Browse Source

New translations xp_simple_preimage.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
831d3ee562
1 changed files with 176 additions and 0 deletions
  1. +176
    -0
      lang/fr/gklearn/preimage/experiments/xp_simple_preimage.py

+ 176
- 0
lang/fr/gklearn/preimage/experiments/xp_simple_preimage.py View File

@@ -0,0 +1,176 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 12 10:30:17 2020

@author: ljia

This script constructs simple preimages to test preimage methods and find bugs and shortcomings in them.
"""


def xp_simple_preimage():
import numpy as np
"""**1. Get dataset.**"""

from gklearn.utils import Dataset, split_dataset_by_target
# Predefined dataset name, use dataset "MAO".
ds_name = 'MAO'
# The node/edge labels that will not be used in the computation.
irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']}
# Initialize a Dataset.
dataset_all = Dataset()
# Load predefined dataset "MAO".
dataset_all.load_predefined_dataset(ds_name)
# Remove irrelevant labels.
dataset_all.remove_labels(**irrelevant_labels)
# Split the whole dataset according to the classification targets.
datasets = split_dataset_by_target(dataset_all)
# Get the first class of graphs, whose median preimage will be computed.
dataset = datasets[0]
len(dataset.graphs)
"""**2. Set parameters.**"""
import multiprocessing
# Parameters for MedianPreimageGenerator (our method).
mpg_options = {'fit_method': 'k-graphs', # how to fit edit costs. "k-graphs" means use all graphs in median set when fitting.
'init_ecc': [4, 4, 2, 1, 1, 1], # initial edit costs.
'ds_name': ds_name, # name of the dataset.
'parallel': True, # whether the parallel scheme is to be used.
'time_limit_in_sec': 0, # maximum time limit to compute the preimage. If set to 0 then no limit.
'max_itrs': 10, # maximum iteration limit to optimize edit costs. If set to 0 then no limit.
'max_itrs_without_update': 3, # If the times that edit costs is not update is more than this number, then the optimization stops.
'epsilon_residual': 0.01, # In optimization, the residual is only considered changed if the change is bigger than this number.
'epsilon_ec': 0.1, # In optimization, the edit costs are only considered changed if the changes are bigger than this number.
'verbose': 2 # whether to print out results.
}
# Parameters for graph kernel computation.
kernel_options = {'name': 'PathUpToH', # use path kernel up to length h.
'depth': 9,
'k_func': 'MinMax',
'compute_method': 'trie',
'parallel': 'imap_unordered', # or None
'n_jobs': multiprocessing.cpu_count(),
'normalize': True, # whether to use normalized Gram matrix to optimize edit costs.
'verbose': 2 # whether to print out results.
}
# Parameters for GED computation.
ged_options = {'method': 'IPFP', # use IPFP huristic.
'initialization_method': 'RANDOM', # or 'NODE', etc.
'initial_solutions': 10, # when bigger than 1, then the method is considered mIPFP.
'edit_cost': 'CONSTANT', # use CONSTANT cost.
'attr_distance': 'euclidean', # the distance between non-symbolic node/edge labels is computed by euclidean distance.
'ratio_runs_from_initial_solutions': 1,
'threads': multiprocessing.cpu_count(), # parallel threads. Do not work if mpg_options['parallel'] = False.
'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'
}
# Parameters for MedianGraphEstimator (Boria's method).
mge_options = {'init_type': 'MEDOID', # how to initial median (compute set-median). "MEDOID" is to use the graph with smallest SOD.
'random_inits': 10, # number of random initialization when 'init_type' = 'RANDOM'.
'time_limit': 600, # maximum time limit to compute the generalized median. If set to 0 then no limit.
'verbose': 2, # whether to print out results.
'refine': False # whether to refine the final SODs or not.
}
print('done.')
"""**3. Compute the Gram matrix and distance matrix.**"""
from gklearn.utils.utils import get_graph_kernel_by_name
# Get a graph kernel instance.
graph_kernel = get_graph_kernel_by_name(kernel_options['name'],
node_labels=dataset.node_labels, edge_labels=dataset.edge_labels,
node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs,
ds_infos=dataset.get_dataset_infos(keys=['directed']),
kernel_options=kernel_options)
# Compute Gram matrix.
gram_matrix, run_time = graph_kernel.compute(dataset.graphs, **kernel_options)
# Compute distance matrix.
from gklearn.utils import compute_distance_matrix
dis_mat, _, _, _ = compute_distance_matrix(gram_matrix)
print('done.')

"""**4. Find the candidate graph.**"""
from gklearn.preimage.utils import compute_k_dis
# Number of the nearest neighbors.
k_neighbors = 10
# For each graph G in dataset, compute the distance between its image \Phi(G) and the mean of its neighbors' images.
dis_min = np.inf # the minimum distance between possible \Phi(G) and the mean of its neighbors.
for idx, G in enumerate(dataset.graphs):
# Find the k nearest neighbors of G.
dis_list = dis_mat[idx] # distance between \Phi(G) and image of each graphs.
idx_sort = np.argsort(dis_list) # sort distances and get the sorted indices.
idx_nearest = idx_sort[1:k_neighbors+1] # indices of the k-nearest neighbors.
dis_k_nearest = [dis_list[i] for i in idx_nearest] # k-nearest distances, except the 0.
G_k_nearest = [dataset.graphs[i] for i in idx_nearest] # k-nearest neighbors.
# Compute the distance between \Phi(G) and the mean of its neighbors.
dis_tmp = compute_k_dis(idx, # the index of G in Gram matrix.
idx_nearest, # the indices of the neighbors
[1 / k_neighbors] * k_neighbors, # coefficients for neighbors.
gram_matrix,
withterm3=False)
# Check if the new distance is smallers.
if dis_tmp < dis_min:
dis_min = dis_tmp
G_cand = G
G_neighbors = G_k_nearest
print('The minimum distance is', dis_min)
"""**5. Run median preimage generator.**"""
from gklearn.preimage import MedianPreimageGenerator
# Set the dataset as the k-nearest neighbors.
dataset.load_graphs(G_neighbors)
# Create median preimage generator instance.
mpg = MedianPreimageGenerator()
# Add dataset.
mpg.dataset = dataset
# Set parameters.
mpg.set_options(**mpg_options.copy())
mpg.kernel_options = kernel_options.copy()
mpg.ged_options = ged_options.copy()
mpg.mge_options = mge_options.copy()
# Run.
mpg.run()
"""**4. Get results.**"""
# Get results.
import pprint
pp = pprint.PrettyPrinter(indent=4) # pretty print
results = mpg.get_results()
pp.pprint(results)
draw_graph(mpg.set_median)
draw_graph(mpg.gen_median)
draw_graph(G_cand)


# Draw generated graphs.
def draw_graph(graph):
import matplotlib.pyplot as plt
import networkx as nx
plt.figure()
pos = nx.spring_layout(graph)
nx.draw(graph, pos, node_size=500, labels=nx.get_node_attributes(graph, 'atom_symbol'), font_color='w', width=3, with_labels=True)
plt.show()
plt.clf()
plt.close()


if __name__ == '__main__':
xp_simple_preimage()

Loading…
Cancel
Save