@@ -18,4 +18,4 @@ __date__ = "November 2017" | |||
# import sub modules | |||
# from gklearn import c_ext | |||
# from gklearn import ged | |||
from gklearn import utils | |||
# from gklearn import utils |
@@ -46,7 +46,7 @@ def compute_ged(g1, g2, options): | |||
return dis, pi_forward, pi_backward | |||
def compute_geds(graphs, options={}, parallel=False): | |||
def compute_geds(graphs, options={}, parallel=False, verbose=True): | |||
# initialize ged env. | |||
ged_env = gedlibpy.GEDEnv() | |||
ged_env.set_edit_cost(options['edit_cost'], edit_cost_constant=options['edit_cost_constants']) | |||
@@ -81,8 +81,11 @@ def compute_geds(graphs, options={}, parallel=False): | |||
G_listID = listID_toshare | |||
do_partial = partial(_wrapper_compute_ged_parallel, neo_options) | |||
pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(graphs, ged_env, listID)) | |||
iterator = tqdm(pool.imap_unordered(do_partial, itr, chunksize), | |||
if verbose: | |||
iterator = tqdm(pool.imap_unordered(do_partial, itr, chunksize), | |||
desc='computing GEDs', file=sys.stdout) | |||
else: | |||
iterator = pool.imap_unordered(do_partial, itr, chunksize) | |||
# iterator = pool.imap_unordered(do_partial, itr, chunksize) | |||
for i, j, dis, n_eo_tmp in iterator: | |||
idx_itr = int(len(graphs) * i + j - (i + 1) * (i + 2) / 2) | |||
@@ -98,7 +101,11 @@ def compute_geds(graphs, options={}, parallel=False): | |||
else: | |||
ged_vec = [] | |||
n_edit_operations = [] | |||
for i in tqdm(range(len(graphs)), desc='computing GEDs', file=sys.stdout): | |||
if verbose: | |||
iterator = tqdm(range(len(graphs)), desc='computing GEDs', file=sys.stdout) | |||
else: | |||
iterator = range(len(graphs)) | |||
for i in iterator: | |||
# for i in range(len(graphs)): | |||
for j in range(i + 1, len(graphs)): | |||
dis, pi_forward, pi_backward = _compute_ged(ged_env, listID[i], listID[j], graphs[i], graphs[j]) | |||
@@ -67,6 +67,9 @@ class GraphKernel(object): | |||
def normalize_gm(self, gram_matrix): | |||
import warnings | |||
warnings.warn('gklearn.kernels.graph_kernel.normalize_gm will be deprecated, use gklearn.utils.normalize_gram_matrix instead', DeprecationWarning) | |||
diag = gram_matrix.diagonal().copy() | |||
for i in range(len(gram_matrix)): | |||
for j in range(i, len(gram_matrix)): | |||
@@ -12,3 +12,4 @@ __date__ = "March 2020" | |||
from gklearn.preimage.preimage_generator import PreimageGenerator | |||
from gklearn.preimage.median_preimage_generator import MedianPreimageGenerator | |||
from gklearn.preimage.kernel_knn_cv import kernel_knn_cv |
@@ -0,0 +1,103 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Mon May 11 14:15:11 2020 | |||
@author: ljia | |||
""" | |||
import functools | |||
import multiprocessing | |||
import os | |||
import sys | |||
import logging | |||
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
from gklearn.preimage import kernel_knn_cv | |||
dir_root = '../results/xp_1nn.init1.no_triangle_rule.allow_zeros/' | |||
num_random = 10 | |||
initial_solutions = 1 | |||
triangle_rule = False | |||
allow_zeros = True | |||
update_order = False | |||
test_sizes = [0.9, 0.7] # , 0.5, 0.3, 0.1] | |||
def xp_knn_1_1(): | |||
for test_size in test_sizes: | |||
ds_name = 'Letter-high' | |||
knn_options = {'n_neighbors': 1, | |||
'n_splits': 30, | |||
'test_size': test_size, | |||
'verbose': True} | |||
mpg_options = {'fit_method': 'k-graphs', | |||
'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425], | |||
'ds_name': ds_name, | |||
'parallel': True, # False | |||
'time_limit_in_sec': 0, | |||
'max_itrs': 100, | |||
'max_itrs_without_update': 3, | |||
'epsilon_residual': 0.01, | |||
'epsilon_ec': 0.1, | |||
'allow_zeros': allow_zeros, | |||
'triangle_rule': triangle_rule, | |||
'verbose': 1} | |||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
kernel_options = {'name': 'StructuralSP', | |||
'edge_weight': None, | |||
'node_kernels': sub_kernels, | |||
'edge_kernels': sub_kernels, | |||
'compute_method': 'naive', | |||
'parallel': 'imap_unordered', | |||
# 'parallel': None, | |||
'n_jobs': multiprocessing.cpu_count(), | |||
'normalize': True, | |||
'verbose': 0} | |||
ged_options = {'method': 'IPFP', | |||
'initialization_method': 'RANDOM', # 'NODE' | |||
'initial_solutions': initial_solutions, # 1 | |||
'edit_cost': 'LETTER2', | |||
'attr_distance': 'euclidean', | |||
'ratio_runs_from_initial_solutions': 1, | |||
'threads': multiprocessing.cpu_count(), | |||
'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'} | |||
mge_options = {'init_type': 'MEDOID', | |||
'random_inits': 10, | |||
'time_limit': 0, | |||
'verbose': 1, | |||
'update_order': update_order, | |||
'randomness': 'REAL', | |||
'refine': False} | |||
save_results = True | |||
dir_save = dir_root + ds_name + '.' + kernel_options['name'] + '/' + ('update_order/' if update_order else '') | |||
if not os.path.exists(dir_save): | |||
os.makedirs(dir_save) | |||
file_output = open(dir_save + 'output.txt', 'a') | |||
# sys.stdout = file_output | |||
# print settings. | |||
print('parameters:') | |||
print('dataset name:', ds_name) | |||
print('mpg_options:', mpg_options) | |||
print('kernel_options:', kernel_options) | |||
print('ged_options:', ged_options) | |||
