return Gn, y_all, graph_dir | |||||
def init_output_file(ds_name, gkernel, fit_method, dir_output): | |||||
# fn_output_detail = 'results_detail.' + ds_name + '.' + gkernel + '.' + fit_method + '.csv' | |||||
fn_output_detail = 'results_detail.' + ds_name + '.' + gkernel + '.csv' | |||||
f_detail = open(dir_output + fn_output_detail, 'a') | |||||
csv.writer(f_detail).writerow(['dataset', 'graph kernel', 'edit cost', | |||||
'GED method', 'attr distance', 'fit method', 'k', | |||||
'target', 'repeat', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', | |||||
'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', | |||||
'dis_k gi -> GM', 'fitting time', 'generating time', 'total time', | |||||
'median set']) | |||||
f_detail.close() | |||||
# fn_output_summary = 'results_summary.' + ds_name + '.' + gkernel + '.' + fit_method + '.csv' | |||||
fn_output_summary = 'results_summary.' + ds_name + '.' + gkernel + '.csv' | |||||
f_summary = open(dir_output + fn_output_summary, 'a') | |||||
csv.writer(f_summary).writerow(['dataset', 'graph kernel', 'edit cost', | |||||
'GED method', 'attr distance', 'fit method', 'k', | |||||
'target', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', | |||||
'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', | |||||
'dis_k gi -> GM', 'fitting time', 'generating time', 'total time', | |||||
'# SOD SM -> GM', '# dis_k SM -> GM', | |||||
'# dis_k gi -> SM', '# dis_k gi -> GM', 'repeats better SOD SM -> GM', | |||||
'repeats better dis_k SM -> GM', 'repeats better dis_k gi -> SM', | |||||
'repeats better dis_k gi -> GM']) | |||||
f_summary.close() | |||||
return fn_output_detail, fn_output_summary | |||||
def xp_fit_method_for_non_symbolic(parameters, save_results=True, initial_solutions=1, | |||||
Gn_data=None, k_dis_data=None, Kmatrix=None, | |||||
is_separate=False): | |||||
# 1. set parameters. | |||||
print('1. setting parameters...') | |||||
ds_name = parameters['ds_name'] | |||||
gkernel = parameters['gkernel'] | |||||
edit_cost_name = parameters['edit_cost_name'] | |||||
ged_method = parameters['ged_method'] | |||||
attr_distance = parameters['attr_distance'] | |||||
fit_method = parameters['fit_method'] | |||||
init_ecc = parameters['init_ecc'] | |||||
node_label = None | |||||
edge_label = None | |||||
dir_output = 'results/xp_fit_method/' | |||||
# 2. get dataset. | |||||
print('2. getting dataset...') | |||||
if Gn_data is None: | |||||
Gn, y_all, graph_dir = get_dataset(ds_name) | |||||
else: | |||||
Gn = Gn_data[0] | |||||
y_all = Gn_data[1] | |||||
graph_dir = Gn_data[2] | |||||
# 3. compute kernel distance matrix. | |||||
print('3. computing kernel distance matrix...') | |||||
if k_dis_data is None: | |||||
dis_mat, dis_max, dis_min, dis_mean = kernel_distance_matrix(Gn, None, | |||||
None, Kmatrix=Kmatrix, gkernel=gkernel) | |||||
else: | |||||
# dis_mat = k_dis_data[0] | |||||
# dis_max = k_dis_data[1] | |||||
# dis_min = k_dis_data[2] | |||||
# dis_mean = k_dis_data[3] | |||||
# print('pair distances - dis_max, dis_min, dis_mean:', dis_max, dis_min, dis_mean) | |||||
pass | |||||
if save_results: | |||||
# create result files. | |||||
print('creating output files...') | |||||
fn_output_detail, fn_output_summary = init_output_file(ds_name, gkernel, | |||||
fit_method, dir_output) | |||||
# start repeats. | |||||
repeats = 1 | |||||
# k_list = range(2, 11) | |||||
k_list = [0] | |||||
# get indices by classes. | |||||
y_idx = get_same_item_indices(y_all) | |||||
random.seed(1) | |||||
rdn_seed_list = random.sample(range(0, repeats * 100), repeats) | |||||
for k in k_list: | |||||
# print('\n--------- k =', k, '----------') | |||||
sod_sm_mean_list = [] | |||||
sod_gm_mean_list = [] | |||||
dis_k_sm_mean_list = [] | |||||
dis_k_gm_mean_list = [] | |||||
dis_k_gi_min_mean_list = [] | |||||
time_fitting_mean_list = [] | |||||
time_generating_mean_list = [] | |||||
time_total_mean_list = [] | |||||
# 3. start generating and computing over targets. | |||||
print('4. starting generating and computing over targets......') | |||||
for i, (y, values) in enumerate(y_idx.items()): | |||||
# y = 'I' | |||||
# values = y_idx[y] | |||||
# values = values[0:10] | |||||
print('\ny =', y) | |||||
# if y.strip() == 'A': | |||||
# continue | |||||
k = len(values) | |||||
print('\n--------- k =', k, '----------') | |||||
if k < 2: | |||||
print('\nk = ', k, ', skip.\n') | |||||
continue | |||||
sod_sm_list = [] | |||||
sod_gm_list = [] | |||||
dis_k_sm_list = [] | |||||
dis_k_gm_list = [] | |||||
dis_k_gi_min_list = [] | |||||
time_fitting_list = [] | |||||
time_generating_list = [] | |||||
time_total_list = [] | |||||
nb_sod_sm2gm = [0, 0, 0] | |||||
nb_dis_k_sm2gm = [0, 0, 0] | |||||
nb_dis_k_gi2sm = [0, 0, 0] | |||||
nb_dis_k_gi2gm = [0, 0, 0] | |||||
repeats_better_sod_sm2gm = [] | |||||
repeats_better_dis_k_sm2gm = [] | |||||
repeats_better_dis_k_gi2sm = [] | |||||
repeats_better_dis_k_gi2gm = [] | |||||
# get Gram matrix for this part of data. | |||||
if Kmatrix is not None: | |||||
if is_separate: | |||||
Kmatrix_sub = Kmatrix[i].copy() | |||||
else: | |||||
Kmatrix_sub = Kmatrix[values,:] | |||||
Kmatrix_sub = Kmatrix_sub[:,values] | |||||
else: | |||||
Kmatrix_sub = None | |||||
for repeat in range(repeats): | |||||
print('\nrepeat =', repeat) | |||||
random.seed(rdn_seed_list[repeat]) | |||||
median_set_idx_idx = random.sample(range(0, len(values)), k) | |||||
median_set_idx = [values[idx] for idx in median_set_idx_idx] | |||||
print('median set: ', median_set_idx) | |||||
Gn_median = [Gn[g] for g in values] | |||||
# from notebooks.utils.plot_all_graphs import draw_Fingerprint_graph | |||||
# for Gn in Gn_median: | |||||
# draw_Fingerprint_graph(Gn, save=None) | |||||
# GENERATING & COMPUTING!! | |||||
res_sods, res_dis_ks, res_times = median_on_k_closest_graphs(Gn_median, | |||||
node_label, edge_label, | |||||
gkernel, k, fit_method=fit_method, graph_dir=graph_dir, | |||||
edit_cost_constants=None, group_min=median_set_idx_idx, | |||||
dataset=ds_name, initial_solutions=initial_solutions, | |||||
edit_cost_name=edit_cost_name, init_ecc=init_ecc, | |||||
Kmatrix=Kmatrix_sub, parallel=False) | |||||
sod_sm = res_sods[0] | |||||
sod_gm = res_sods[1] | |||||
dis_k_sm = res_dis_ks[0] | |||||
dis_k_gm = res_dis_ks[1] | |||||
dis_k_gi = res_dis_ks[2] | |||||
dis_k_gi_min = res_dis_ks[3] | |||||
idx_dis_k_gi_min = res_dis_ks[4] | |||||
time_fitting = res_times[0] | |||||
time_generating = res_times[1] | |||||
# write result detail. | |||||
sod_sm2gm = getRelations(np.sign(sod_gm - sod_sm)) | |||||
dis_k_sm2gm = getRelations(np.sign(dis_k_gm - dis_k_sm)) | |||||
dis_k_gi2sm = getRelations(np.sign(dis_k_sm - dis_k_gi_min)) | |||||
dis_k_gi2gm = getRelations(np.sign(dis_k_gm - dis_k_gi_min)) | |||||
if save_results: | |||||
f_detail = open(dir_output + fn_output_detail, 'a') | |||||
csv.writer(f_detail).writerow([ds_name, gkernel, | |||||
edit_cost_name, ged_method, attr_distance, | |||||
fit_method, k, y, repeat, | |||||
sod_sm, sod_gm, dis_k_sm, dis_k_gm, | |||||
dis_k_gi_min, sod_sm2gm, dis_k_sm2gm, dis_k_gi2sm, | |||||
dis_k_gi2gm, time_fitting, time_generating, | |||||
time_fitting + time_generating, median_set_idx]) | |||||
f_detail.close() | |||||
# compute result summary. | |||||
sod_sm_list.append(sod_sm) | |||||
sod_gm_list.append(sod_gm) | |||||
dis_k_sm_list.append(dis_k_sm) | |||||
dis_k_gm_list.append(dis_k_gm) | |||||
dis_k_gi_min_list.append(dis_k_gi_min) | |||||
time_fitting_list.append(time_fitting) | |||||
time_generating_list.append(time_generating) | |||||
time_total_list.append(time_fitting + time_generating) | |||||
# # SOD SM -> GM | |||||
if sod_sm > sod_gm: | |||||
nb_sod_sm2gm[0] += 1 | |||||
repeats_better_sod_sm2gm.append(repeat) | |||||
elif sod_sm == sod_gm: | |||||
nb_sod_sm2gm[1] += 1 | |||||
elif sod_sm < sod_gm: | |||||
nb_sod_sm2gm[2] += 1 | |||||
# # dis_k SM -> GM | |||||
if dis_k_sm > dis_k_gm: | |||||
nb_dis_k_sm2gm[0] += 1 | |||||
repeats_better_dis_k_sm2gm.append(repeat) | |||||
elif dis_k_sm == dis_k_gm: | |||||
nb_dis_k_sm2gm[1] += 1 | |||||
elif dis_k_sm < dis_k_gm: | |||||
nb_dis_k_sm2gm[2] += 1 | |||||
# # dis_k gi -> SM | |||||
if dis_k_gi_min > dis_k_sm: | |||||
nb_dis_k_gi2sm[0] += 1 | |||||
repeats_better_dis_k_gi2sm.append(repeat) | |||||
elif dis_k_gi_min == dis_k_sm: | |||||
nb_dis_k_gi2sm[1] += 1 | |||||
elif dis_k_gi_min < dis_k_sm: | |||||
nb_dis_k_gi2sm[2] += 1 | |||||
# # dis_k gi -> GM | |||||
if dis_k_gi_min > dis_k_gm: | |||||
nb_dis_k_gi2gm[0] += 1 | |||||
