@@ -29,6 +29,7 @@ gklearn/kernels/*_sym.py | |||||
gklearn/preimage/* | gklearn/preimage/* | ||||
!gklearn/preimage/*.py | !gklearn/preimage/*.py | ||||
!gklearn/preimage/experiments/*.py | |||||
__pycache__ | __pycache__ | ||||
##*# | ##*# | ||||
@@ -70,6 +70,7 @@ class MedianGraphEstimator(object): | |||||
self.__num_increase_order = 0 | self.__num_increase_order = 0 | ||||
self.__num_converged_descents = 0 | self.__num_converged_descents = 0 | ||||
self.__state = AlgorithmState.TERMINATED | self.__state = AlgorithmState.TERMINATED | ||||
self.__label_names = {} | |||||
if ged_env is None: | if ged_env is None: | ||||
raise Exception('The GED environment pointer passed to the constructor of MedianGraphEstimator is null.') | raise Exception('The GED environment pointer passed to the constructor of MedianGraphEstimator is null.') | ||||
@@ -551,6 +552,7 @@ class MedianGraphEstimator(object): | |||||
self.__init_type_increase_order = 'K-MEANS++' | self.__init_type_increase_order = 'K-MEANS++' | ||||
self.__max_itrs_increase_order = 10 | self.__max_itrs_increase_order = 10 | ||||
self.__print_to_stdout = 2 | self.__print_to_stdout = 2 | ||||
self.__label_names = {} | |||||
def __construct_initial_medians(self, graph_ids, timer, initial_medians): | def __construct_initial_medians(self, graph_ids, timer, initial_medians): | ||||
@@ -824,19 +826,49 @@ class MedianGraphEstimator(object): | |||||
for node in g.nodes: | for node in g.nodes: | ||||
cost += 0 | cost += 0 | ||||
def set_label_names(self, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]): | |||||
self.__label_names = {'node_labels': node_labels, 'edge_labels': edge_labels, | |||||
'node_attrs': node_attrs, 'edge_attrs': edge_attrs} | |||||
def __get_median_node_label(self, node_labels): | def __get_median_node_label(self, node_labels): | ||||
if True: | |||||
if len(self.__label_names['node_labels']) > 0: | |||||
return self.__get_median_label_symbolic(node_labels) | |||||
elif len(self.__label_names['node_attrs']) > 0: | |||||
return self.__get_median_label_nonsymbolic(node_labels) | return self.__get_median_label_nonsymbolic(node_labels) | ||||
else: | else: | ||||
return self.__get_median_node_label_symbolic(node_labels) | |||||
raise Exception('Node label names are not given.') | |||||
def __get_median_edge_label(self, edge_labels): | def __get_median_edge_label(self, edge_labels): | ||||
if True: | |||||
if len(self.__label_names['edge_labels']) > 0: | |||||
return self.__get_median_label_symbolic(edge_labels) | |||||
elif len(self.__label_names['edge_attrs']) > 0: | |||||
return self.__get_median_label_nonsymbolic(edge_labels) | return self.__get_median_label_nonsymbolic(edge_labels) | ||||
else: | else: | ||||
return self.__get_median_edge_label_symbolic(edge_labels) | |||||
raise Exception('Edge label names are not given.') | |||||
def __get_median_label_symbolic(self, labels): | |||||
# Construct histogram. | |||||
hist = {} | |||||
for label in labels: | |||||
label = tuple([kv for kv in label.items()]) # @todo: this may be slow. | |||||
if label not in hist: | |||||
hist[label] = 1 | |||||
else: | |||||
hist[label] += 1 | |||||
# Return the label that appears most frequently. | |||||
best_count = 0 | |||||
median_label = {} | |||||
for label, count in hist.items(): | |||||
if count > best_count: | |||||
best_count = count | |||||
median_label = {kv[0]: kv[1] for kv in label} | |||||
return median_label | |||||
def __get_median_label_nonsymbolic(self, labels): | def __get_median_label_nonsymbolic(self, labels): | ||||
@@ -896,14 +928,10 @@ class MedianGraphEstimator(object): | |||||
for key, val in median.items(): | for key, val in median.items(): | ||||
median_label[key] = str(val) | median_label[key] = str(val) | ||||
return median_label | return median_label | ||||
def __get_median_node_label_symbolic(self, node_labels): | |||||
pass | |||||
def __get_median_edge_label_symbolic(self, edge_labels): | |||||
pass | |||||
# def __get_median_edge_label_symbolic(self, edge_labels): | |||||
# pass | |||||
# def __get_median_edge_label_nonsymbolic(self, edge_labels): | # def __get_median_edge_label_nonsymbolic(self, edge_labels): | ||||
@@ -9,6 +9,10 @@ Created on Wed Apr 1 15:12:31 2020 | |||||
def constant_node_costs(edit_cost_name): | def constant_node_costs(edit_cost_name): | ||||
if edit_cost_name == 'NON_SYMBOLIC' or edit_cost_name == 'LETTER2' or edit_cost_name == 'LETTER': | if edit_cost_name == 'NON_SYMBOLIC' or edit_cost_name == 'LETTER2' or edit_cost_name == 'LETTER': | ||||