print('mge_options:', mge_options) | |||
print('save_results:', save_results) | |||
for train_examples in ['k-graphs', 'expert', 'random', 'best-dataset', 'trainset']: | |||
# for train_examples in ['expert']: | |||
print('\n-------------------------------------') | |||
print('train examples used:', train_examples, '\n') | |||
mpg_options['fit_method'] = train_examples | |||
# try: | |||
kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, load_gm='auto', dir_save=dir_save, irrelevant_labels=None, edge_required=False, cut_range=None) | |||
# except Exception as exp: | |||
# print('An exception occured when running this experiment:') | |||
# LOG_FILENAME = dir_save + 'error.txt' | |||
# logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | |||
# logging.exception('') | |||
# print(repr(exp)) | |||
if __name__ == '__main__': | |||
xp_knn_1_1() |
@@ -0,0 +1,418 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Tue May 12 12:52:15 2020 | |||
@author: ljia | |||
""" | |||
import numpy as np | |||
import csv | |||
import os | |||
import os.path | |||
from gklearn.utils import Dataset | |||
from sklearn.model_selection import ShuffleSplit | |||
from gklearn.preimage import MedianPreimageGenerator | |||
from gklearn.utils import normalize_gram_matrix, compute_distance_matrix | |||
from gklearn.preimage.utils import get_same_item_indices | |||
from gklearn.utils.knn import knn_classification | |||
from gklearn.preimage.utils import compute_k_dis | |||
def kernel_knn_cv(ds_name, train_examples, knn_options, mpg_options, kernel_options, ged_options, mge_options, save_results=True, load_gm='auto', dir_save='', irrelevant_labels=None, edge_required=False, cut_range=None): | |||
# 1. get dataset. | |||
print('1. getting dataset...') | |||
dataset_all = Dataset() | |||
dataset_all.load_predefined_dataset(ds_name) | |||
dataset_all.trim_dataset(edge_required=edge_required) | |||
if irrelevant_labels is not None: | |||
dataset_all.remove_labels(**irrelevant_labels) | |||
if cut_range is not None: | |||
dataset_all.cut_graphs(cut_range) | |||
# datasets = split_dataset_by_target(dataset_all) | |||
if save_results: | |||
# create result files. | |||
print('creating output files...') | |||
fn_output_detail, fn_output_summary = __init_output_file_knn(ds_name, kernel_options['name'], mpg_options['fit_method'], dir_save) | |||
else: | |||
fn_output_detail, fn_output_summary = None, None | |||
# 2. compute/load Gram matrix a priori. | |||
print('2. computing/loading Gram matrix...') | |||
gram_matrix_unnorm, time_precompute_gm = __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, dataset_all) | |||
# 3. perform k-nn CV. | |||
print('3. performing k-nn CV...') | |||
if train_examples == 'k-graphs' or train_examples == 'expert' or train_examples == 'random': | |||
__kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kernel_options, mge_options, ged_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) | |||
elif train_examples == 'best-dataset': | |||
__kernel_knn_cv_best_ds(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) | |||
elif train_examples == 'trainset': | |||
__kernel_knn_cv_trainset(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary) | |||
print('\ncomplete.\n') | |||
def __kernel_knn_cv_median(dataset_all, ds_name, knn_options, mpg_options, kernel_options, mge_options, ged_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): | |||
Gn = dataset_all.graphs | |||
y_all = dataset_all.targets | |||
n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size'] | |||
# get shuffles. | |||
train_indices, test_indices, train_nums, y_app = __get_shuffles(y_all, n_splits, test_size) | |||
accuracies = [[], [], []] | |||
for trial in range(len(train_indices)): | |||
print('\ntrial =', trial) | |||
train_index = train_indices[trial] | |||
test_index = test_indices[trial] | |||
G_app = [Gn[i] for i in train_index] | |||
G_test = [Gn[i] for i in test_index] | |||
y_test = [y_all[i] for i in test_index] | |||
gm_unnorm_trial = gram_matrix_unnorm[train_index,:][:,train_index].copy() | |||
# compute pre-images for each class. | |||
medians = [[], [], []] | |||
train_nums_tmp = [0] + train_nums | |||
print('\ncomputing pre-image for each class...\n') | |||
for i_class in range(len(train_nums_tmp) - 1): | |||
print(i_class + 1, 'of', len(train_nums_tmp) - 1, 'classes:') | |||
i_start = int(np.sum(train_nums_tmp[0:i_class + 1])) | |||
i_end = i_start + train_nums_tmp[i_class + 1] | |||
median_set = G_app[i_start:i_end] | |||
dataset = dataset_all.copy() | |||
dataset.load_graphs(median_set.copy(), targets=None) | |||
mge_options['update_order'] = True | |||
mpg_options['gram_matrix_unnorm'] = gm_unnorm_trial[i_start:i_end,i_start:i_end].copy() | |||
mpg_options['runtime_precompute_gm'] = 0 | |||
set_median, gen_median_uo = __generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options) | |||
mge_options['update_order'] = False | |||
mpg_options['gram_matrix_unnorm'] = gm_unnorm_trial[i_start:i_end,i_start:i_end].copy() | |||
mpg_options['runtime_precompute_gm'] = 0 | |||
_, gen_median = __generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options) | |||
medians[0].append(set_median) | |||
