diff --git a/lang/zh/gklearn/preimage/remove_best_graph.py b/lang/zh/gklearn/preimage/remove_best_graph.py index d6be2a6..48b2b25 100644 --- a/lang/zh/gklearn/preimage/remove_best_graph.py +++ b/lang/zh/gklearn/preimage/remove_best_graph.py @@ -35,13 +35,13 @@ def remove_best_graph(ds_name, mpg_options, kernel_options, ged_options, mge_opt if save_results: # create result files. print('creating output files...') - fn_output_detail, fn_output_summary = __init_output_file(ds_name, kernel_options['name'], mpg_options['fit_method'], dir_save) + fn_output_detail, fn_output_summary = _init_output_file(ds_name, kernel_options['name'], mpg_options['fit_method'], dir_save) else: fn_output_detail, fn_output_summary = None, None # 2. compute/load Gram matrix a priori. print('2. computing/loading Gram matrix...') - gram_matrix_unnorm_list, time_precompute_gm_list = __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, datasets) + gram_matrix_unnorm_list, time_precompute_gm_list = _get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, datasets) sod_sm_list = [] sod_gm_list = [] @@ -82,7 +82,7 @@ def remove_best_graph(ds_name, mpg_options, kernel_options, ged_options, mge_opt # 3. get the best graph and remove it from median set. print('3. getting and removing the best graph...') gram_matrix_unnorm = gram_matrix_unnorm_list[idx - idx_offset] - best_index, best_dis, best_graph = __get_best_graph([g.copy() for g in dataset.graphs], normalize_gram_matrix(gram_matrix_unnorm.copy())) + best_index, best_dis, best_graph = _get_best_graph([g.copy() for g in dataset.graphs], normalize_gram_matrix(gram_matrix_unnorm.copy())) median_set_new = [dataset.graphs[i] for i in range(len(dataset.graphs)) if i != best_index] num_graphs -= 1 if num_graphs == 1: @@ -294,7 +294,7 @@ def remove_best_graph(ds_name, mpg_options, kernel_options, ged_options, mge_opt print('\ncomplete.\n') -def __get_best_graph(Gn, gram_matrix): +def _get_best_graph(Gn, gram_matrix): k_dis_list = [] for idx in range(len(Gn)): k_dis_list.append(compute_k_dis(idx, range(0, len(Gn)), [1 / len(Gn)] * len(Gn), gram_matrix, withterm3=False)) @@ -313,7 +313,7 @@ def get_relations(sign): return 'worse' -def __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, datasets): +def _get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, datasets): if load_gm == 'auto': gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz' gmfile_exist = os.path.isfile(os.path.abspath(gm_fname)) @@ -325,7 +325,7 @@ def __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, datasets): gram_matrix_unnorm_list = [] time_precompute_gm_list = [] for dataset in datasets: - gram_matrix_unnorm, time_precompute_gm = __compute_gram_matrix_unnorm(dataset, kernel_options) + gram_matrix_unnorm, time_precompute_gm = _compute_gram_matrix_unnorm(dataset, kernel_options) gram_matrix_unnorm_list.append(gram_matrix_unnorm) time_precompute_gm_list.append(time_precompute_gm) np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm_list=gram_matrix_unnorm_list, run_time_list=time_precompute_gm_list) @@ -333,7 +333,7 @@ def __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, datasets): gram_matrix_unnorm_list = [] time_precompute_gm_list = [] for dataset in datasets: - gram_matrix_unnorm, time_precompute_gm = __compute_gram_matrix_unnorm(dataset, kernel_options) + gram_matrix_unnorm, time_precompute_gm = _compute_gram_matrix_unnorm(dataset, kernel_options) gram_matrix_unnorm_list.append(gram_matrix_unnorm) time_precompute_gm_list.append(time_precompute_gm) np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm_list=gram_matrix_unnorm_list, run_time_list=time_precompute_gm_list) @@ -346,7 +346,7 @@ def __get_gram_matrix(load_gm, dir_save, ds_name, kernel_options, datasets): return gram_matrix_unnorm_list, time_precompute_gm_list -def __get_graph_kernel(dataset, kernel_options): +def _get_graph_kernel(dataset, kernel_options): from gklearn.utils.utils import get_graph_kernel_by_name graph_kernel = get_graph_kernel_by_name(kernel_options['name'], node_labels=dataset.node_labels, @@ -358,7 +358,7 @@ def __get_graph_kernel(dataset, kernel_options): return graph_kernel -def __compute_gram_matrix_unnorm(dataset, kernel_options): +def _compute_gram_matrix_unnorm(dataset, kernel_options): from gklearn.utils.utils import get_graph_kernel_by_name graph_kernel = get_graph_kernel_by_name(kernel_options['name'], node_labels=dataset.node_labels, @@ -374,7 +374,7 @@ def __compute_gram_matrix_unnorm(dataset, kernel_options): return gram_matrix_unnorm, run_time -def __init_output_file(ds_name, gkernel, fit_method, dir_output): +def _init_output_file(ds_name, gkernel, fit_method, dir_output): if not os.path.exists(dir_output): os.makedirs(dir_output) fn_output_detail = 'results_detail.' + ds_name + '.' + gkernel + '.csv'