repeats_better_dis_k_gi2gm.append(repeat) | |||||
elif dis_k_gi_min == dis_k_gm: | |||||
nb_dis_k_gi2gm[1] += 1 | |||||
elif dis_k_gi_min < dis_k_gm: | |||||
nb_dis_k_gi2gm[2] += 1 | |||||
# save median graphs. | |||||
fname_sm = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/set_median.gxl' | |||||
fn_pre_sm_new = dir_output + 'medians/set_median.' + fit_method \ | |||||
+ '.k' + str(int(k)) + '.y' + str(y) + '.repeat' + str(repeat) | |||||
copyfile(fname_sm, fn_pre_sm_new + '.gxl') | |||||
fname_gm = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/gen_median.gxl' | |||||
fn_pre_gm_new = dir_output + 'medians/gen_median.' + fit_method \ | |||||
+ '.k' + str(int(k)) + '.y' + str(y) + '.repeat' + str(repeat) | |||||
copyfile(fname_gm, fn_pre_gm_new + '.gxl') | |||||
G_best_kernel = Gn_median[idx_dis_k_gi_min].copy() | |||||
# reform_attributes(G_best_kernel) | |||||
fn_pre_g_best_kernel = dir_output + 'medians/g_best_kernel.' + fit_method \ | |||||
+ '.k' + str(int(k)) + '.y' + str(y) + '.repeat' + str(repeat) | |||||
saveGXL(G_best_kernel, fn_pre_g_best_kernel + '.gxl', method='default') | |||||
# plot median graphs. | |||||
if ds_name == 'Letter-high' or ds_name == 'Letter-med' or ds_name == 'Letter-low': | |||||
set_median = loadGXL(fn_pre_sm_new + '.gxl') | |||||
gen_median = loadGXL(fn_pre_gm_new + '.gxl') | |||||
draw_Letter_graph(set_median, fn_pre_sm_new) | |||||
draw_Letter_graph(gen_median, fn_pre_gm_new) | |||||
draw_Letter_graph(G_best_kernel, fn_pre_g_best_kernel) | |||||
# write result summary for each letter. | |||||
sod_sm_mean_list.append(np.mean(sod_sm_list)) | |||||
sod_gm_mean_list.append(np.mean(sod_gm_list)) | |||||
dis_k_sm_mean_list.append(np.mean(dis_k_sm_list)) | |||||
dis_k_gm_mean_list.append(np.mean(dis_k_gm_list)) | |||||
dis_k_gi_min_mean_list.append(np.mean(dis_k_gi_min_list)) | |||||
time_fitting_mean_list.append(np.mean(time_fitting_list)) | |||||
time_generating_mean_list.append(np.mean(time_generating_list)) | |||||
time_total_mean_list.append(np.mean(time_total_list)) | |||||
sod_sm2gm_mean = getRelations(np.sign(sod_gm_mean_list[-1] - sod_sm_mean_list[-1])) | |||||
dis_k_sm2gm_mean = getRelations(np.sign(dis_k_gm_mean_list[-1] - dis_k_sm_mean_list[-1])) | |||||
dis_k_gi2sm_mean = getRelations(np.sign(dis_k_sm_mean_list[-1] - dis_k_gi_min_mean_list[-1])) | |||||
dis_k_gi2gm_mean = getRelations(np.sign(dis_k_gm_mean_list[-1] - dis_k_gi_min_mean_list[-1])) | |||||
if save_results: | |||||
f_summary = open(dir_output + fn_output_summary, 'a') | |||||
csv.writer(f_summary).writerow([ds_name, gkernel, | |||||
edit_cost_name, ged_method, attr_distance, | |||||
fit_method, k, y, | |||||
sod_sm_mean_list[-1], sod_gm_mean_list[-1], | |||||
dis_k_sm_mean_list[-1], dis_k_gm_mean_list[-1], | |||||
dis_k_gi_min_mean_list[-1], sod_sm2gm_mean, dis_k_sm2gm_mean, | |||||
dis_k_gi2sm_mean, dis_k_gi2gm_mean, | |||||
time_fitting_mean_list[-1], time_generating_mean_list[-1], | |||||
time_total_mean_list[-1], nb_sod_sm2gm, | |||||
nb_dis_k_sm2gm, nb_dis_k_gi2sm, nb_dis_k_gi2gm, | |||||
repeats_better_sod_sm2gm, repeats_better_dis_k_sm2gm, | |||||
repeats_better_dis_k_gi2sm, repeats_better_dis_k_gi2gm]) | |||||
f_summary.close() | |||||
# write result summary for each letter. | |||||
sod_sm_mean = np.mean(sod_sm_mean_list) | |||||
sod_gm_mean = np.mean(sod_gm_mean_list) | |||||
dis_k_sm_mean = np.mean(dis_k_sm_mean_list) | |||||
dis_k_gm_mean = np.mean(dis_k_gm_mean_list) | |||||
dis_k_gi_min_mean = np.mean(dis_k_gi_min_list) | |||||
time_fitting_mean = np.mean(time_fitting_list) | |||||
time_generating_mean = np.mean(time_generating_list) | |||||
time_total_mean = np.mean(time_total_list) | |||||
sod_sm2gm_mean = getRelations(np.sign(sod_gm_mean - sod_sm_mean)) | |||||
dis_k_sm2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_sm_mean)) | |||||
dis_k_gi2sm_mean = getRelations(np.sign(dis_k_sm_mean - dis_k_gi_min_mean)) | |||||
dis_k_gi2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_gi_min_mean)) | |||||
if save_results: | |||||
f_summary = open(dir_output + fn_output_summary, 'a') | |||||
csv.writer(f_summary).writerow([ds_name, gkernel, | |||||
edit_cost_name, ged_method, attr_distance, | |||||
fit_method, k, 'all', | |||||
sod_sm_mean, sod_gm_mean, dis_k_sm_mean, dis_k_gm_mean, | |||||
dis_k_gi_min_mean, sod_sm2gm_mean, dis_k_sm2gm_mean, | |||||
dis_k_gi2sm_mean, dis_k_gi2gm_mean, | |||||
time_fitting_mean, time_generating_mean, time_total_mean]) | |||||
f_summary.close() | |||||
print('\ncomplete.') | |||||
#Dessin median courrant | |||||
def draw_Letter_graph(graph, file_prefix): | |||||
plt.figure() | |||||
pos = {} | |||||
for n in graph.nodes: | |||||
pos[n] = np.array([float(graph.node[n]['x']),float(graph.node[n]['y'])]) | |||||
nx.draw_networkx(graph, pos) | |||||
plt.savefig(file_prefix + '.eps', format='eps', dpi=300) | |||||
# plt.show() | |||||
plt.clf() | |||||
def compute_gm_for_each_class(Gn, y_all, gkernel, parallel='imap_unordered', is_separate=True): | |||||
if is_separate: | |||||
print('the Gram matrix is computed for each class.') | |||||
y_idx = get_same_item_indices(y_all) | |||||
Kmatrix = [] | |||||
run_time = [] | |||||
k_dis_data = [] | |||||
for i, (y, values) in enumerate(y_idx.items()): | |||||
print('The ', str(i), ' class:') | |||||
Gn_i = [Gn[val] for val in values] | |||||
time0 = time.time() | |||||
Kmatrix.append(compute_kernel(Gn_i, gkernel, None, None, True, parallel=parallel)) | |||||
run_time.append(time.time() - time0) | |||||
k_dis_data.append(kernel_distance_matrix(Gn_i, None, None, | |||||
Kmatrix=Kmatrix[i], gkernel=gkernel, verbose=True)) | |||||
np.savez('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm', | |||||
Kmatrix=Kmatrix, run_time=run_time, is_separate=is_separate) | |||||
dis_max = np.max([item[1] for item in k_dis_data]) | |||||
dis_min = np.min([item[2] for item in k_dis_data]) | |||||
dis_mean = np.mean([item[3] for item in k_dis_data]) | |||||
print('pair distances - dis_max, dis_min, dis_mean:', dis_max, dis_min, | |||||
dis_mean) | |||||
else: | |||||
time0 = time.time() | |||||
Kmatrix = compute_kernel(Gn, gkernel, None, None, True, parallel=parallel) | |||||
run_time = time.time() - time0 | |||||
np.savez('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm', | |||||
Kmatrix=Kmatrix, run_time=run_time, is_separate=is_separate) | |||||
k_dis_data = kernel_distance_matrix(Gn, None, None, | |||||
Kmatrix=Kmatrix, gkernel=gkernel, verbose=True) | |||||
print('the Gram matrix is computed for the whole dataset.') | |||||
print('pair distances - dis_max, dis_min, dis_mean:', k_dis_data[1], | |||||
k_dis_data[2], k_dis_data[3]) | |||||
print('\nTime to compute Gram matrix for the whole dataset: ', run_time) | |||||
# k_dis_data = [dis_mat, dis_max, dis_min, dis_mean] | |||||
return Kmatrix, run_time, k_dis_data | |||||
if __name__ == "__main__": | |||||
# #### xp 1: Letter-high, spkernel. | |||||
# # load dataset. | |||||
# print('getting dataset and computing kernel distance matrix first...') | |||||
# ds_name = 'Letter-high' | |||||
# gkernel = 'spkernel' | |||||
# Gn, y_all, graph_dir = get_dataset(ds_name) | |||||
# # remove graphs without edges. | |||||
# Gn = [(idx, G) for idx, G in enumerate(Gn) if nx.number_of_edges(G) != 0] | |||||
# idx = [G[0] for G in Gn] | |||||
# Gn = [G[1] for G in Gn] | |||||
# y_all = [y_all[i] for i in idx] | |||||
## Gn = Gn[0:50] | |||||
## y_all = y_all[0:50] | |||||
# # compute pair distances. | |||||
# dis_mat, dis_max, dis_min, dis_mean = kernel_distance_matrix(Gn, None, None, | |||||
# Kmatrix=None, gkernel=gkernel, verbose=True) | |||||
## dis_mat, dis_max, dis_min, dis_mean = 0, 0, 0, 0 | |||||
# # fitting and computing. | |||||
# fit_methods = ['random', 'expert', 'k-graphs'] | |||||
# for fit_method in fit_methods: | |||||
# print('\n-------------------------------------') | |||||
# print('fit method:', fit_method) | |||||
# parameters = {'ds_name': ds_name, | |||||
# 'gkernel': gkernel, | |||||
# 'edit_cost_name': 'LETTER2', | |||||
# 'ged_method': 'mIPFP', | |||||
# 'attr_distance': 'euclidean', | |||||
# 'fit_method': fit_method} | |||||
# xp_fit_method_for_non_symbolic(parameters, save_results=True, | |||||
# initial_solutions=40, | |||||
# Gn_data = [Gn, y_all, graph_dir], | |||||
# k_dis_data = [dis_mat, dis_max, dis_min, dis_mean]) | |||||
# #### xp 2: Letter-high, sspkernel. | |||||
# # load dataset. | |||||
# print('getting dataset and computing kernel distance matrix first...') | |||||
# ds_name = 'Letter-high' | |||||