medians[1].append(gen_median) | |||
medians[2].append(gen_median_uo) | |||
# for each set of medians. | |||
print('\nperforming k-nn...') | |||
for i_app, G_app in enumerate(medians): | |||
# compute dis_mat between medians. | |||
dataset = dataset_all.copy() | |||
dataset.load_graphs(G_app.copy(), targets=None) | |||
gm_app_unnorm, _ = __compute_gram_matrix_unnorm(dataset, kernel_options.copy()) | |||
# compute the entire Gram matrix. | |||
graph_kernel = __get_graph_kernel(dataset.copy(), kernel_options.copy()) | |||
kernels_to_medians = [] | |||
for g in G_app: | |||
kernels_to_median, _ = graph_kernel.compute(g, G_test, **kernel_options.copy()) | |||
kernels_to_medians.append(kernels_to_median) | |||
kernels_to_medians = np.array(kernels_to_medians) | |||
gm_all = np.concatenate((gm_app_unnorm, kernels_to_medians), axis=1) | |||
gm_all = np.concatenate((gm_all, np.concatenate((kernels_to_medians.T, gram_matrix_unnorm[test_index,:][:,test_index].copy()), axis=1)), axis=0) | |||
gm_all = normalize_gram_matrix(gm_all.copy()) | |||
dis_mat, _, _, _ = compute_distance_matrix(gm_all) | |||
N = len(G_app) | |||
d_app = dis_mat[range(N),:][:,range(N)].copy() | |||
d_test = np.zeros((N, len(test_index))) | |||
for i in range(N): | |||
for j in range(len(test_index)): | |||
d_test[i, j] = dis_mat[i, j] | |||
accuracies[i_app].append(knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=True, text=train_examples)) | |||
# write result detail. | |||
if save_results: | |||
f_detail = open(dir_save + fn_output_detail, 'a') | |||
print('writing results to files...') | |||
for i, median_type in enumerate(['set-median', 'gen median', 'gen median uo']): | |||
csv.writer(f_detail).writerow([ds_name, kernel_options['name'], | |||
train_examples + ': ' + median_type, trial, | |||
knn_options['n_neighbors'], | |||
len(gm_all), knn_options['test_size'], | |||
accuracies[i][-1][0], accuracies[i][-1][1]]) | |||
f_detail.close() | |||
results = {} | |||
results['ave_perf_train'] = [np.mean([i[0] for i in j], axis=0) for j in accuracies] | |||
results['std_perf_train'] = [np.std([i[0] for i in j], axis=0, ddof=1) for j in accuracies] | |||
results['ave_perf_test'] = [np.mean([i[1] for i in j], axis=0) for j in accuracies] | |||
results['std_perf_test'] = [np.std([i[1] for i in j], axis=0, ddof=1) for j in accuracies] | |||
# write result summary for each letter. | |||
if save_results: | |||
f_summary = open(dir_save + fn_output_summary, 'a') | |||
for i, median_type in enumerate('set-median', 'gen median', 'gen median uo'): | |||
csv.writer(f_summary).writerow([ds_name, kernel_options['name'], | |||
train_examples + ': ' + median_type, | |||
knn_options['n_neighbors'], | |||
knn_options['test_size'], results['ave_perf_train'][i], | |||
results['ave_perf_test'][i], results['std_perf_train'][i], | |||
results['std_perf_test'][i], time_precompute_gm]) | |||
f_summary.close() | |||
def __kernel_knn_cv_best_ds(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): | |||
Gn = dataset_all.graphs | |||
y_all = dataset_all.targets | |||
n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size'] | |||
# get shuffles. | |||
train_indices, test_indices, train_nums, y_app = __get_shuffles(y_all, n_splits, test_size) | |||
accuracies = [] | |||
for trial in range(len(train_indices)): | |||
print('\ntrial =', trial) | |||
train_index = train_indices[trial] | |||
test_index = test_indices[trial] | |||
G_app = [Gn[i] for i in train_index] | |||
G_test = [Gn[i] for i in test_index] | |||
y_test = [y_all[i] for i in test_index] | |||
gm_unnorm_trial = gram_matrix_unnorm[train_index,:][:,train_index].copy() | |||
# get best graph from trainset according to distance in kernel space for each class. | |||
best_graphs = [] | |||
train_nums_tmp = [0] + train_nums | |||
print('\ngetting best graph from trainset for each class...') | |||
for i_class in range(len(train_nums_tmp) - 1): | |||
print(i_class + 1, 'of', len(train_nums_tmp) - 1, 'classes.') | |||
i_start = int(np.sum(train_nums_tmp[0:i_class + 1])) | |||
i_end = i_start + train_nums_tmp[i_class + 1] | |||
G_class = G_app[i_start:i_end] | |||
gm_unnorm_class = gm_unnorm_trial[i_start:i_end,i_start:i_end] | |||
gm_class = normalize_gram_matrix(gm_unnorm_class.copy()) | |||
k_dis_list = [] | |||
for idx in range(len(G_class)): | |||
k_dis_list.append(compute_k_dis(idx, range(0, len(G_class)), [1 / len(G_class)] * len(G_class), gm_class, withterm3=False)) | |||
idx_k_dis_min = np.argmin(k_dis_list) | |||
best_graphs.append(G_class[idx_k_dis_min].copy()) | |||
# perform k-nn. | |||
print('\nperforming k-nn...') | |||
# compute dis_mat between medians. | |||
dataset = dataset_all.copy() | |||
dataset.load_graphs(best_graphs.copy(), targets=None) | |||
gm_app_unnorm, _ = __compute_gram_matrix_unnorm(dataset, kernel_options.copy()) | |||
# compute the entire Gram matrix. | |||
graph_kernel = __get_graph_kernel(dataset.copy(), kernel_options.copy()) | |||
kernels_to_best_graphs = [] | |||
for g in best_graphs: | |||
kernels_to_best_graph, _ = graph_kernel.compute(g, G_test, **kernel_options.copy()) | |||
kernels_to_best_graphs.append(kernels_to_best_graph) | |||
kernels_to_best_graphs = np.array(kernels_to_best_graphs) | |||
