diff --git a/lang/zh/gklearn/gedlib/lib/libsvm.3.22/matlab/svmtrain.c b/lang/zh/gklearn/gedlib/lib/libsvm.3.22/matlab/svmtrain.c new file mode 100644 index 0000000..27a52b8 --- /dev/null +++ b/lang/zh/gklearn/gedlib/lib/libsvm.3.22/matlab/svmtrain.c @@ -0,0 +1,495 @@ +#include +#include +#include +#include +#include "svm.h" + +#include "mex.h" +#include "svm_model_matlab.h" + +#ifdef MX_API_VER +#if MX_API_VER < 0x07030000 +typedef int mwIndex; +#endif +#endif + +#define CMD_LEN 2048 +#define Malloc(type,n) (type *)malloc((n)*sizeof(type)) + +void print_null(const char *s) {} +void print_string_matlab(const char *s) {mexPrintf(s);} + +void exit_with_help() +{ + mexPrintf( + "Usage: model = svmtrain(training_label_vector, training_instance_matrix, 'libsvm_options');\n" + "libsvm_options:\n" + "-s svm_type : set type of SVM (default 0)\n" + " 0 -- C-SVC (multi-class classification)\n" + " 1 -- nu-SVC (multi-class classification)\n" + " 2 -- one-class SVM\n" + " 3 -- epsilon-SVR (regression)\n" + " 4 -- nu-SVR (regression)\n" + "-t kernel_type : set type of kernel function (default 2)\n" + " 0 -- linear: u'*v\n" + " 1 -- polynomial: (gamma*u'*v + coef0)^degree\n" + " 2 -- radial basis function: exp(-gamma*|u-v|^2)\n" + " 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n" + " 4 -- precomputed kernel (kernel values in training_instance_matrix)\n" + "-d degree : set degree in kernel function (default 3)\n" + "-g gamma : set gamma in kernel function (default 1/num_features)\n" + "-r coef0 : set coef0 in kernel function (default 0)\n" + "-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n" + "-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n" + "-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n" + "-m cachesize : set cache memory size in MB (default 100)\n" + "-e epsilon : set tolerance of termination criterion (default 0.001)\n" + "-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)\n" + "-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n" + "-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)\n" + "-v n : n-fold cross validation mode\n" + "-q : quiet mode (no outputs)\n" + ); +} + +// svm arguments +struct svm_parameter param; // set by parse_command_line +struct svm_problem prob; // set by read_problem +struct svm_model *model; +struct svm_node *x_space; +int cross_validation; +int nr_fold; + + +double do_cross_validation() +{ + int i; + int total_correct = 0; + double total_error = 0; + double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; + double *target = Malloc(double,prob.l); + double retval = 0.0; + + svm_cross_validation(&prob,¶m,nr_fold,target); + if(param.svm_type == EPSILON_SVR || + param.svm_type == NU_SVR) + { + for(i=0;i 2) + { + // put options in argv[] + mxGetString(prhs[2], cmd, mxGetN(prhs[2]) + 1); + if((argv[argc] = strtok(cmd, " ")) != NULL) + while((argv[++argc] = strtok(NULL, " ")) != NULL) + ; + } + + // parse options + for(i=1;i=argc && argv[i-1][1] != 'q') // since option -q has no parameter + return 1; + switch(argv[i-1][1]) + { + case 's': + param.svm_type = atoi(argv[i]); + break; + case 't': + param.kernel_type = atoi(argv[i]); + break; + case 'd': + param.degree = atoi(argv[i]); + break; + case 'g': + param.gamma = atof(argv[i]); + break; + case 'r': + param.coef0 = atof(argv[i]); + break; + case 'n': + param.nu = atof(argv[i]); + break; + case 'm': + param.cache_size = atof(argv[i]); + break; + case 'c': + param.C = atof(argv[i]); + break; + case 'e': + param.eps = atof(argv[i]); + break; + case 'p': + param.p = atof(argv[i]); + break; + case 'h': + param.shrinking = atoi(argv[i]); + break; + case 'b': + param.probability = atoi(argv[i]); + break; + case 'q': + print_func = &print_null; + i--; + break; + case 'v': + cross_validation = 1; + nr_fold = atoi(argv[i]); + if(nr_fold < 2) + { + mexPrintf("n-fold cross validation: n must >= 2\n"); + return 1; + } + break; + case 'w': + ++param.nr_weight; + param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight); + param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight); + param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]); + param.weight[param.nr_weight-1] = atof(argv[i]); + break; + default: + mexPrintf("Unknown option -%c\n", argv[i-1][1]); + return 1; + } + } + + svm_set_print_string_function(print_func); + + return 0; +} + +// read in a problem (in svmlight format) +int read_problem_dense(const mxArray *label_vec, const mxArray *instance_mat) +{ + // using size_t due to the output type of matlab functions + size_t i, j, k, l; + size_t elements, max_index, sc, label_vector_row_num; + double *samples, *labels; + + prob.x = NULL; + prob.y = NULL; + x_space = NULL; + + labels = mxGetPr(label_vec); + samples = mxGetPr(instance_mat); + sc = mxGetN(instance_mat); + + elements = 0; + // number of instances + l = mxGetM(instance_mat); + label_vector_row_num = mxGetM(label_vec); + prob.l = (int)l; + + if(label_vector_row_num!