# gkernel = 'structuralspkernel' | |||||
# Gn, y_all, graph_dir = get_dataset(ds_name) | |||||
## Gn = Gn[0:50] | |||||
## y_all = y_all[0:50] | |||||
# # compute pair distances. | |||||
# dis_mat, dis_max, dis_min, dis_mean = kernel_distance_matrix(Gn, None, None, | |||||
# Kmatrix=None, gkernel=gkernel, verbose=True) | |||||
## dis_mat, dis_max, dis_min, dis_mean = 0, 0, 0, 0 | |||||
# # fitting and computing. | |||||
# fit_methods = ['random', 'expert', 'k-graphs'] | |||||
# for fit_method in fit_methods: | |||||
# print('\n-------------------------------------') | |||||
# print('fit method:', fit_method) | |||||
# parameters = {'ds_name': ds_name, | |||||
# 'gkernel': gkernel, | |||||
# 'edit_cost_name': 'LETTER2', | |||||
# 'ged_method': 'mIPFP', | |||||
# 'attr_distance': 'euclidean', | |||||
# 'fit_method': fit_method} | |||||
# print('parameters: ', parameters) | |||||
# xp_fit_method_for_non_symbolic(parameters, save_results=True, | |||||
# initial_solutions=40, | |||||
# Gn_data = [Gn, y_all, graph_dir], | |||||
# k_dis_data = [dis_mat, dis_max, dis_min, dis_mean]) | |||||
# #### xp 3: SYNTHETICnew, sspkernel, using NON_SYMBOLIC. | |||||
# gmfile = np.load('results/xp_fit_method/Kmatrix.SYNTHETICnew.structuralspkernel.gm.npz') | |||||
# Kmatrix = gmfile['Kmatrix'] | |||||
# run_time = gmfile['run_time'] | |||||
# # normalization | |||||
# Kmatrix_diag = Kmatrix.diagonal().copy() | |||||
# for i in range(len(Kmatrix)): | |||||
# for j in range(i, len(Kmatrix)): | |||||
# Kmatrix[i][j] /= np.sqrt(Kmatrix_diag[i] * Kmatrix_diag[j]) | |||||
# Kmatrix[j][i] = Kmatrix[i][j] | |||||
## np.savez('results/xp_fit_method/Kmatrix.SYNTHETICnew.spkernel.gm', | |||||
## Kmatrix=Kmatrix, run_time=run_time) | |||||
# # load dataset. | |||||
# print('getting dataset and computing kernel distance matrix first...') | |||||
# ds_name = 'SYNTHETICnew' | |||||
# gkernel = 'structuralspkernel' | |||||
# Gn, y_all, graph_dir = get_dataset(ds_name) | |||||
# # remove graphs without nodes and edges. | |||||
# Gn = [(idx, G) for idx, G in enumerate(Gn) if (nx.number_of_nodes(G) != 0 | |||||
# and nx.number_of_edges(G) != 0)] | |||||
# idx = [G[0] for G in Gn] | |||||
# Gn = [G[1] for G in Gn] | |||||
# y_all = [y_all[i] for i in idx] | |||||
## Gn = Gn[0:10] | |||||
## y_all = y_all[0:10] | |||||
# for G in Gn: | |||||
# G.graph['filename'] = 'graph' + str(G.graph['name']) + '.gxl' | |||||
# # compute pair distances. | |||||
# dis_mat, dis_max, dis_min, dis_mean = kernel_distance_matrix(Gn, None, None, | |||||
# Kmatrix=Kmatrix, gkernel=gkernel, verbose=True) | |||||
## dis_mat, dis_max, dis_min, dis_mean = 0, 0, 0, 0 | |||||
# # fitting and computing. | |||||
# fit_methods = ['k-graphs', 'random', 'random', 'random'] | |||||
# for fit_method in fit_methods: | |||||
# print('\n-------------------------------------') | |||||
# print('fit method:', fit_method) | |||||
# parameters = {'ds_name': ds_name, | |||||
# 'gkernel': gkernel, | |||||
# 'edit_cost_name': 'NON_SYMBOLIC', | |||||
# 'ged_method': 'mIPFP', | |||||
# 'attr_distance': 'euclidean', | |||||
# 'fit_method': fit_method} | |||||
# xp_fit_method_for_non_symbolic(parameters, save_results=True, | |||||
# initial_solutions=1, | |||||
# Gn_data = [Gn, y_all, graph_dir], | |||||
# k_dis_data = [dis_mat, dis_max, dis_min, dis_mean], | |||||
# Kmatrix=Kmatrix) | |||||
# ### xp 4: SYNTHETICnew, spkernel, using NON_SYMBOLIC. | |||||
# gmfile = np.load('results/xp_fit_method/Kmatrix.SYNTHETICnew.spkernel.gm.npz') | |||||
# Kmatrix = gmfile['Kmatrix'] | |||||
# # normalization | |||||
# Kmatrix_diag = Kmatrix.diagonal().copy() | |||||
# for i in range(len(Kmatrix)): | |||||
# for j in range(i, len(Kmatrix)): | |||||
# Kmatrix[i][j] /= np.sqrt(Kmatrix_diag[i] * Kmatrix_diag[j]) | |||||
# Kmatrix[j][i] = Kmatrix[i][j] | |||||
# run_time = 21821.35 | |||||
# np.savez('results/xp_fit_method/Kmatrix.SYNTHETICnew.spkernel.gm', | |||||
# Kmatrix=Kmatrix, run_time=run_time) | |||||
# | |||||
# # load dataset. | |||||
# print('getting dataset and computing kernel distance matrix first...') | |||||
# ds_name = 'SYNTHETICnew' | |||||
# gkernel = 'spkernel' | |||||
# Gn, y_all, graph_dir = get_dataset(ds_name) | |||||
## # remove graphs without nodes and edges. | |||||
## Gn = [(idx, G) for idx, G in enumerate(Gn) if (nx.number_of_node(G) != 0 | |||||
## and nx.number_of_edges(G) != 0)] | |||||
## idx = [G[0] for G in Gn] | |||||
## Gn = [G[1] for G in Gn] | |||||
## y_all = [y_all[i] for i in idx] | |||||
## Gn = Gn[0:5] | |||||
## y_all = y_all[0:5] | |||||
# for G in Gn: | |||||
# G.graph['filename'] = 'graph' + str(G.graph['name']) + '.gxl' | |||||
# | |||||
# # compute/read Gram matrix and pair distances. | |||||
## Kmatrix = compute_kernel(Gn, gkernel, None, None, True) | |||||
## np.savez('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm', | |||||
## Kmatrix=Kmatrix) | |||||
# gmfile = np.load('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm.npz') | |||||
# Kmatrix = gmfile['Kmatrix'] | |||||
# run_time = gmfile['run_time'] | |||||
## Kmatrix = Kmatrix[[0,1,2,3,4],:] | |||||
## Kmatrix = Kmatrix[:,[0,1,2,3,4]] | |||||
# print('\nTime to compute Gram matrix for the whole dataset: ', run_time) | |||||
# dis_mat, dis_max, dis_min, dis_mean = kernel_distance_matrix(Gn, None, None, | |||||
# Kmatrix=Kmatrix, gkernel=gkernel, verbose=True) | |||||
## Kmatrix = np.zeros((len(Gn), len(Gn))) | |||||
## dis_mat, dis_max, dis_min, dis_mean = 0, 0, 0, 0 | |||||
# | |||||
# # fitting and computing. | |||||
# fit_methods = ['k-graphs', 'random', 'random', 'random'] | |||||
# for fit_method in fit_methods: | |||||
# print('\n-------------------------------------') | |||||
# print('fit method:', fit_method) | |||||
# parameters = {'ds_name': ds_name, | |||||
# 'gkernel': gkernel, | |||||
# 'edit_cost_name': 'NON_SYMBOLIC', | |||||
# 'ged_method': 'mIPFP', | |||||
# 'attr_distance': 'euclidean', | |||||
# 'fit_method': fit_method} | |||||
# xp_fit_method_for_non_symbolic(parameters, save_results=True, | |||||
# initial_solutions=1, | |||||
# Gn_data=[Gn, y_all, graph_dir], | |||||
# k_dis_data=[dis_mat, dis_max, dis_min, dis_mean], | |||||
# Kmatrix=Kmatrix) | |||||
# #### xp 5: Fingerprint, sspkernel, using LETTER2, only node attrs. | |||||
# # load dataset. | |||||
# print('getting dataset and computing kernel distance matrix first...') | |||||
# ds_name = 'Fingerprint' | |||||
# gkernel = 'structuralspkernel' | |||||
# Gn, y_all, graph_dir = get_dataset(ds_name) | |||||
# # remove graphs without nodes and edges. | |||||
# Gn = [(idx, G) for idx, G in enumerate(Gn) if nx.number_of_nodes(G) != 0] | |||||
## and nx.number_of_edges(G) != 0)] | |||||
# idx = [G[0] for G in Gn] | |||||
# Gn = [G[1] for G in Gn] | |||||
# y_all = [y_all[i] for i in idx] | |||||
# y_idx = get_same_item_indices(y_all) | |||||
# # remove unused labels. | |||||
# for G in Gn: | |||||
# G.graph['edge_attrs'] = [] | |||||
# for edge in G.edges: | |||||
# del G.edges[edge]['attributes'] | |||||
# del G.edges[edge]['orient'] | |||||
# del G.edges[edge]['angle'] | |||||
## Gn = Gn[805:815] | |||||
## y_all = y_all[805:815] | |||||
# for G in Gn: | |||||
# G.graph['filename'] = 'graph' + str(G.graph['name']) + '.gxl' | |||||
# | |||||
# # compute/read Gram matrix and pair distances. | |||||
## Kmatrix = compute_kernel(Gn, gkernel, None, None, True, parallel='imap_unordered') | |||||
## np.savez('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm', | |||||
## Kmatrix=Kmatrix) | |||||
# gmfile = np.load('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm.npz') | |||||
# Kmatrix = gmfile['Kmatrix'] | |||||
## run_time = gmfile['run_time'] | |||||
## Kmatrix = Kmatrix[[0,1,2,3,4],:] | |||||
## Kmatrix = Kmatrix[:,[0,1,2,3,4]] | |||||
## print('\nTime to compute Gram matrix for the whole dataset: ', run_time) | |||||
# dis_mat, dis_max, dis_min, dis_mean = kernel_distance_matrix(Gn, None, None, | |||||
# Kmatrix=Kmatrix, gkernel=gkernel, verbose=True) | |||||
## Kmatrix = np.zeros((len(Gn), len(Gn))) | |||||
## dis_mat, dis_max, dis_min, dis_mean = 0, 0, 0, 0 | |||||
# | |||||
# # fitting and computing. | |||||
# fit_methods = ['k-graphs', 'random', 'random', 'random'] | |||||
# for fit_method in fit_methods: | |||||
# print('\n-------------------------------------') | |||||
# print('fit method:', fit_method) | |||||
# parameters = {'ds_name': ds_name, | |||||
# 'gkernel': gkernel, | |||||
# 'edit_cost_name': 'LETTER2', | |||||
# 'ged_method': 'mIPFP', | |||||
# 'attr_distance': 