gm_all = np.concatenate((gm_app_unnorm, kernels_to_best_graphs), axis=1) | |||
gm_all = np.concatenate((gm_all, np.concatenate((kernels_to_best_graphs.T, gram_matrix_unnorm[test_index,:][:,test_index].copy()), axis=1)), axis=0) | |||
gm_all = normalize_gram_matrix(gm_all.copy()) | |||
dis_mat, _, _, _ = compute_distance_matrix(gm_all) | |||
N = len(best_graphs) | |||
d_app = dis_mat[range(N),:][:,range(N)].copy() | |||
d_test = np.zeros((N, len(test_index))) | |||
for i in range(N): | |||
for j in range(len(test_index)): | |||
d_test[i, j] = dis_mat[i, j] | |||
accuracies.append(knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=True, text=train_examples)) | |||
# write result detail. | |||
if save_results: | |||
f_detail = open(dir_save + fn_output_detail, 'a') | |||
print('writing results to files...') | |||
csv.writer(f_detail).writerow([ds_name, kernel_options['name'], | |||
train_examples, trial, | |||
knn_options['n_neighbors'], | |||
len(gm_all), knn_options['test_size'], | |||
accuracies[-1][0], accuracies[-1][1]]) | |||
f_detail.close() | |||
results = {} | |||
results['ave_perf_train'] = np.mean([i[0] for i in accuracies], axis=0) | |||
results['std_perf_train'] = np.std([i[0] for i in accuracies], axis=0, ddof=1) | |||
results['ave_perf_test'] = np.mean([i[1] for i in accuracies], axis=0) | |||
results['std_perf_test'] = np.std([i[1] for i in accuracies], axis=0, ddof=1) | |||
# write result summary for each letter. | |||
if save_results: | |||
f_summary = open(dir_save + fn_output_summary, 'a') | |||
csv.writer(f_summary).writerow([ds_name, kernel_options['name'], | |||
train_examples, | |||
knn_options['n_neighbors'], | |||
knn_options['test_size'], results['ave_perf_train'], | |||
results['ave_perf_test'], results['std_perf_train'], | |||
results['std_perf_test'], time_precompute_gm]) | |||
f_summary.close() | |||
def __kernel_knn_cv_trainset(dataset_all, ds_name, knn_options, kernel_options, gram_matrix_unnorm, time_precompute_gm, train_examples, save_results, dir_save, fn_output_detail, fn_output_summary): | |||
y_all = dataset_all.targets | |||
n_neighbors, n_splits, test_size = knn_options['n_neighbors'], knn_options['n_splits'], knn_options['test_size'] | |||
# compute distance matrix. | |||
gram_matrix = normalize_gram_matrix(gram_matrix_unnorm.copy()) | |||
dis_mat, _, _, _ = compute_distance_matrix(gram_matrix) | |||
# get shuffles. | |||
train_indices, test_indices, _, _ = __get_shuffles(y_all, n_splits, test_size) | |||
accuracies = [] | |||
for trial in range(len(train_indices)): | |||
print('\ntrial =', trial) | |||
train_index = train_indices[trial] | |||
test_index = test_indices[trial] | |||
y_app = [y_all[i] for i in train_index] | |||
y_test = [y_all[i] for i in test_index] | |||
N = len(train_index) | |||
d_app = dis_mat[train_index,:][:,train_index].copy() | |||
d_test = np.zeros((N, len(test_index))) | |||
for i in range(N): | |||
for j in range(len(test_index)): | |||
d_test[i, j] = dis_mat[train_index[i], test_index[j]] | |||
accuracies.append(knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=True, text=train_examples)) | |||
# write result detail. | |||
if save_results: | |||
print('writing results to files...') | |||
f_detail = open(dir_save + fn_output_detail, 'a') | |||
csv.writer(f_detail).writerow([ds_name, kernel_options['name'], | |||
train_examples, trial, knn_options['n_neighbors'], | |||
len(gram_matrix), knn_options['test_size'], | |||
accuracies[-1][0], accuracies[-1][1]]) | |||
f_detail.close() | |||
results = {} | |||
results['ave_perf_train'] = np.mean([i[0] for i in accuracies], axis=0) | |||
results['std_perf_train'] = np.std([i[0] for i in accuracies], axis=0, ddof=1) | |||
results['ave_perf_test'] = np.mean([i[1] for i in accuracies], axis=0) | |||
results['std_perf_test'] = np.std([i[1] for i in accuracies], axis=0, ddof=1) | |||
# write result summary for each letter. | |||
if save_results: | |||
f_summary = open(dir_save + fn_output_summary, 'a') | |||
csv.writer(f_summary).writerow([ds_name, kernel_options['name'], | |||
train_examples, knn_options['n_neighbors'], | |||
knn_options['test_size'], results['ave_perf_train'], | |||
results['ave_perf_test'], results['std_perf_train'], | |||
results['std_perf_test'], time_precompute_gm]) | |||
f_summary.close() | |||
def __get_shuffles(y_all, n_splits, test_size): | |||
rs = ShuffleSplit(n_splits=n_splits, test_size=test_size, random_state=0) | |||
train_indices = [[] for _ in range(n_splits)] | |||
test_indices = [[] for _ in range(n_splits)] | |||
idx_targets = get_same_item_indices(y_all) | |||
train_nums = [] | |||
keys = [] | |||
for key, item in idx_targets.items(): | |||
i = 0 | |||
for train_i, test_i in rs.split(item): # @todo: careful when parallel. | |||
train_indices[i] += [item[idx] for idx in train_i] | |||
test_indices[i] += [item[idx] for idx in test_i] | |||
i += 1 | |||
train_nums.append(len(train_i)) | |||
keys.append(key) | |||
return train_indices, test_indices, train_nums, keys | |||
def __generate_median_preimages(dataset, mpg_options, kernel_options, ged_options, mge_options): | |||
mpg = MedianPreimageGenerator() | |||
mpg.dataset = dataset.copy() | |||
mpg.set_options(**mpg_options.copy()) | |||