=l) + { + mexPrintf("Length of label vector does not match # of instances.\n"); + return -1; + } + + if(param.kernel_type == PRECOMPUTED) + elements = l * (sc + 1); + else + { + for(i = 0; i < l; i++) + { + for(k = 0; k < sc; k++) + if(samples[k * l + i] != 0) + elements++; + // count the '-1' element + elements++; + } + } + + prob.y = Malloc(double,l); + prob.x = Malloc(struct svm_node *,l); + x_space = Malloc(struct svm_node, elements); + + max_index = sc; + j = 0; + for(i = 0; i < l; i++) + { + prob.x[i] = &x_space[j]; + prob.y[i] = labels[i]; + + for(k = 0; k < sc; k++) + { + if(param.kernel_type == PRECOMPUTED || samples[k * l + i] != 0) + { + x_space[j].index = (int)k + 1; + x_space[j].value = samples[k * l + i]; + j++; + } + } + x_space[j++].index = -1; + } + + if(param.gamma == 0 && max_index > 0) + param.gamma = (double)(1.0/max_index); + + if(param.kernel_type == PRECOMPUTED) + for(i=0;i (int)max_index) + { + mexPrintf("Wrong input format: sample_serial_number out of range\n"); + return -1; + } + } + + return 0; +} + +int read_problem_sparse(const mxArray *label_vec, const mxArray *instance_mat) +{ + mwIndex *ir, *jc, low, high, k; + // using size_t due to the output type of matlab functions + size_t i, j, l, elements, max_index, label_vector_row_num; + mwSize num_samples; + double *samples, *labels; + mxArray *instance_mat_col; // transposed instance sparse matrix + + prob.x = NULL; + prob.y = NULL; + x_space = NULL; + + // transpose instance matrix + { + mxArray *prhs[1], *plhs[1]; + prhs[0] = mxDuplicateArray(instance_mat); + if(mexCallMATLAB(1, plhs, 1, prhs, "transpose")) + { + mexPrintf("Error: cannot transpose training instance matrix\n"); + return -1; + } + instance_mat_col = plhs[0]; + mxDestroyArray(prhs[0]); + } + + // each column is one instance + labels = mxGetPr(label_vec); + samples = mxGetPr(instance_mat_col); + ir = mxGetIr(instance_mat_col); + jc = mxGetJc(instance_mat_col); + + num_samples = mxGetNzmax(instance_mat_col); + + // number of instances + l = mxGetN(instance_mat_col); + label_vector_row_num = mxGetM(label_vec); + prob.l = (int) l; + + if(label_vector_row_num!=l) + { + mexPrintf("Length of label vector does not match # of instances.\n"); + return -1; + } + + elements = num_samples + l; + max_index = mxGetM(instance_mat_col); + + prob.y = Malloc(double,l); + prob.x = Malloc(struct svm_node *,l); + x_space = Malloc(struct svm_node, elements); + + j = 0; + for(i=0;i 0) + param.gamma = (double)(1.0/max_index); + + return 0; +} + +static void fake_answer(int nlhs, mxArray *plhs[]) +{ + int i; + for(i=0;i 1) + { + exit_with_help(); + fake_answer(nlhs, plhs); + return; + } + + // Transform the input Matrix to libsvm format + if(nrhs > 1 && nrhs < 4) + { + int err; + + if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1])) + { + mexPrintf("Error: label vector and instance matrix must be double\n"); + fake_answer(nlhs, plhs); + return; + } + + if(mxIsSparse(prhs[0])) + { + mexPrintf("Error: label vector should not be in sparse format\n"); + fake_answer(nlhs, plhs); + return; + } + + if(parse_command_line(nrhs, prhs, NULL)) + { + exit_with_help(); + svm_destroy_param(¶m); + fake_answer(nlhs, plhs); + return; + } + + if(mxIsSparse(prhs[1])) + { + if(param.kernel_type == PRECOMPUTED) + { + // precomputed kernel requires dense matrix, so we make one + mxArray *rhs[1], *lhs[1]; + + rhs[0] = mxDuplicateArray(prhs[1]); + if(mexCallMATLAB(1, lhs, 1, rhs, "full")) + { + mexPrintf("Error: cannot generate a full training instance matrix\n"); + svm_destroy_param(¶m); + fake_answer(nlhs, plhs); + return; + } + err = read_problem_dense(prhs[0], lhs[0]); + mxDestroyArray(lhs[0]); + mxDestroyArray(rhs[0]); + } + else + err = read_problem_sparse(prhs[0], prhs[1]); + } + else + err = read_problem_dense(prhs[0], prhs[1]); + + // svmtrain's original code + error_msg = svm_check_parameter(&prob, ¶m); + + if(err || error_msg) + { + if (error_msg != NULL) + mexPrintf("Error: %s\n", error_msg); + svm_destroy_param(¶m); + free(prob.y); + free(prob.x); + free(x_space); + fake_answer(nlhs, plhs); + return; + } + + if(cross_validation) + { + double *ptr; + plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL); + ptr = mxGetPr(plhs[0]); + ptr[0] = do_cross_validation(); + } + else + { + int nr_feat = (int)mxGetN(prhs[1]); + const char *error_msg; + model = svm_train(&prob, ¶m); + error_msg = model_to_matlab_structure(plhs, nr_feat, model); + if(error_msg) + mexPrintf("Error: can't convert libsvm model to matrix structure: %s\n", error_msg); + svm_free_and_destroy_model(&model); + } + svm_destroy_param(¶m); + free(prob.y); + free(prob.x); + free(x_space); + } + else + { + exit_with_help(); + fake_answer(nlhs, plhs); + return; + } +}