'euclidean', | |||||
# 'fit_method': fit_method, | |||||
# 'init_ecc': [1,1,1,1,1]} # [0.525, 0.525, 0.001, 0.125, 0.125]} | |||||
# xp_fit_method_for_non_symbolic(parameters, save_results=True, | |||||
# initial_solutions=40, | |||||
# Gn_data = [Gn, y_all, graph_dir], | |||||
# k_dis_data = [dis_mat, dis_max, dis_min, dis_mean], | |||||
# Kmatrix=Kmatrix) | |||||
# #### xp 6: Letter-med, sspkernel. | |||||
# # load dataset. | |||||
# print('getting dataset and computing kernel distance matrix first...') | |||||
# ds_name = 'Letter-med' | |||||
# gkernel = 'structuralspkernel' | |||||
# Gn, y_all, graph_dir = get_dataset(ds_name) | |||||
## Gn = Gn[0:50] | |||||
## y_all = y_all[0:50] | |||||
# | |||||
# # compute/read Gram matrix and pair distances. | |||||
# Kmatrix = compute_kernel(Gn, gkernel, None, None, True, parallel='imap_unordered') | |||||
# np.savez('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm', | |||||
# Kmatrix=Kmatrix) | |||||
## gmfile = np.load('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm.npz') | |||||
## Kmatrix = gmfile['Kmatrix'] | |||||
## run_time = gmfile['run_time'] | |||||
## Kmatrix = Kmatrix[[0,1,2,3,4],:] | |||||
## Kmatrix = Kmatrix[:,[0,1,2,3,4]] | |||||
## print('\nTime to compute Gram matrix for the whole dataset: ', run_time) | |||||
# dis_mat, dis_max, dis_min, dis_mean = kernel_distance_matrix(Gn, None, None, | |||||
# Kmatrix=Kmatrix, gkernel=gkernel, verbose=True) | |||||
## Kmatrix = np.zeros((len(Gn), len(Gn))) | |||||
## dis_mat, dis_max, dis_min, dis_mean = 0, 0, 0, 0 | |||||
# | |||||
# # fitting and computing. | |||||
# fit_methods = ['k-graphs', 'expert', 'random', 'random', 'random'] | |||||
# for fit_method in fit_methods: | |||||
# print('\n-------------------------------------') | |||||
# print('fit method:', fit_method) | |||||
# parameters = {'ds_name': ds_name, | |||||
# 'gkernel': gkernel, | |||||
# 'edit_cost_name': 'LETTER2', | |||||
# 'ged_method': 'mIPFP', | |||||
# 'attr_distance': 'euclidean', | |||||
# 'fit_method': fit_method, | |||||
# 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475]} | |||||
# print('parameters: ', parameters) | |||||
# xp_fit_method_for_non_symbolic(parameters, save_results=True, | |||||
# initial_solutions=40, | |||||
# Gn_data = [Gn, y_all, graph_dir], | |||||
# k_dis_data = [dis_mat, dis_max, dis_min, dis_mean], | |||||
# Kmatrix=Kmatrix) | |||||
# #### xp 7: Letter-low, sspkernel. | |||||
# # load dataset. | |||||
# print('getting dataset and computing kernel distance matrix first...') | |||||
# ds_name = 'Letter-low' | |||||
# gkernel = 'structuralspkernel' | |||||
# Gn, y_all, graph_dir = get_dataset(ds_name) | |||||
## Gn = Gn[0:50] | |||||
## y_all = y_all[0:50] | |||||
# | |||||
# # compute/read Gram matrix and pair distances. | |||||
# Kmatrix = compute_kernel(Gn, gkernel, None, None, True, parallel='imap_unordered') | |||||
# np.savez('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm', | |||||
# Kmatrix=Kmatrix) | |||||
## gmfile = np.load('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm.npz') | |||||
## Kmatrix = gmfile['Kmatrix'] | |||||
## run_time = gmfile['run_time'] | |||||
## Kmatrix = Kmatrix[[0,1,2,3,4],:] | |||||
## Kmatrix = Kmatrix[:,[0,1,2,3,4]] | |||||
## print('\nTime to compute Gram matrix for the whole dataset: ', run_time) | |||||
# dis_mat, dis_max, dis_min, dis_mean = kernel_distance_matrix(Gn, None, None, | |||||
# Kmatrix=Kmatrix, gkernel=gkernel, verbose=True) | |||||
## Kmatrix = np.zeros((len(Gn), len(Gn))) | |||||
## dis_mat, dis_max, dis_min, dis_mean = 0, 0, 0, 0 | |||||
# | |||||
# # fitting and computing. | |||||
# fit_methods = ['k-graphs', 'expert', 'random', 'random', 'random'] | |||||
# for fit_method in fit_methods: | |||||
# print('\n-------------------------------------') | |||||
# print('fit method:', fit_method) | |||||
# parameters = {'ds_name': ds_name, | |||||
# 'gkernel': gkernel, | |||||
# 'edit_cost_name': 'LETTER2', | |||||
# 'ged_method': 'mIPFP', | |||||
# 'attr_distance': 'euclidean', | |||||
# 'fit_method': fit_method, | |||||
# 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075]} | |||||
# print('parameters: ', parameters) | |||||
# xp_fit_method_for_non_symbolic(parameters, save_results=True, | |||||
# initial_solutions=40, | |||||
# Gn_data = [Gn, y_all, graph_dir], | |||||
# k_dis_data = [dis_mat, dis_max, dis_min, dis_mean], | |||||
# Kmatrix=Kmatrix) | |||||
# #### xp 8: Letter-med, spkernel. | |||||
# # load dataset. | |||||
# print('getting dataset and computing kernel distance matrix first...') | |||||
# ds_name = 'Letter-med' | |||||
# gkernel = 'spkernel' | |||||
# Gn, y_all, graph_dir = get_dataset(ds_name) | |||||
# # remove graphs without nodes and edges. | |||||
# Gn = [(idx, G) for idx, G in enumerate(Gn) if (nx.number_of_nodes(G) != 0 | |||||
# and nx.number_of_edges(G) != 0)] | |||||
# idx = [G[0] for G in Gn] | |||||
# Gn = [G[1] for G in Gn] | |||||
# y_all = [y_all[i] for i in idx] | |||||
## Gn = Gn[0:50] | |||||
## y_all = y_all[0:50] | |||||
# | |||||
# # compute/read Gram matrix and pair distances. | |||||
# Kmatrix = compute_kernel(Gn, gkernel, None, None, True, parallel='imap_unordered') | |||||
# np.savez('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm', | |||||
# Kmatrix=Kmatrix) | |||||
## gmfile = np.load('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm.npz') | |||||
## Kmatrix = gmfile['Kmatrix'] | |||||
## run_time = gmfile['run_time'] | |||||
## Kmatrix = Kmatrix[[0,1,2,3,4],:] | |||||
## Kmatrix = Kmatrix[:,[0,1,2,3,4]] | |||||
## print('\nTime to compute Gram matrix for the whole dataset: ', run_time) | |||||
# dis_mat, dis_max, dis_min, dis_mean = kernel_distance_matrix(Gn, None, None, | |||||
# Kmatrix=Kmatrix, gkernel=gkernel, verbose=True) | |||||
## Kmatrix = np.zeros((len(Gn), len(Gn))) | |||||
## dis_mat, dis_max, dis_min, dis_mean = 0, 0, 0, 0 | |||||
# | |||||
# # fitting and computing. | |||||
# fit_methods = ['k-graphs', 'expert', 'random', 'random', 'random'] | |||||
# for fit_method in fit_methods: | |||||
# print('\n-------------------------------------') | |||||
# print('fit method:', fit_method) | |||||
# parameters = {'ds_name': ds_name, | |||||
# 'gkernel': gkernel, | |||||
# 'edit_cost_name': 'LETTER2', | |||||
# 'ged_method': 'mIPFP', | |||||
# 'attr_distance': 'euclidean', | |||||
# 'fit_method': fit_method, | |||||
# 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475]} | |||||
# print('parameters: ', parameters) | |||||
# xp_fit_method_for_non_symbolic(parameters, save_results=True, | |||||
# initial_solutions=40, | |||||
# Gn_data = [Gn, y_all, graph_dir], | |||||
# k_dis_data = [dis_mat, dis_max, dis_min, dis_mean], | |||||
# Kmatrix=Kmatrix) | |||||
# #### xp 9: Letter-low, spkernel. | |||||
# # load dataset. | |||||
# print('getting dataset and computing kernel distance matrix first...') | |||||
# ds_name = 'Letter-low' | |||||
# gkernel = 'spkernel' | |||||
# Gn, y_all, graph_dir = get_dataset(ds_name) | |||||
# # remove graphs without nodes and edges. | |||||
# Gn = [(idx, G) for idx, G in enumerate(Gn) if (nx.number_of_nodes(G) != 0 | |||||
# and nx.number_of_edges(G) != 0)] | |||||
# idx = [G[0] for G in Gn] | |||||
# Gn = [G[1] for G in Gn] | |||||
# y_all = [y_all[i] for i in idx] | |||||
## Gn = Gn[0:50] | |||||
## y_all = y_all[0:50] | |||||
# | |||||
# # compute/read Gram matrix and pair distances. | |||||
# Kmatrix = compute_kernel(Gn, gkernel, None, None, True, parallel='imap_unordered') | |||||
# np.savez('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm', | |||||
# Kmatrix=Kmatrix) | |||||
## gmfile = np.load('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm.npz') | |||||
## Kmatrix = gmfile['Kmatrix'] | |||||
## run_time = gmfile['run_time'] | |||||
## Kmatrix = Kmatrix[[0,1,2,3,4],:] | |||||
## Kmatrix = Kmatrix[:,[0,1,2,3,4]] | |||||
## print('\nTime to compute Gram matrix for the whole dataset: ', run_time) | |||||
# dis_mat, dis_max, dis_min, dis_mean = kernel_distance_matrix(Gn, None, None, | |||||
# Kmatrix=Kmatrix, gkernel=gkernel, verbose=True) | |||||
## Kmatrix = np.zeros((len(Gn), len(Gn))) | |||||
## dis_mat, dis_max, dis_min, dis_mean = 0, 0, 0, 0 | |||||
# | |||||
# # fitting and computing. | |||||
# fit_methods = ['k-graphs', 'expert', 'random', 'random', 'random'] | |||||
# for fit_method in fit_methods: | |||||
# print('\n-------------------------------------') | |||||
# print('fit method:', fit_method) | |||||
# parameters = {'ds_name': ds_name, | |||||
# 'gkernel': gkernel, | |||||
# 'edit_cost_name': 'LETTER2', | |||||
# 'ged_method': 'mIPFP', | |||||
# 'attr_distance': 'euclidean', | |||||
# 'fit_method': fit_method, | |||||
# 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075]} | |||||
# print('parameters: ', parameters) | |||||
# xp_fit_method_for_non_symbolic(parameters, save_results=True, | |||||
# initial_solutions=40, | |||||
# Gn_data = [Gn, y_all, graph_dir], | |||||
# k_dis_data = [dis_mat, dis_max, dis_min, dis_mean], | |||||
# Kmatrix=Kmatrix) | |||||
#### xp 5: COIL-DEL, sspkernel, using LETTER2, only node attrs. | |||||
# load dataset. | |||||
print('getting dataset and computing kernel distance matrix first...') | |||||