mpg.kernel_options = kernel_options.copy() | |||
mpg.ged_options = ged_options.copy() | |||
mpg.mge_options = mge_options.copy() | |||
mpg.run() | |||
return mpg.set_median, mpg.gen_median | |||
def __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, dataset_all): | |||
if load_gm == 'auto': | |||
gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz' | |||
gmfile_exist = os.path.isfile(os.path.abspath(gm_fname)) | |||
if gmfile_exist: | |||
gmfile = np.load(gm_fname, allow_pickle=True) # @todo: may not be safe. | |||
gram_matrix_unnorm = gmfile['gram_matrix_unnorm'] | |||
time_precompute_gm = float(gmfile['run_time']) | |||
else: | |||
gram_matrix_unnorm, time_precompute_gm = __compute_gram_matrix_unnorm(dataset_all, kernel_options) | |||
np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm=gram_matrix_unnorm, run_time=time_precompute_gm) | |||
elif not load_gm: | |||
gram_matrix_unnorm, time_precompute_gm = __compute_gram_matrix_unnorm(dataset_all, kernel_options) | |||
np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm=gram_matrix_unnorm, run_time=time_precompute_gm) | |||
else: | |||
gmfile = np.load() | |||
gram_matrix_unnorm = gmfile['gram_matrix_unnorm'] | |||
time_precompute_gm = float(gmfile['run_time']) | |||
return gram_matrix_unnorm, time_precompute_gm | |||
def __get_graph_kernel(dataset, kernel_options): | |||
from gklearn.utils.utils import get_graph_kernel_by_name | |||
graph_kernel = get_graph_kernel_by_name(kernel_options['name'], | |||
node_labels=dataset.node_labels, | |||
edge_labels=dataset.edge_labels, | |||
node_attrs=dataset.node_attrs, | |||
edge_attrs=dataset.edge_attrs, | |||
ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
kernel_options=kernel_options) | |||
return graph_kernel | |||
def __compute_gram_matrix_unnorm(dataset, kernel_options): | |||
from gklearn.utils.utils import get_graph_kernel_by_name | |||
graph_kernel = get_graph_kernel_by_name(kernel_options['name'], | |||
node_labels=dataset.node_labels, | |||
edge_labels=dataset.edge_labels, | |||
node_attrs=dataset.node_attrs, | |||
edge_attrs=dataset.edge_attrs, | |||
ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
kernel_options=kernel_options) | |||
gram_matrix, run_time = graph_kernel.compute(dataset.graphs, **kernel_options) | |||
gram_matrix_unnorm = graph_kernel.gram_matrix_unnorm | |||
return gram_matrix_unnorm, run_time | |||
def __init_output_file_knn(ds_name, gkernel, fit_method, dir_output): | |||
if not os.path.exists(dir_output): | |||
os.makedirs(dir_output) | |||
fn_output_detail = 'results_detail_knn.' + ds_name + '.' + gkernel + '.csv' | |||
f_detail = open(dir_output + fn_output_detail, 'a') | |||
csv.writer(f_detail).writerow(['dataset', 'graph kernel', | |||
'train examples', 'trial', 'num neighbors', 'num graphs', 'test size', | |||
'perf train', 'perf test']) | |||
f_detail.close() | |||
fn_output_summary = 'results_summary_knn.' + ds_name + '.' + gkernel + '.csv' | |||
f_summary = open(dir_output + fn_output_summary, 'a') | |||
csv.writer(f_summary).writerow(['dataset', 'graph kernel', | |||
'train examples', 'num neighbors', 'test size', | |||
'ave perf train', 'ave perf test', | |||
'std perf train', 'std perf test', 'time precompute gm']) | |||
f_summary.close() | |||
return fn_output_detail, fn_output_summary |
@@ -281,7 +281,7 @@ class MedianPreimageGenerator(PreimageGenerator): | |||
options['edge_labels'] = self._dataset.edge_labels | |||
options['node_attrs'] = self._dataset.node_attrs | |||
options['edge_attrs'] = self._dataset.edge_attrs | |||
ged_vec_init, ged_mat, n_edit_operations = compute_geds(graphs, options=options, parallel=self.__parallel) | |||
ged_vec_init, ged_mat, n_edit_operations = compute_geds(graphs, options=options, parallel=self.__parallel, verbose=(self._verbose > 1)) | |||
residual_list = [np.sqrt(np.sum(np.square(np.array(ged_vec_init) - dis_k_vec)))] | |||
time_list = [time.time() - time0] | |||
edit_cost_list = [self.__init_ecc] | |||
@@ -323,7 +323,7 @@ class MedianPreimageGenerator(PreimageGenerator): | |||
options['edge_labels'] = self._dataset.edge_labels | |||
options['node_attrs'] = self._dataset.node_attrs | |||
options['edge_attrs'] = self._dataset.edge_attrs | |||
ged_vec, ged_mat, n_edit_operations = compute_geds(graphs, options=options, parallel=self.__parallel) | |||
ged_vec, ged_mat, n_edit_operations = compute_geds(graphs, options=options, parallel=self.__parallel, verbose=(self._verbose > 1)) | |||
residual_list.append(np.sqrt(np.sum(np.square(np.array(ged_vec) - dis_k_vec)))) | |||
time_list.append(time.time() - time0) | |||
edit_cost_list.append(self.__edit_cost_constants) | |||
@@ -45,7 +45,7 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
if save_results: | |||
# create result files. | |||
print('creating output files...') | |||
fn_output_detail, fn_output_summary = __init_output_file(ds_name, kernel_options['name'], mpg_options['fit_method'], dir_save) | |||
fn_output_detail, fn_output_summary = __init_output_file_preimage(ds_name, kernel_options['name'], mpg_options['fit_method'], dir_save) | |||
sod_sm_list = [] | |||
sod_gm_list = [] | |||
@@ -82,22 +82,22 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
