diff --git a/lang/fr/gklearn/gedlib/lib/libsvm.3.22/java/libsvm/svm_parameter.java b/lang/fr/gklearn/gedlib/lib/libsvm.3.22/java/libsvm/svm_parameter.java new file mode 100644 index 0000000..429f041 --- /dev/null +++ b/lang/fr/gklearn/gedlib/lib/libsvm.3.22/java/libsvm/svm_parameter.java @@ -0,0 +1,47 @@ +package libsvm; +public class svm_parameter implements Cloneable,java.io.Serializable +{ + /* svm_type */ + public static final int C_SVC = 0; + public static final int NU_SVC = 1; + public static final int ONE_CLASS = 2; + public static final int EPSILON_SVR = 3; + public static final int NU_SVR = 4; + + /* kernel_type */ + public static final int LINEAR = 0; + public static final int POLY = 1; + public static final int RBF = 2; + public static final int SIGMOID = 3; + public static final int PRECOMPUTED = 4; + + public int svm_type; + public int kernel_type; + public int degree; // for poly + public double gamma; // for poly/rbf/sigmoid + public double coef0; // for poly/sigmoid + + // these are for training only + public double cache_size; // in MB + public double eps; // stopping criteria + public double C; // for C_SVC, EPSILON_SVR and NU_SVR + public int nr_weight; // for C_SVC + public int[] weight_label; // for C_SVC + public double[] weight; // for C_SVC + public double nu; // for NU_SVC, ONE_CLASS, and NU_SVR + public double p; // for EPSILON_SVR + public int shrinking; // use the shrinking heuristics + public int probability; // do probability estimates + + public Object clone() + { + try + { + return super.clone(); + } catch (CloneNotSupportedException e) + { + return null; + } + } + +}