ds_name = 'COIL-DEL' | |||||
gkernel = 'structuralspkernel' | |||||
Gn, y_all, graph_dir = get_dataset(ds_name) | |||||
# remove graphs without nodes and edges. | |||||
Gn = [(idx, G) for idx, G in enumerate(Gn) if nx.number_of_nodes(G) != 0] | |||||
# and nx.number_of_edges(G) != 0)] | |||||
idx = [G[0] for G in Gn] | |||||
Gn = [G[1] for G in Gn] | |||||
y_all = [y_all[i] for i in idx] | |||||
# remove unused labels. | |||||
for G in Gn: | |||||
G.graph['edge_labels'] = [] | |||||
for edge in G.edges: | |||||
del G.edges[edge]['bond_type'] | |||||
del G.edges[edge]['valence'] | |||||
# Gn = Gn[805:815] | |||||
# y_all = y_all[805:815] | |||||
for G in Gn: | |||||
G.graph['filename'] = 'graph' + str(G.graph['name']) + '.gxl' | |||||
# compute/read Gram matrix and pair distances. | |||||
is_separate = True | |||||
Kmatrix, run_time, k_dis_data = compute_gm_for_each_class(Gn, | |||||
y_all, | |||||
gkernel, | |||||
parallel='imap_unordered', | |||||
is_separate=is_separate) | |||||
# Kmatrix = compute_kernel(Gn, gkernel, None, None, True, parallel='imap_unordered') | |||||
# np.savez('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm', | |||||
# Kmatrix=Kmatrix) | |||||
# gmfile = np.load('results/xp_fit_method/Kmatrix.' + ds_name + '.' + gkernel + '.gm.npz') | |||||
# Kmatrix = gmfile['Kmatrix'] | |||||
# run_time = gmfile['run_time'] | |||||
# Kmatrix = Kmatrix[[0,1,2,3,4],:] | |||||
# Kmatrix = Kmatrix[:,[0,1,2,3,4]] | |||||
# print('\nTime to compute Gram matrix for the whole dataset: ', run_time) | |||||
# dis_mat, dis_max, dis_min, dis_mean = kernel_distance_matrix(Gn, None, None, | |||||
# Kmatrix=Kmatrix, gkernel=gkernel, verbose=True) | |||||
# Kmatrix = np.zeros((len(Gn), len(Gn))) | |||||
# dis_mat, dis_max, dis_min, dis_mean = 0, 0, 0, 0 | |||||
# fitting and computing. | |||||
fit_methods = ['k-graphs', 'random', 'random', 'random'] | |||||
for fit_method in fit_methods: | |||||
print('\n-------------------------------------') | |||||
print('fit method:', fit_method) | |||||
parameters = {'ds_name': ds_name, | |||||
'gkernel': gkernel, | |||||
'edit_cost_name': 'LETTER2', | |||||
'ged_method': 'mIPFP', | |||||
'attr_distance': 'euclidean', | |||||
'fit_method': fit_method, | |||||
'init_ecc': [3,3,1,3,3]} # [0.525, 0.525, 0.001, 0.125, 0.125]} | |||||
xp_fit_method_for_non_symbolic(parameters, save_results=True, | |||||
initial_solutions=40, | |||||
Gn_data=[Gn, y_all, graph_dir], | |||||
k_dis_data=k_dis_data, | |||||
Kmatrix=Kmatrix, | |||||
is_separate=is_separate) |
@@ -1,476 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Tue Jan 14 15:39:29 2020 | |||||
@author: ljia | |||||
""" | |||||
import numpy as np | |||||
import random | |||||
import csv | |||||
from shutil import copyfile | |||||
import networkx as nx | |||||
import matplotlib.pyplot as plt | |||||
from gklearn.utils.graphfiles import loadDataset, loadGXL, saveGXL | |||||
from gklearn.preimage.test_k_closest_graphs import median_on_k_closest_graphs, reform_attributes | |||||
from gklearn.preimage.utils import get_same_item_indices, kernel_distance_matrix | |||||
from gklearn.preimage.find_best_k import getRelations | |||||
def xp_letter_h_LETTER2_cost(): | |||||
ds = {'dataset': 'cpp_ext/data/collections/Letter.xml', | |||||
'graph_dir': os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/data/datasets/Letter/HIGH/'} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['graph_dir']) | |||||
dis_mat, dis_max, dis_min, dis_mean = kernel_distance_matrix(Gn, None, None, Kmatrix=None, gkernel='structuralspkernel') | |||||
for G in Gn: | |||||
reform_attributes(G) | |||||
# ds = {'name': 'Letter-high', | |||||
# 'dataset': '../datasets/Letter-high/Letter-high_A.txt'} # node/edge symb | |||||
# Gn, y_all = loadDataset(ds['dataset']) | |||||
# Gn = Gn[0:50] | |||||
gkernel = 'structuralspkernel' | |||||
node_label = None | |||||
edge_label = None | |||||
ds_name = 'letter-h' | |||||
dir_output = 'results/xp_letter_h/' | |||||
save_results = True | |||||
cost = 'LETTER2' | |||||
repeats = 1 | |||||
# k_list = range(2, 11) | |||||
k_list = [150] | |||||
fit_method = 'k-graphs' | |||||
# get indices by classes. | |||||
y_idx = get_same_item_indices(y_all) | |||||
if save_results: | |||||
# create result files. | |||||
fn_output_detail = 'results_detail.' + ds_name + '.' + gkernel + '.' + fit_method + '.csv' | |||||
f_detail = open(dir_output + fn_output_detail, 'a') | |||||
csv.writer(f_detail).writerow(['dataset', 'graph kernel', 'fit method', 'k', | |||||
'target', 'repeat', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', | |||||
'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', | |||||
'dis_k gi -> GM', 'median set']) | |||||
f_detail.close() | |||||
fn_output_summary = 'results_summary.' + ds_name + '.' + gkernel + '.' + fit_method + '.csv' | |||||
f_summary = open(dir_output + fn_output_summary, 'a') | |||||
csv.writer(f_summary).writerow(['dataset', 'graph kernel', 'fit method', 'k', | |||||
'target', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', | |||||
'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', | |||||
'dis_k gi -> GM', '# SOD SM -> GM', '# dis_k SM -> GM', | |||||
'# dis_k gi -> SM', '# dis_k gi -> GM', 'repeats better SOD SM -> GM', | |||||
'repeats better dis_k SM -> GM', 'repeats better dis_k gi -> SM', | |||||
'repeats better dis_k gi -> GM']) | |||||
f_summary.close() | |||||
random.seed(1) | |||||
rdn_seed_list = random.sample(range(0, repeats * 100), repeats) | |||||
for k in k_list: | |||||
print('\n--------- k =', k, '----------') | |||||
sod_sm_mean_list = [] | |||||
sod_gm_mean_list = [] | |||||
dis_k_sm_mean_list = [] | |||||
dis_k_gm_mean_list = [] | |||||
dis_k_gi_min_mean_list = [] | |||||
# nb_sod_sm2gm = [0, 0, 0] | |||||
# nb_dis_k_sm2gm = [0, 0, 0] | |||||
# nb_dis_k_gi2sm = [0, 0, 0] | |||||
# nb_dis_k_gi2gm = [0, 0, 0] | |||||
# repeats_better_sod_sm2gm = [] | |||||
# repeats_better_dis_k_sm2gm = [] | |||||
# repeats_better_dis_k_gi2sm = [] | |||||
# repeats_better_dis_k_gi2gm = [] | |||||
for i, (y, values) in enumerate(y_idx.items()): | |||||
print('\ny =', y) | |||||
# y = 'F' | |||||
# values = y_idx[y] | |||||
# values = values[0:10] | |||||
k = len(values) | |||||
sod_sm_list = [] | |||||
sod_gm_list = [] | |||||
dis_k_sm_list = [] | |||||
dis_k_gm_list = [] | |||||
dis_k_gi_min_list = [] | |||||
nb_sod_sm2gm = [0, 0, 0] | |||||
nb_dis_k_sm2gm = [0, 0, 0] | |||||
nb_dis_k_gi2sm = [0, 0, 0] | |||||
nb_dis_k_gi2gm = [0, 0, 0] | |||||
repeats_better_sod_sm2gm = [] | |||||
repeats_better_dis_k_sm2gm = [] | |||||
repeats_better_dis_k_gi2sm = [] | |||||
repeats_better_dis_k_gi2gm = [] | |||||
for repeat in range(repeats): | |||||
print('\nrepeat =', repeat) | |||||
random.seed(rdn_seed_list[repeat]) | |||||
median_set_idx_idx = random.sample(range(0, len(values)), k) | |||||
median_set_idx = [values[idx] for idx in median_set_idx_idx] | |||||
print('median set: ', median_set_idx) | |||||
Gn_median = [Gn[g] for g in values] | |||||
sod_sm, sod_gm, dis_k_sm, dis_k_gm, dis_k_gi, dis_k_gi_min, idx_dis_k_gi_min \ | |||||
= median_on_k_closest_graphs(Gn_median, node_label, edge_label, | |||||
gkernel, k, fit_method=fit_method, graph_dir=ds['graph_dir'], | |||||
edit_costs=None, group_min=median_set_idx_idx, | |||||
dataset='Letter', cost=cost, parallel=False) | |||||
# write result detail. | |||||
sod_sm2gm = getRelations(np.sign(sod_gm - sod_sm)) | |||||
dis_k_sm2gm = getRelations(np.sign(dis_k_gm - dis_k_sm)) | |||||
dis_k_gi2sm = getRelations(np.sign(dis_k_sm - dis_k_gi_min)) | |||||
dis_k_gi2gm = getRelations(np.sign(dis_k_gm - dis_k_gi_min)) | |||||
if save_results: | |||||
f_detail = open(dir_output + fn_output_detail, 'a') | |||||
csv.writer(f_detail).writerow([ds_name, gkernel, fit_method, k, | |||||
y, repeat, | |||||