gram_matrix_unnorm_list = [] | |||
time_precompute_gm_list = [] | |||
else: | |||
gmfile = np.load() | |||
gram_matrix_unnorm_list = gmfile['gram_matrix_unnorm_list'] | |||
time_precompute_gm_list = gmfile['run_time_list'] | |||
# repeats_better_sod_sm2gm = [] | |||
# repeats_better_dis_k_sm2gm = [] | |||
# repeats_better_dis_k_gi2sm = [] | |||
# repeats_better_dis_k_gi2gm = [] | |||
gmfile = np.load(gm_fname, allow_pickle=True) # @todo: may not be safe. | |||
gram_matrix_unnorm_list = [item for item in gmfile['gram_matrix_unnorm_list']] | |||
time_precompute_gm_list = gmfile['run_time_list'].tolist() | |||
# repeats_better_sod_sm2gm = [] | |||
# repeats_better_dis_k_sm2gm = [] | |||
# repeats_better_dis_k_gi2sm = [] | |||
# repeats_better_dis_k_gi2gm = [] | |||
print('start generating preimage for each class of target...') | |||
print('starting generating preimage for each class of target...') | |||
idx_offset = 0 | |||
for idx, dataset in enumerate(datasets): | |||
target = dataset.targets[0] | |||
print('\ntarget =', target, '\n') | |||
# if target != 1: | |||
# continue | |||
# if target != 1: | |||
# continue | |||
num_graphs = len(dataset.graphs) | |||
if num_graphs < 2: | |||
@@ -148,7 +148,7 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
results['sod_set_median'], results['sod_gen_median'], | |||
results['k_dis_set_median'], results['k_dis_gen_median'], | |||
results['k_dis_dataset'], sod_sm2gm, dis_k_sm2gm, | |||
dis_k_gi2sm, dis_k_gi2gm, results['edit_cost_constants'], | |||
dis_k_gi2sm, dis_k_gi2gm, results['edit_cost_constants'], | |||
results['runtime_precompute_gm'], results['runtime_optimize_ec'], | |||
results['runtime_generate_preimage'], results['runtime_total'], | |||
results['itrs'], results['converged'], | |||
@@ -177,7 +177,7 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
# # SOD SM -> GM | |||
if results['sod_set_median'] > results['sod_gen_median']: | |||
nb_sod_sm2gm[0] += 1 | |||
# repeats_better_sod_sm2gm.append(1) | |||
# repeats_better_sod_sm2gm.append(1) | |||
elif results['sod_set_median'] == results['sod_gen_median']: | |||
nb_sod_sm2gm[1] += 1 | |||
elif results['sod_set_median'] < results['sod_gen_median']: | |||
@@ -185,7 +185,7 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
# # dis_k SM -> GM | |||
if results['k_dis_set_median'] > results['k_dis_gen_median']: | |||
nb_dis_k_sm2gm[0] += 1 | |||
# repeats_better_dis_k_sm2gm.append(1) | |||
# repeats_better_dis_k_sm2gm.append(1) | |||
elif results['k_dis_set_median'] == results['k_dis_gen_median']: | |||
nb_dis_k_sm2gm[1] += 1 | |||
elif results['k_dis_set_median'] < results['k_dis_gen_median']: | |||
@@ -193,7 +193,7 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
# # dis_k gi -> SM | |||
if results['k_dis_dataset'] > results['k_dis_set_median']: | |||
nb_dis_k_gi2sm[0] += 1 | |||
# repeats_better_dis_k_gi2sm.append(1) | |||
# repeats_better_dis_k_gi2sm.append(1) | |||
elif results['k_dis_dataset'] == results['k_dis_set_median']: | |||
nb_dis_k_gi2sm[1] += 1 | |||
elif results['k_dis_dataset'] < results['k_dis_set_median']: | |||
@@ -201,7 +201,7 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
# # dis_k gi -> GM | |||
if results['k_dis_dataset'] > results['k_dis_gen_median']: | |||
nb_dis_k_gi2gm[0] += 1 | |||
# repeats_better_dis_k_gi2gm.append(1) | |||
# repeats_better_dis_k_gi2gm.append(1) | |||
elif results['k_dis_dataset'] == results['k_dis_gen_median']: | |||
nb_dis_k_gi2gm[1] += 1 | |||
elif results['k_dis_dataset'] < results['k_dis_gen_median']: | |||
@@ -225,7 +225,7 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
results['mge']['num_increase_order'] > 0, | |||
results['mge']['num_converged_descents'] > 0, | |||
nb_sod_sm2gm, | |||
nb_dis_k_sm2gm, nb_dis_k_gi2sm, nb_dis_k_gi2gm]) | |||
nb_dis_k_sm2gm, nb_dis_k_gi2sm, nb_dis_k_gi2gm]) | |||
f_summary.close() | |||
# save median graphs. | |||
@@ -235,15 +235,15 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
print('Saving median graphs to files...') | |||
fn_pre_sm = dir_save + 'medians/set_median.' + mpg_options['fit_method'] + '.nbg' + str(num_graphs) + '.y' + str(target) + '.repeat' + str(1) | |||
saveGXL(mpg.set_median, fn_pre_sm + '.gxl', method='default', | |||
node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||
node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||
node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs) | |||
fn_pre_gm = dir_save + 'medians/gen_median.' + mpg_options['fit_method'] + '.nbg' + str(num_graphs) + '.y' + str(target) + '.repeat' + str(1) | |||
saveGXL(mpg.gen_median, fn_pre_gm + '.gxl', method='default', | |||
node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||
node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||
node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs) | |||
fn_best_dataset = dir_save + 'medians/g_best_dataset.' + mpg_options['fit_method'] + '.nbg' + str(num_graphs) + '.y' + str(target) + '.repeat' + str(1) | |||
saveGXL(mpg.best_from_dataset, fn_best_dataset + '.gxl', method='default', | |||
node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||
node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||
node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs) | |||
