diff --git a/lang/fr/gklearn/kernels/treelet.py b/lang/fr/gklearn/kernels/treelet.py index c3204ec..61ffd47 100644 --- a/lang/fr/gklearn/kernels/treelet.py +++ b/lang/fr/gklearn/kernels/treelet.py @@ -39,7 +39,7 @@ class Treelet(GraphKernel): def _compute_gm_series(self): self.__add_dummy_labels(self._graphs) - # get all canonical keys of all graphs before calculating kernels to save + # get all canonical keys of all graphs before computing kernels to save # time, but this may cost a lot of memory for large dataset. canonkeys = [] if self._verbose >= 2: @@ -55,7 +55,7 @@ class Treelet(GraphKernel): from itertools import combinations_with_replacement itr = combinations_with_replacement(range(0, len(self._graphs)), 2) if self._verbose >= 2: - iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) + iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) else: iterator = itr for i, j in iterator: @@ -69,7 +69,7 @@ class Treelet(GraphKernel): def _compute_gm_imap_unordered(self): self.__add_dummy_labels(self._graphs) - # get all canonical keys of all graphs before calculating kernels to save + # get all canonical keys of all graphs before computing kernels to save # time, but this may cost a lot of memory for large dataset. pool = Pool(self._n_jobs) itr = zip(self._graphs, range(0, len(self._graphs))) @@ -105,7 +105,7 @@ class Treelet(GraphKernel): def _compute_kernel_list_series(self, g1, g_list): self.__add_dummy_labels(g_list + [g1]) - # get all canonical keys of all graphs before calculating kernels to save + # get all canonical keys of all graphs before computing kernels to save # time, but this may cost a lot of memory for large dataset. canonkeys_1 = self.__get_canonkeys(g1) canonkeys_list = [] @@ -119,7 +119,7 @@ class Treelet(GraphKernel): # compute kernel list. kernel_list = [None] * len(g_list) if self._verbose >= 2: - iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) + iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) else: iterator = range(len(g_list)) for i in iterator: @@ -132,7 +132,7 @@ class Treelet(GraphKernel): def _compute_kernel_list_imap_unordered(self, g1, g_list): self.__add_dummy_labels(g_list + [g1]) - # get all canonical keys of all graphs before calculating kernels to save + # get all canonical keys of all graphs before computing kernels to save # time, but this may cost a lot of memory for large dataset. canonkeys_1 = self.__get_canonkeys(g1) canonkeys_list = [[] for _ in range(len(g_list))] @@ -167,7 +167,7 @@ class Treelet(GraphKernel): len_itr = len(g_list) parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, init_worker=init_worker, glbv=(canonkeys_1, canonkeys_list), method='imap_unordered', - n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) + n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) return kernel_list @@ -185,7 +185,7 @@ class Treelet(GraphKernel): def __kernel_do(self, canonkey1, canonkey2): - """Calculate treelet graph kernel between 2 graphs. + """Compute treelet graph kernel between 2 graphs. Parameters ----------