sod_sm, sod_gm, dis_k_sm, dis_k_gm, | |||||
dis_k_gi_min, sod_sm2gm, dis_k_sm2gm, dis_k_gi2sm, | |||||
dis_k_gi2gm, median_set_idx]) | |||||
f_detail.close() | |||||
# compute result summary. | |||||
sod_sm_list.append(sod_sm) | |||||
sod_gm_list.append(sod_gm) | |||||
dis_k_sm_list.append(dis_k_sm) | |||||
dis_k_gm_list.append(dis_k_gm) | |||||
dis_k_gi_min_list.append(dis_k_gi_min) | |||||
# # SOD SM -> GM | |||||
if sod_sm > sod_gm: | |||||
nb_sod_sm2gm[0] += 1 | |||||
repeats_better_sod_sm2gm.append(repeat) | |||||
elif sod_sm == sod_gm: | |||||
nb_sod_sm2gm[1] += 1 | |||||
elif sod_sm < sod_gm: | |||||
nb_sod_sm2gm[2] += 1 | |||||
# # dis_k SM -> GM | |||||
if dis_k_sm > dis_k_gm: | |||||
nb_dis_k_sm2gm[0] += 1 | |||||
repeats_better_dis_k_sm2gm.append(repeat) | |||||
elif dis_k_sm == dis_k_gm: | |||||
nb_dis_k_sm2gm[1] += 1 | |||||
elif dis_k_sm < dis_k_gm: | |||||
nb_dis_k_sm2gm[2] += 1 | |||||
# # dis_k gi -> SM | |||||
if dis_k_gi_min > dis_k_sm: | |||||
nb_dis_k_gi2sm[0] += 1 | |||||
repeats_better_dis_k_gi2sm.append(repeat) | |||||
elif dis_k_gi_min == dis_k_sm: | |||||
nb_dis_k_gi2sm[1] += 1 | |||||
elif dis_k_gi_min < dis_k_sm: | |||||
nb_dis_k_gi2sm[2] += 1 | |||||
# # dis_k gi -> GM | |||||
if dis_k_gi_min > dis_k_gm: | |||||
nb_dis_k_gi2gm[0] += 1 | |||||
repeats_better_dis_k_gi2gm.append(repeat) | |||||
elif dis_k_gi_min == dis_k_gm: | |||||
nb_dis_k_gi2gm[1] += 1 | |||||
elif dis_k_gi_min < dis_k_gm: | |||||
nb_dis_k_gi2gm[2] += 1 | |||||
# save median graphs. | |||||
fname_sm = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/set_median.gxl' | |||||
fn_pre_sm_new = dir_output + 'medians/set_median.' + fit_method \ | |||||
+ '.k' + str(int(k)) + '.y' + y + '.repeat' + str(repeat) | |||||
copyfile(fname_sm, fn_pre_sm_new + '.gxl') | |||||
fname_gm = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/gen_median.gxl' | |||||
fn_pre_gm_new = dir_output + 'medians/gen_median.' + fit_method \ | |||||
+ '.k' + str(int(k)) + '.y' + y + '.repeat' + str(repeat) | |||||
copyfile(fname_gm, fn_pre_gm_new + '.gxl') | |||||
G_best_kernel = Gn_median[idx_dis_k_gi_min].copy() | |||||
reform_attributes(G_best_kernel) | |||||
fn_pre_g_best_kernel = dir_output + 'medians/g_best_kernel.' + fit_method \ | |||||
+ '.k' + str(int(k)) + '.y' + y + '.repeat' + str(repeat) | |||||
saveGXL(G_best_kernel, fn_pre_g_best_kernel + '.gxl', method='gedlib-letter') | |||||
# plot median graphs. | |||||
set_median = loadGXL(fn_pre_sm_new + '.gxl') | |||||
gen_median = loadGXL(fn_pre_gm_new + '.gxl') | |||||
draw_Letter_graph(set_median, fn_pre_sm_new) | |||||
draw_Letter_graph(gen_median, fn_pre_gm_new) | |||||
draw_Letter_graph(G_best_kernel, fn_pre_g_best_kernel) | |||||
# write result summary for each letter. | |||||
sod_sm_mean_list.append(np.mean(sod_sm_list)) | |||||
sod_gm_mean_list.append(np.mean(sod_gm_list)) | |||||
dis_k_sm_mean_list.append(np.mean(dis_k_sm_list)) | |||||
dis_k_gm_mean_list.append(np.mean(dis_k_gm_list)) | |||||
dis_k_gi_min_mean_list.append(np.mean(dis_k_gi_min_list)) | |||||
sod_sm2gm_mean = getRelations(np.sign(sod_gm_mean_list[-1] - sod_sm_mean_list[-1])) | |||||
dis_k_sm2gm_mean = getRelations(np.sign(dis_k_gm_mean_list[-1] - dis_k_sm_mean_list[-1])) | |||||
dis_k_gi2sm_mean = getRelations(np.sign(dis_k_sm_mean_list[-1] - dis_k_gi_min_mean_list[-1])) | |||||
dis_k_gi2gm_mean = getRelations(np.sign(dis_k_gm_mean_list[-1] - dis_k_gi_min_mean_list[-1])) | |||||
if save_results: | |||||
f_summary = open(dir_output + fn_output_summary, 'a') | |||||
csv.writer(f_summary).writerow([ds_name, gkernel, fit_method, k, y, | |||||
sod_sm_mean_list[-1], sod_gm_mean_list[-1], | |||||
dis_k_sm_mean_list[-1], dis_k_gm_mean_list[-1], | |||||
dis_k_gi_min_mean_list[-1], sod_sm2gm_mean, dis_k_sm2gm_mean, | |||||
dis_k_gi2sm_mean, dis_k_gi2gm_mean, nb_sod_sm2gm, | |||||
nb_dis_k_sm2gm, nb_dis_k_gi2sm, nb_dis_k_gi2gm, | |||||
repeats_better_sod_sm2gm, repeats_better_dis_k_sm2gm, | |||||
repeats_better_dis_k_gi2sm, repeats_better_dis_k_gi2gm]) | |||||
f_summary.close() | |||||
# write result summary for each letter. | |||||
sod_sm_mean = np.mean(sod_sm_mean_list) | |||||
sod_gm_mean = np.mean(sod_gm_mean_list) | |||||
dis_k_sm_mean = np.mean(dis_k_sm_mean_list) | |||||
dis_k_gm_mean = np.mean(dis_k_gm_mean_list) | |||||
dis_k_gi_min_mean = np.mean(dis_k_gi_min_list) | |||||
sod_sm2gm_mean = getRelations(np.sign(sod_gm_mean - sod_sm_mean)) | |||||
dis_k_sm2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_sm_mean)) | |||||
dis_k_gi2sm_mean = getRelations(np.sign(dis_k_sm_mean - dis_k_gi_min_mean)) | |||||
dis_k_gi2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_gi_min_mean)) | |||||
if save_results: | |||||
f_summary = open(dir_output + fn_output_summary, 'a') | |||||
csv.writer(f_summary).writerow([ds_name, gkernel, fit_method, k, 'all', | |||||
sod_sm_mean, sod_gm_mean, dis_k_sm_mean, dis_k_gm_mean, | |||||
dis_k_gi_min_mean, sod_sm2gm_mean, dis_k_sm2gm_mean, | |||||
dis_k_gi2sm_mean, dis_k_gi2gm_mean]) | |||||
f_summary.close() | |||||
print('\ncomplete.') | |||||
def xp_letter_h(): | |||||
ds = {'dataset': 'cpp_ext/data/collections/Letter.xml', | |||||
'graph_dir': os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/data/datasets/Letter/HIGH/'} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['graph_dir']) | |||||
for G in Gn: | |||||
reform_attributes(G) | |||||
# ds = {'name': 'Letter-high', | |||||
# 'dataset': '../datasets/Letter-high/Letter-high_A.txt'} # node/edge symb | |||||
# Gn, y_all = loadDataset(ds['dataset']) | |||||
# Gn = Gn[0:50] | |||||
gkernel = 'structuralspkernel' | |||||
node_label = None | |||||
edge_label = None | |||||
ds_name = 'letter-h' | |||||
dir_output = 'results/xp_letter_h/' | |||||
save_results = False | |||||
repeats = 1 | |||||
# k_list = range(2, 11) | |||||
k_list = [150] | |||||
fit_method = 'k-graphs' | |||||
# get indices by classes. | |||||
y_idx = get_same_item_indices(y_all) | |||||
if save_results: | |||||
# create result files. | |||||
fn_output_detail = 'results_detail.' + ds_name + '.' + gkernel + '.' + fit_method + '.csv' | |||||
f_detail = open(dir_output + fn_output_detail, 'a') | |||||
csv.writer(f_detail).writerow(['dataset', 'graph kernel', 'fit method', 'k', | |||||
'target', 'repeat', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', | |||||
'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', | |||||
'dis_k gi -> GM', 'median set']) | |||||
f_detail.close() | |||||
fn_output_summary = 'results_summary.' + ds_name + '.' + gkernel + '.' + fit_method + '.csv' | |||||
f_summary = open(dir_output + fn_output_summary, 'a') | |||||
csv.writer(f_summary).writerow(['dataset', 'graph kernel', 'fit method', 'k', | |||||
'target', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', | |||||
'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', | |||||
'dis_k gi -> GM', '# SOD SM -> GM', '# dis_k SM -> GM', | |||||
'# dis_k gi -> SM', '# dis_k gi -> GM', 'repeats better SOD SM -> GM', | |||||
'repeats better dis_k SM -> GM', 'repeats better dis_k gi -> SM', | |||||
'repeats better dis_k gi -> GM']) | |||||
f_summary.close() | |||||
random.seed(1) | |||||
rdn_seed_list = random.sample(range(0, repeats * 100), repeats) | |||||
for k in k_list: | |||||
print('\n--------- k =', k, '----------') | |||||
sod_sm_mean_list = [] | |||||
sod_gm_mean_list = [] | |||||
dis_k_sm_mean_list = [] | |||||
dis_k_gm_mean_list = [] | |||||
dis_k_gi_min_mean_list = [] | |||||
# nb_sod_sm2gm = [0, 0, 0] | |||||
# nb_dis_k_sm2gm = [0, 0, 0] | |||||
# nb_dis_k_gi2sm = [0, 0, 0] | |||||
# nb_dis_k_gi2gm = [0, 0, 0] | |||||
# repeats_better_sod_sm2gm = [] | |||||
# repeats_better_dis_k_sm2gm = [] | |||||
# repeats_better_dis_k_gi2sm = [] | |||||
# repeats_better_dis_k_gi2gm = [] | |||||
for i, (y, values) in enumerate(y_idx.items()): | |||||
print('\ny =', y) | |||||
# y = 'N' | |||||
# values = y_idx[y] | |||||
# values = values[0:10] | |||||
k = len(values) | |||||
sod_sm_list = [] | |||||
sod_gm_list = [] | |||||
dis_k_sm_list = [] | |||||
dis_k_gm_list = [] | |||||
dis_k_gi_min_list = [] | |||||
nb_sod_sm2gm = [0, 0, 0] | |||||
nb_dis_k_sm2gm = [0, 0, 0] | |||||
nb_dis_k_gi2sm = [0, 0, 0] | |||||
nb_dis_k_gi2gm = [0, 0, 0] | |||||
repeats_better_sod_sm2gm = [] | |||||
repeats_better_dis_k_sm2gm = [] | |||||
repeats_better_dis_k_gi2sm = [] | |||||
repeats_better_dis_k_gi2gm = [] | |||||
for repeat in range(repeats): | |||||
print('\nrepeat =', repeat) | |||||
random.seed(rdn_seed_list[repeat]) | |||||