# plot median graphs. | |||
@@ -304,10 +304,10 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
if (load_gm == 'auto' and not gmfile_exist) or not load_gm: | |||
np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm_list=gram_matrix_unnorm_list, run_time_list=time_precompute_gm_list) | |||
print('\ncomplete.') | |||
print('\ncomplete.\n') | |||
def __init_output_file(ds_name, gkernel, fit_method, dir_output): | |||
def __init_output_file_preimage(ds_name, gkernel, fit_method, dir_output): | |||
if not os.path.exists(dir_output): | |||
os.makedirs(dir_output) | |||
# fn_output_detail = 'results_detail.' + ds_name + '.' + gkernel + '.' + fit_method + '.csv' | |||
@@ -335,9 +335,9 @@ def __init_output_file(ds_name, gkernel, fit_method, dir_output): | |||
'num updates ecc', 'mge num decrease order', 'mge num increase order', | |||
'mge num converged', '# SOD SM -> GM', '# dis_k SM -> GM', | |||
'# dis_k gi -> SM', '# dis_k gi -> GM']) | |||
# 'repeats better SOD SM -> GM', | |||
# 'repeats better dis_k SM -> GM', 'repeats better dis_k gi -> SM', | |||
# 'repeats better dis_k gi -> GM']) | |||
# 'repeats better SOD SM -> GM', | |||
# 'repeats better dis_k SM -> GM', 'repeats better dis_k gi -> SM', | |||
# 'repeats better dis_k gi -> GM']) | |||
f_summary.close() | |||
return fn_output_detail, fn_output_summary | |||
@@ -462,6 +462,8 @@ def gram2distances(Kmatrix): | |||
def kernel_distance_matrix(Gn, node_label, edge_label, Kmatrix=None, | |||
gkernel=None, verbose=True): | |||
import warnings | |||
warnings.warn('gklearn.preimage.utils.kernel_distance_matrix is deprecated, use gklearn.kernels.graph_kernel.compute_distance_matrix or gklearn.utils.compute_distance_matrix instead', DeprecationWarning) | |||
dis_mat = np.empty((len(Gn), len(Gn))) | |||
if Kmatrix is None: | |||
Kmatrix = compute_kernel(Gn, gkernel, node_label, edge_label, verbose) | |||
@@ -21,4 +21,6 @@ from gklearn.utils.timer import Timer | |||
from gklearn.utils.utils import get_graph_kernel_by_name | |||
from gklearn.utils.utils import compute_gram_matrices_by_class | |||
from gklearn.utils.utils import SpecialLabel | |||
from gklearn.utils.utils import normalize_gram_matrix, compute_distance_matrix | |||
from gklearn.utils.trie import Trie | |||
from gklearn.utils.knn import knn_cv, knn_classification |
@@ -522,6 +522,20 @@ class Dataset(object): | |||
self.__targets = [self.__targets[i] for i in idx] | |||
self.clean_labels() | |||
def copy(self): | |||
dataset = Dataset() | |||
graphs = self.__graphs.copy() if self.__graphs is not None else None | |||
target = self.__targets.copy() if self.__targets is not None else None | |||
node_labels = self.__node_labels.copy() if self.__node_labels is not None else None | |||
node_attrs = self.__node_attrs.copy() if self.__node_attrs is not None else None | |||
edge_labels = self.__edge_labels.copy() if self.__edge_labels is not None else None | |||
edge_attrs = self.__edge_attrs.copy() if self.__edge_attrs is not None else None | |||
dataset.load_graphs(graphs, target) | |||
dataset.set_labels(node_labels=node_labels, node_attrs=node_attrs, edge_labels=edge_labels, edge_attrs=edge_attrs) | |||
# @todo: clean_labels and add other class members? | |||
return dataset | |||
def __get_dataset_size(self): | |||
return len(self.__graphs) | |||
@@ -721,7 +735,11 @@ def split_dataset_by_target(dataset): | |||
sub_graphs = [graphs[i] for i in val] | |||
sub_dataset = Dataset() | |||
sub_dataset.load_graphs(sub_graphs, [key] * len(val)) | |||
sub_dataset.set_labels(node_labels=dataset.node_labels, node_attrs=dataset.node_attrs, edge_labels=dataset.edge_labels, edge_attrs=dataset.edge_attrs) | |||
node_labels = dataset.node_labels.copy() if dataset.node_labels is not None else None | |||
node_attrs = dataset.node_attrs.copy() if dataset.node_attrs is not None else None | |||
edge_labels = dataset.edge_labels.copy() if dataset.edge_labels is not None else None | |||
edge_attrs = dataset.edge_attrs.copy() if dataset.edge_attrs is not None else None | |||
sub_dataset.set_labels(node_labels=node_labels, node_attrs=node_attrs, edge_labels=edge_labels, edge_attrs=edge_attrs) | |||
datasets.append(sub_dataset) | |||
# @todo: clean_labels? | |||
return datasets |
@@ -0,0 +1,141 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Mon May 11 11:03:01 2020 | |||
@author: ljia | |||
""" | |||
import numpy as np | |||
from sklearn.model_selection import ShuffleSplit | |||
from sklearn.neighbors import KNeighborsClassifier | |||
from sklearn.metrics import accuracy_score | |||
from gklearn.utils.utils import get_graph_kernel_by_name | |||
# from gklearn.preimage.utils import get_same_item_indices | |||
def sum_squares(a, b): | |||
""" | |||
Return the sum of squares of the difference between a and b, aka MSE | |||
""" | |||
return np.sum([(a[i] - b[i])**2 for i in range(len(a))]) | |||
def euclid_d(x, y): | |||
""" | |||
1D euclidean distance | |||
""" | |||
return np.sqrt((x-y)**2) | |||
def man_d(x, y): | |||
""" | |||
1D manhattan distance | |||
""" | |||
return np.abs((x-y)) | |||
def knn_regression(D_app, D_test, y_app, y_test, n_neighbors, verbose=True, text=None): | |||