median_set_idx_idx = random.sample(range(0, len(values)), k) | |||||
median_set_idx = [values[idx] for idx in median_set_idx_idx] | |||||
print('median set: ', median_set_idx) | |||||
Gn_median = [Gn[g] for g in values] | |||||
sod_sm, sod_gm, dis_k_sm, dis_k_gm, dis_k_gi, dis_k_gi_min, idx_dis_k_gi_min \ | |||||
= median_on_k_closest_graphs(Gn_median, node_label, edge_label, | |||||
gkernel, k, fit_method=fit_method, graph_dir=ds['graph_dir'], | |||||
edit_costs=None, group_min=median_set_idx_idx, | |||||
dataset='Letter', parallel=False) | |||||
# write result detail. | |||||
sod_sm2gm = getRelations(np.sign(sod_gm - sod_sm)) | |||||
dis_k_sm2gm = getRelations(np.sign(dis_k_gm - dis_k_sm)) | |||||
dis_k_gi2sm = getRelations(np.sign(dis_k_sm - dis_k_gi_min)) | |||||
dis_k_gi2gm = getRelations(np.sign(dis_k_gm - dis_k_gi_min)) | |||||
if save_results: | |||||
f_detail = open(dir_output + fn_output_detail, 'a') | |||||
csv.writer(f_detail).writerow([ds_name, gkernel, fit_method, k, | |||||
y, repeat, | |||||
sod_sm, sod_gm, dis_k_sm, dis_k_gm, | |||||
dis_k_gi_min, sod_sm2gm, dis_k_sm2gm, dis_k_gi2sm, | |||||
dis_k_gi2gm, median_set_idx]) | |||||
f_detail.close() | |||||
# compute result summary. | |||||
sod_sm_list.append(sod_sm) | |||||
sod_gm_list.append(sod_gm) | |||||
dis_k_sm_list.append(dis_k_sm) | |||||
dis_k_gm_list.append(dis_k_gm) | |||||
dis_k_gi_min_list.append(dis_k_gi_min) | |||||
# # SOD SM -> GM | |||||
if sod_sm > sod_gm: | |||||
nb_sod_sm2gm[0] += 1 | |||||
repeats_better_sod_sm2gm.append(repeat) | |||||
elif sod_sm == sod_gm: | |||||
nb_sod_sm2gm[1] += 1 | |||||
elif sod_sm < sod_gm: | |||||
nb_sod_sm2gm[2] += 1 | |||||
# # dis_k SM -> GM | |||||
if dis_k_sm > dis_k_gm: | |||||
nb_dis_k_sm2gm[0] += 1 | |||||
repeats_better_dis_k_sm2gm.append(repeat) | |||||
elif dis_k_sm == dis_k_gm: | |||||
nb_dis_k_sm2gm[1] += 1 | |||||
elif dis_k_sm < dis_k_gm: | |||||
nb_dis_k_sm2gm[2] += 1 | |||||
# # dis_k gi -> SM | |||||
if dis_k_gi_min > dis_k_sm: | |||||
nb_dis_k_gi2sm[0] += 1 | |||||
repeats_better_dis_k_gi2sm.append(repeat) | |||||
elif dis_k_gi_min == dis_k_sm: | |||||
nb_dis_k_gi2sm[1] += 1 | |||||
elif dis_k_gi_min < dis_k_sm: | |||||
nb_dis_k_gi2sm[2] += 1 | |||||
# # dis_k gi -> GM | |||||
if dis_k_gi_min > dis_k_gm: | |||||
nb_dis_k_gi2gm[0] += 1 | |||||
repeats_better_dis_k_gi2gm.append(repeat) | |||||
elif dis_k_gi_min == dis_k_gm: | |||||
nb_dis_k_gi2gm[1] += 1 | |||||
elif dis_k_gi_min < dis_k_gm: | |||||
nb_dis_k_gi2gm[2] += 1 | |||||
# save median graphs. | |||||
fname_sm = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/set_median.gxl' | |||||
fn_pre_sm_new = dir_output + 'medians/set_median.' + fit_method \ | |||||
+ '.k' + str(int(k)) + '.y' + y + '.repeat' + str(repeat) | |||||
copyfile(fname_sm, fn_pre_sm_new + '.gxl') | |||||
fname_gm = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/gen_median.gxl' | |||||
fn_pre_gm_new = dir_output + 'medians/gen_median.' + fit_method \ | |||||
+ '.k' + str(int(k)) + '.y' + y + '.repeat' + str(repeat) | |||||
copyfile(fname_gm, fn_pre_gm_new + '.gxl') | |||||
G_best_kernel = Gn_median[idx_dis_k_gi_min].copy() | |||||
reform_attributes(G_best_kernel) | |||||
fn_pre_g_best_kernel = dir_output + 'medians/g_best_kernel.' + fit_method \ | |||||
+ '.k' + str(int(k)) + '.y' + y + '.repeat' + str(repeat) | |||||
saveGXL(G_best_kernel, fn_pre_g_best_kernel + '.gxl', method='gedlib-letter') | |||||
# plot median graphs. | |||||
set_median = loadGXL(fn_pre_sm_new + '.gxl') | |||||
gen_median = loadGXL(fn_pre_gm_new + '.gxl') | |||||
draw_Letter_graph(set_median, fn_pre_sm_new) | |||||
draw_Letter_graph(gen_median, fn_pre_gm_new) | |||||
draw_Letter_graph(G_best_kernel, fn_pre_g_best_kernel) | |||||
# write result summary for each letter. | |||||
sod_sm_mean_list.append(np.mean(sod_sm_list)) | |||||
sod_gm_mean_list.append(np.mean(sod_gm_list)) | |||||
dis_k_sm_mean_list.append(np.mean(dis_k_sm_list)) | |||||
dis_k_gm_mean_list.append(np.mean(dis_k_gm_list)) | |||||
dis_k_gi_min_mean_list.append(np.mean(dis_k_gi_min_list)) | |||||
sod_sm2gm_mean = getRelations(np.sign(sod_gm_mean_list[-1] - sod_sm_mean_list[-1])) | |||||
dis_k_sm2gm_mean = getRelations(np.sign(dis_k_gm_mean_list[-1] - dis_k_sm_mean_list[-1])) | |||||
dis_k_gi2sm_mean = getRelations(np.sign(dis_k_sm_mean_list[-1] - dis_k_gi_min_mean_list[-1])) | |||||
dis_k_gi2gm_mean = getRelations(np.sign(dis_k_gm_mean_list[-1] - dis_k_gi_min_mean_list[-1])) | |||||
if save_results: | |||||
f_summary = open(dir_output + fn_output_summary, 'a') | |||||
csv.writer(f_summary).writerow([ds_name, gkernel, fit_method, k, y, | |||||
sod_sm_mean_list[-1], sod_gm_mean_list[-1], | |||||
dis_k_sm_mean_list[-1], dis_k_gm_mean_list[-1], | |||||
dis_k_gi_min_mean_list[-1], sod_sm2gm_mean, dis_k_sm2gm_mean, | |||||
dis_k_gi2sm_mean, dis_k_gi2gm_mean, nb_sod_sm2gm, | |||||
nb_dis_k_sm2gm, nb_dis_k_gi2sm, nb_dis_k_gi2gm, | |||||
repeats_better_sod_sm2gm, repeats_better_dis_k_sm2gm, | |||||
repeats_better_dis_k_gi2sm, repeats_better_dis_k_gi2gm]) | |||||
f_summary.close() | |||||
# write result summary for each letter. | |||||
sod_sm_mean = np.mean(sod_sm_mean_list) | |||||
sod_gm_mean = np.mean(sod_gm_mean_list) | |||||
dis_k_sm_mean = np.mean(dis_k_sm_mean_list) | |||||
dis_k_gm_mean = np.mean(dis_k_gm_mean_list) | |||||
dis_k_gi_min_mean = np.mean(dis_k_gi_min_list) | |||||
sod_sm2gm_mean = getRelations(np.sign(sod_gm_mean - sod_sm_mean)) | |||||
dis_k_sm2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_sm_mean)) | |||||
dis_k_gi2sm_mean = getRelations(np.sign(dis_k_sm_mean - dis_k_gi_min_mean)) | |||||
dis_k_gi2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_gi_min_mean)) | |||||
if save_results: | |||||
f_summary = open(dir_output + fn_output_summary, 'a') | |||||
csv.writer(f_summary).writerow([ds_name, gkernel, fit_method, k, 'all', | |||||
sod_sm_mean, sod_gm_mean, dis_k_sm_mean, dis_k_gm_mean, | |||||
dis_k_gi_min_mean, sod_sm2gm_mean, dis_k_sm2gm_mean, | |||||
dis_k_gi2sm_mean, dis_k_gi2gm_mean]) | |||||
f_summary.close() | |||||
print('\ncomplete.') | |||||
#Dessin median courrant | |||||
def draw_Letter_graph(graph, file_prefix): | |||||
plt.figure() | |||||
pos = {} | |||||
for n in graph.nodes: | |||||
pos[n] = np.array([float(graph.node[n]['x']),float(graph.node[n]['y'])]) | |||||
nx.draw_networkx(graph, pos) | |||||
plt.savefig(file_prefix + '.eps', format='eps', dpi=300) | |||||
# plt.show() | |||||
plt.clf() | |||||
if __name__ == "__main__": | |||||
# xp_letter_h() | |||||
xp_letter_h_LETTER2_cost() |
@@ -1,249 +0,0 @@ | |||||
#!/usr/bin/env python3 | |||||
# -*- coding: utf-8 -*- | |||||
""" | |||||
Created on Thu Jan 16 11:03:11 2020 | |||||
@author: ljia | |||||
""" | |||||
import numpy as np | |||||
import random | |||||
import csv | |||||
from shutil import copyfile | |||||
import networkx as nx | |||||
import matplotlib.pyplot as plt | |||||
from gklearn.utils.graphfiles import loadDataset, loadGXL, saveGXL | |||||
from gklearn.preimage.test_k_closest_graphs import median_on_k_closest_graphs, reform_attributes | |||||
from gklearn.preimage.utils import get_same_item_indices | |||||
from gklearn.preimage.find_best_k import getRelations | |||||
def xp_monoterpenoides(): | |||||
import os | |||||
ds = {'dataset': '../../datasets/monoterpenoides/dataset_10+.ds', | |||||
'graph_dir': os.path.dirname(os.path.realpath(__file__)) + '../../datasets/monoterpenoides/'} # node/edge symb | |||||
Gn, y_all = loadDataset(ds['dataset']) | |||||
# ds = {'name': 'Letter-high', | |||||
# 'dataset': '../datasets/Letter-high/Letter-high_A.txt'} # node/edge symb | |||||
# Gn, y_all = loadDataset(ds['dataset']) | |||||
# Gn = Gn[0:50] | |||||
gkernel = 'treeletkernel' | |||||
node_label = 'atom' | |||||
edge_label = 'bond_type' | |||||
ds_name = 'monoterpenoides' | |||||
dir_output = 'results/xp_monoterpenoides/' | |||||
repeats = 1 | |||||
# k_list = range(2, 11) | |||||
k_list = [0] | |||||
fit_method = 'k-graphs' | |||||
# get indices by classes. | |||||
y_idx = get_same_item_indices(y_all) | |||||
# create result files. | |||||
fn_output_detail = 'results_detail.' + ds_name + '.' + gkernel + '.' + fit_method + '.csv' | |||||
f_detail = open(dir_output + fn_output_detail, 'a') | |||||
csv.writer(f_detail).writerow(['dataset', 'graph kernel', 'fit method', 'k', | |||||
'target', 'repeat', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', | |||||
'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', | |||||
'dis_k gi -> GM', 'median set']) | |||||
f_detail.close() | |||||
fn_output_summary = 'results_summary.' + ds_name + '.' + gkernel + '.' + fit_method + '.csv' | |||||
f_summary = open(dir_output + fn_output_summary, 'a') | |||||
csv.writer(f_summary).writerow(['dataset', 'graph kernel', 'fit method', 'k', | |||||
'target', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM', | |||||
'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM', | |||||
'dis_k gi -> GM', '# SOD SM -> GM', '# dis_k SM -> GM', | |||||
'# dis_k gi -> SM', '# dis_k gi -> GM', 'repeats better SOD SM -> GM', | |||||
'repeats better dis_k SM -> GM', 'repeats better dis_k gi -> SM', | |||||
'repeats better dis_k gi -> GM']) | |||||
f_summary.close() | |||||
random.seed(1) | |||||
rdn_seed_list = random.sample(range(0, repeats * 100), repeats) | |||||
for k in k_list: | |||||
print('\n--------- k =', k, '----------') | |||||
sod_sm_mean_list = [] | |||||
sod_gm_mean_list = [] | |||||
dis_k_sm_mean_list = [] | |||||
dis_k_gm_mean_list = [] | |||||
dis_k_gi_min_mean_list = [] | |||||
# nb_sod_sm2gm = [0, 0, 0] | |||||
# nb_dis_k_sm2gm = [0, 0, 0] | |||||
# nb_dis_k_gi2sm = [0, 0, 0] | |||||
# nb_dis_k_gi2gm = [0, 0, 0] | |||||
# repeats_better_sod_sm2gm = [] | |||||
# repeats_better_dis_k_sm2gm = [] | |||||
# repeats_better_dis_k_gi2sm = [] | |||||
# repeats_better_dis_k_gi2gm = [] | |||||
for i, (y, values) in enumerate(y_idx.items()): | |||||
print('\ny =', y) | |||||
# y = 'I' | |||||
# values = y_idx[y] | |||||
k = len(values) | |||||
# k = kkk | |||||
sod_sm_list = [] | |||||
sod_gm_list = [] | |||||
dis_k_sm_list = [] | |||||
dis_k_gm_list = [] | |||||
dis_k_gi_min_list = [] | |||||
nb_sod_sm2gm = [0, 0, 0] | |||||
nb_dis_k_sm2gm = [0, 0, 0] | |||||
nb_dis_k_gi2sm = [0, 0, 0] | |||||
nb_dis_k_gi2gm = [0, 0, 0] | |||||
repeats_better_sod_sm2gm = [] | |||||
repeats_better_dis_k_sm2gm = [] | |||||
repeats_better_dis_k_gi2sm = [] | |||||
repeats_better_dis_k_gi2gm = [] | |||||
for repeat in range(repeats): | |||||
print('\nrepeat =', repeat) | |||||
random.seed(rdn_seed_list[repeat]) | |||||
median_set_idx_idx = random.sample(range(0, len(values)), k) | |||||
median_set_idx = [values[idx] for idx in median_set_idx_idx] | |||||
print('median set: ', median_set_idx) | |||||
Gn_median = [Gn[g] for g in values] | |||||
sod_sm, sod_gm, dis_k_sm, dis_k_gm, dis_k_gi, dis_k_gi_min, idx_dis_k_gi_min \ | |||||
= median_on_k_closest_graphs(Gn_median, node_label, edge_label, | |||||
gkernel, k, fit_method=fit_method, graph_dir=ds['graph_dir'], | |||||
edit_costs=None, group_min=median_set_idx_idx, | |||||
dataset=ds_name, parallel=False) | |||||
# write result detail. | |||||
sod_sm2gm = getRelations(np.sign(sod_gm - sod_sm)) | |||||
dis_k_sm2gm = getRelations(np.sign(dis_k_gm - dis_k_sm)) | |||||
dis_k_gi2sm = getRelations(np.sign(dis_k_sm - dis_k_gi_min)) | |||||
dis_k_gi2gm = getRelations(np.sign(dis_k_gm - dis_k_gi_min)) | |||||
f_detail = open(dir_output + fn_output_detail, 'a') | |||||
csv.writer(f_detail).writerow([ds_name, gkernel, fit_method, k, | |||||
y, repeat, | |||||
sod_sm, sod_gm, dis_k_sm, dis_k_gm, | |||||
dis_k_gi_min, sod_sm2gm, dis_k_sm2gm, dis_k_gi2sm, | |||||
dis_k_gi2gm, median_set_idx]) | |||||
f_detail.close() | |||||
# compute result summary. | |||||
sod_sm_list.append(sod_sm) | |||||
sod_gm_list.append(sod_gm) | |||||
dis_k_sm_list.append(dis_k_sm) | |||||
dis_k_gm_list.append(dis_k_gm) | |||||
dis_k_gi_min_list.append(dis_k_gi_min) | |||||
# # SOD SM -> GM | |||||
if sod_sm > sod_gm: | |||||
nb_sod_sm2gm[0] += 1 | |||||
repeats_better_sod_sm2gm.append(repeat) | |||||
elif sod_sm == sod_gm: | |||||
nb_sod_sm2gm[1] += 1 | |||||
elif sod_sm < sod_gm: | |||||
nb_sod_sm2gm[2] += 1 | |||||
# # dis_k SM -> GM | |||||
if dis_k_sm > dis_k_gm: | |||||
nb_dis_k_sm2gm[0] += 1 | |||||
repeats_better_dis_k_sm2gm.append(repeat) | |||||
elif dis_k_sm == dis_k_gm: | |||||
nb_dis_k_sm2gm[1] += 1 | |||||
elif dis_k_sm < dis_k_gm: | |||||
nb_dis_k_sm2gm[2] += 1 | |||||
# # dis_k gi -> SM | |||||
if dis_k_gi_min > dis_k_sm: | |||||
nb_dis_k_gi2sm[0] += 1 | |||||
repeats_better_dis_k_gi2sm.append(repeat) | |||||
elif dis_k_gi_min == dis_k_sm: | |||||
nb_dis_k_gi2sm[1] += 1 | |||||
elif dis_k_gi_min < dis_k_sm: | |||||
nb_dis_k_gi2sm[2] += 1 | |||||
# # dis_k gi -> GM | |||||
if dis_k_gi_min > dis_k_gm: | |||||
nb_dis_k_gi2gm[0] += 1 | |||||
repeats_better_dis_k_gi2gm.append(repeat) | |||||
elif dis_k_gi_min == dis_k_gm: | |||||
nb_dis_k_gi2gm[1] += 1 | |||||
elif dis_k_gi_min < dis_k_gm: | |||||
nb_dis_k_gi2gm[2] += 1 | |||||
# save median graphs. | |||||
fname_sm = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/set_median.gxl' | |||||
fn_pre_sm_new = dir_output + 'medians/set_median.' + fit_method \ | |||||
+ '.k' + str(int(k)) + '.y' + str(int(y)) + '.repeat' + str(repeat) | |||||
copyfile(fname_sm, fn_pre_sm_new + '.gxl') | |||||
fname_gm = os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/output/tmp_ged/gen_median.gxl' | |||||
fn_pre_gm_new = dir_output + 'medians/gen_median.' + fit_method \ | |||||
+ '.k' + str(int(k)) + '.y' + str(int(y)) + '.repeat' + str(repeat) | |||||
copyfile(fname_gm, fn_pre_gm_new + '.gxl') | |||||
G_best_kernel = Gn_median[idx_dis_k_gi_min].copy() | |||||
# reform_attributes(G_best_kernel) | |||||
fn_pre_g_best_kernel = dir_output + 'medians/g_best_kernel.' + fit_method \ | |||||
+ '.k' + str(int(k)) + '.y' + str(int(y)) + '.repeat' + str(repeat) | |||||
saveGXL(G_best_kernel, fn_pre_g_best_kernel + '.gxl', method='gedlib') | |||||
# # plot median graphs. | |||||
# set_median = loadGXL(fn_pre_sm_new + '.gxl') | |||||
# gen_median = loadGXL(fn_pre_gm_new + '.gxl') | |||||
# draw_Letter_graph(set_median, fn_pre_sm_new) | |||||
# draw_Letter_graph(gen_median, fn_pre_gm_new) | |||||
# draw_Letter_graph(G_best_kernel, fn_pre_g_best_kernel) | |||||
# write result summary for each letter. | |||||
sod_sm_mean_list.append(np.mean(sod_sm_list)) | |||||
sod_gm_mean_list.append(np.mean(sod_gm_list)) | |||||
dis_k_sm_mean_list.append(np.mean(dis_k_sm_list)) | |||||
dis_k_gm_mean_list.append(np.mean(dis_k_gm_list)) | |||||
dis_k_gi_min_mean_list.append(np.mean(dis_k_gi_min_list)) | |||||
sod_sm2gm_mean = getRelations(np.sign(sod_gm_mean_list[-1] - sod_sm_mean_list[-1])) | |||||
dis_k_sm2gm_mean = getRelations(np.sign(dis_k_gm_mean_list[-1] - dis_k_sm_mean_list[-1])) | |||||
dis_k_gi2sm_mean = getRelations(np.sign(dis_k_sm_mean_list[-1] - dis_k_gi_min_mean_list[-1])) | |||||
dis_k_gi2gm_mean = getRelations(np.sign(dis_k_gm_mean_list[-1] - dis_k_gi_min_mean_list[-1])) | |||||
f_summary = open(dir_output + fn_output_summary, 'a') | |||||
csv.writer(f_summary).writerow([ds_name, gkernel, fit_method, k, y, | |||||
sod_sm_mean_list[-1], sod_gm_mean_list[-1], | |||||
dis_k_sm_mean_list[-1], dis_k_gm_mean_list[-1], | |||||
dis_k_gi_min_mean_list[-1], sod_sm2gm_mean, dis_k_sm2gm_mean, | |||||
dis_k_gi2sm_mean, dis_k_gi2gm_mean, nb_sod_sm2gm, | |||||
nb_dis_k_sm2gm, nb_dis_k_gi2sm, nb_dis_k_gi2gm, | |||||
repeats_better_sod_sm2gm, repeats_better_dis_k_sm2gm, | |||||
repeats_better_dis_k_gi2sm, repeats_better_dis_k_gi2gm]) | |||||
f_summary.close() | |||||
# write result summary for each letter. | |||||
sod_sm_mean = np.mean(sod_sm_mean_list) | |||||
sod_gm_mean = np.mean(sod_gm_mean_list) | |||||
dis_k_sm_mean = np.mean(dis_k_sm_mean_list) | |||||
dis_k_gm_mean = np.mean(dis_k_gm_mean_list) | |||||
dis_k_gi_min_mean = np.mean(dis_k_gi_min_list) | |||||
sod_sm2gm_mean = getRelations(np.sign(sod_gm_mean - sod_sm_mean)) | |||||
dis_k_sm2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_sm_mean)) | |||||
dis_k_gi2sm_mean = getRelations(np.sign(dis_k_sm_mean - dis_k_gi_min_mean)) | |||||
dis_k_gi2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_gi_min_mean)) | |||||
f_summary = open(dir_output + fn_output_summary, 'a') | |||||
csv.writer(f_summary).writerow([ds_name, gkernel, fit_method, k, 'all', | |||||
sod_sm_mean, sod_gm_mean, dis_k_sm_mean, dis_k_gm_mean, | |||||
dis_k_gi_min_mean, sod_sm2gm_mean, dis_k_sm2gm_mean, | |||||
dis_k_gi2sm_mean, dis_k_gi2gm_mean]) | |||||
f_summary.close() | |||||
print('\ncomplete.') | |||||
#Dessin median courrant | |||||
def draw_Letter_graph(graph, file_prefix): | |||||
plt.figure() | |||||
pos = {} | |||||
for n in graph.nodes: | |||||
pos[n] = np.array([float(graph.node[n]['x']),float(graph.node[n]['y'])]) | |||||
nx.draw_networkx(graph, pos) | |||||
plt.savefig(file_prefix + '.eps', format='eps', dpi=300) | |||||
# plt.show() | |||||
plt.clf() | |||||
if __name__ == "__main__": | |||||
xp_monoterpenoides() |