from sklearn.neighbors import KNeighborsRegressor | |||
knn = KNeighborsRegressor(n_neighbors=n_neighbors, metric='precomputed') | |||
knn.fit(D_app, y_app) | |||
y_pred = knn.predict(D_app) | |||
y_pred_test = knn.predict(D_test.T) | |||
perf_app = np.sqrt(sum_squares(y_pred, y_app)/len(y_app)) | |||
perf_test = np.sqrt(sum_squares(y_pred_test, y_test)/len(y_test)) | |||
if (verbose): | |||
print("Learning error with {} train examples : {}".format(text, perf_app)) | |||
print("Test error with {} train examples : {}".format(text, perf_test)) | |||
return perf_app, perf_test | |||
def knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=True, text=None): | |||
knn = KNeighborsClassifier(n_neighbors=n_neighbors, metric='precomputed') | |||
knn.fit(d_app, y_app) | |||
y_pred = knn.predict(d_app) | |||
y_pred_test = knn.predict(d_test.T) | |||
perf_app = accuracy_score(y_app, y_pred) | |||
perf_test = accuracy_score(y_test, y_pred_test) | |||
if (verbose): | |||
print("Learning accuracy with {} costs : {}".format(text, perf_app)) | |||
print("Test accuracy with {} costs : {}".format(text, perf_test)) | |||
return perf_app, perf_test | |||
def knn_cv(dataset, kernel_options, trainset=None, n_neighbors=1, n_splits=50, test_size=0.9, verbose=True): | |||
''' | |||
Perform a knn classification cross-validation on given dataset. | |||
''' | |||
# Gn = dataset.graphs | |||
y_all = dataset.targets | |||
# compute kernel distances. | |||
dis_mat = __compute_kernel_distances(dataset, kernel_options, trainset=trainset) | |||
rs = ShuffleSplit(n_splits=n_splits, test_size=test_size, random_state=0) | |||
# train_indices = [[] for _ in range(n_splits)] | |||
# test_indices = [[] for _ in range(n_splits)] | |||
# idx_targets = get_same_item_indices(y_all) | |||
# for key, item in idx_targets.items(): | |||
# i = 0 | |||
# for train_i, test_i in rs.split(item): # @todo: careful when parallel. | |||
# train_indices[i] += [item[idx] for idx in train_i] | |||
# test_indices[i] += [item[idx] for idx in test_i] | |||
# i += 1 | |||
accuracies = [] | |||
# for trial in range(len(train_indices)): | |||
# train_index = train_indices[trial] | |||
# test_index = test_indices[trial] | |||
for train_index, test_index in rs.split(y_all): | |||
# print(train_index, test_index) | |||
# G_app = [Gn[i] for i in train_index] | |||
# G_test = [Gn[i] for i in test_index] | |||
y_app = [y_all[i] for i in train_index] | |||
y_test = [y_all[i] for i in test_index] | |||
N = len(train_index) | |||
d_app = dis_mat.copy() | |||
d_app = d_app[train_index,:] | |||
d_app = d_app[:,train_index] | |||
d_test = np.zeros((N, len(test_index))) | |||
for i in range(N): | |||
for j in range(len(test_index)): | |||
d_test[i, j] = dis_mat[train_index[i], test_index[j]] | |||
accuracies.append(knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=verbose, text='')) | |||
results = {} | |||
results['ave_perf_train'] = np.mean([i[0] for i in accuracies], axis=0) | |||
results['std_perf_train'] = np.std([i[0] for i in accuracies], axis=0, ddof=1) | |||
results['ave_perf_test'] = np.mean([i[1] for i in accuracies], axis=0) | |||
results['std_perf_test'] = np.std([i[1] for i in accuracies], axis=0, ddof=1) | |||
return results | |||
def __compute_kernel_distances(dataset, kernel_options, trainset=None): | |||
graph_kernel = get_graph_kernel_by_name(kernel_options['name'], | |||
node_labels=dataset.node_labels, | |||
edge_labels=dataset.edge_labels, | |||
node_attrs=dataset.node_attrs, | |||
edge_attrs=dataset.edge_attrs, | |||
ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
kernel_options=kernel_options) | |||
gram_matrix, run_time = graph_kernel.compute(dataset.graphs, **kernel_options) | |||
dis_mat, _, _, _ = graph_kernel.compute_distance_matrix() | |||
if trainset is not None: | |||
gram_matrix_unnorm = graph_kernel.gram_matrix_unnorm | |||
return dis_mat |
@@ -467,9 +467,37 @@ def get_mlti_dim_edge_attrs(G, attr_names): | |||
attributes.append(tuple(attrs[aname] for aname in attr_names)) | |||
return attributes | |||
@unique | |||
class SpecialLabel(Enum): | |||
"""can be used to define special labels. | |||
""" | |||
DUMMY = 1 # The dummy label. | |||
# DUMMY = auto # enum.auto does not exist in Python 3.5. | |||
# DUMMY = auto # enum.auto does not exist in Python 3.5. | |||
def normalize_gram_matrix(gram_matrix): | |||
diag = gram_matrix.diagonal().copy() | |||
for i in range(len(gram_matrix)): | |||
for j in range(i, len(gram_matrix)): | |||
gram_matrix[i][j] /= np.sqrt(diag[i] * diag[j]) | |||
gram_matrix[j][i] = gram_matrix[i][j] | |||
return gram_matrix | |||
def compute_distance_matrix(gram_matrix): | |||
dis_mat = np.empty((len(gram_matrix), len(gram_matrix))) | |||
for i in range(len(gram_matrix)): | |||
for j in range(i, len(gram_matrix)): | |||
dis = gram_matrix[i, i] + gram_matrix[j, j] - 2 * gram_matrix[i, j] | |||
if dis < 0: | |||
if dis > -1e-10: | |||
dis = 0 | |||
else: | |||
raise ValueError('The distance is negative.') | |||
dis_mat[i, j] = np.sqrt(dis) | |||
dis_mat[j, i] = dis_mat[i, j] | |||
dis_max = np.max(np.max(dis_mat)) | |||
dis_min = np.min(np.min(dis_mat[dis_mat != 0])) | |||
dis_mean = np.mean(np.mean(dis_mat)) | |||
return dis_mat, dis_max, dis_min, dis_mean |