return False | return False | ||||
elif edit_cost_name == 'CONSTANT': | |||||
return True | |||||
else: | |||||
raise Exception('Can not recognize the given edit cost. Possible edit costs include: "NON_SYMBOLIC", "LETTER", "LETTER2", "CONSTANT".') | |||||
# elif edit_cost_name != '': | # elif edit_cost_name != '': | ||||
# # throw ged::Error("Invalid dataset " + dataset + ". Usage: ./median_tests <AIDS|Mutagenicity|Letter-high|Letter-med|Letter-low|monoterpenoides|SYNTHETICnew|Fingerprint|COIL-DEL>"); | # # throw ged::Error("Invalid dataset " + dataset + ". Usage: ./median_tests <AIDS|Mutagenicity|Letter-high|Letter-med|Letter-low|monoterpenoides|SYNTHETICnew|Fingerprint|COIL-DEL>"); | ||||
# return False | # return False | ||||
@@ -58,7 +58,8 @@ def compute_geds(graphs, options={}, parallel=False): | |||||
ged_env.init_method() | ged_env.init_method() | ||||
# compute ged. | # compute ged. | ||||
neo_options = {'edit_cost': options['edit_cost'], | |||||
neo_options = {'edit_cost': options['edit_cost'], | |||||
'node_labels': options['node_labels'], 'edge_labels': options['edge_labels'], | |||||
'node_attrs': options['node_attrs'], 'edge_attrs': options['edge_attrs']} | 'node_attrs': options['node_attrs'], 'edge_attrs': options['edge_attrs']} | ||||
ged_mat = np.zeros((len(graphs), len(graphs))) | ged_mat = np.zeros((len(graphs), len(graphs))) | ||||
if parallel: | if parallel: | ||||
@@ -147,12 +148,18 @@ def get_nb_edit_operations(g1, g2, forward_map, backward_map, edit_cost=None, ** | |||||
edge_attrs = kwargs.get('edge_attrs', []) | edge_attrs = kwargs.get('edge_attrs', []) | ||||
return get_nb_edit_operations_nonsymbolic(g1, g2, forward_map, backward_map, | return get_nb_edit_operations_nonsymbolic(g1, g2, forward_map, backward_map, | ||||
node_attrs=node_attrs, edge_attrs=edge_attrs) | node_attrs=node_attrs, edge_attrs=edge_attrs) | ||||
elif edit_cost == 'CONSTANT': | |||||
node_labels = kwargs.get('node_labels', []) | |||||
edge_labels = kwargs.get('edge_labels', []) | |||||
return get_nb_edit_operations_symbolic(g1, g2, forward_map, backward_map, | |||||
node_labels=node_labels, edge_labels=edge_labels) | |||||
else: | else: | ||||
return get_nb_edit_operations_symbolic(g1, g2, forward_map, backward_map) | return get_nb_edit_operations_symbolic(g1, g2, forward_map, backward_map) | ||||
def get_nb_edit_operations_symbolic(g1, g2, forward_map, backward_map): | |||||
"""Compute the number of each edit operations. | |||||
def get_nb_edit_operations_symbolic(g1, g2, forward_map, backward_map, | |||||
node_labels=[], edge_labels=[]): | |||||
"""Compute the number of each edit operations for symbolic-labeled graphs. | |||||
""" | """ | ||||
n_vi = 0 | n_vi = 0 | ||||
n_vr = 0 | n_vr = 0 | ||||
@@ -165,8 +172,13 @@ def get_nb_edit_operations_symbolic(g1, g2, forward_map, backward_map): | |||||
for i, map_i in enumerate(forward_map): | for i, map_i in enumerate(forward_map): | ||||
if map_i == np.inf: | if map_i == np.inf: | ||||
n_vr += 1 | n_vr += 1 | ||||
elif g1.node[nodes1[i]]['atom'] != g2.node[map_i]['atom']: | |||||
n_vs += 1 | |||||
else: | |||||
for nl in node_labels: | |||||
label1 = g1.nodes[nodes1[i]][nl] | |||||
label2 = g2.nodes[map_i][nl] | |||||
if label1 != label2: | |||||
n_vs += 1 | |||||
break | |||||
for map_i in backward_map: | for map_i in backward_map: | ||||
if map_i == np.inf: | if map_i == np.inf: | ||||
n_vi += 1 | n_vi += 1 | ||||
@@ -185,15 +197,21 @@ def get_nb_edit_operations_symbolic(g1, g2, forward_map, backward_map): | |||||
elif (forward_map[idx1], forward_map[idx2]) in g2.edges(): | elif (forward_map[idx1], forward_map[idx2]) in g2.edges(): | ||||
nb_edges2_cnted += 1 | nb_edges2_cnted += 1 | ||||
# edge labels are different. | # edge labels are different. | ||||
if g2.edges[((forward_map[idx1], forward_map[idx2]))]['bond_type'] \ | |||||
!= g1.edges[(n1, n2)]['bond_type']: | |||||
for el in edge_labels: | |||||
label1 = g2.edges[((forward_map[idx1], forward_map[idx2]))][el] | |||||
label2 = g1.edges[(n1, n2)][el] | |||||
if label1 != label2: | |||||
n_es += 1 | n_es += 1 | ||||
break | |||||
elif (forward_map[idx2], forward_map[idx1]) in g2.edges(): | elif (forward_map[idx2], forward_map[idx1]) in g2.edges(): | ||||
nb_edges2_cnted += 1 | nb_edges2_cnted += 1 | ||||
# edge labels are different. | # edge labels are different. | ||||
if g2.edges[((forward_map[idx2], forward_map[idx1]))]['bond_type'] \ | |||||
!= g1.edges[(n1, n2)]['bond_type']: | |||||
n_es += 1 | |||||
for el in edge_labels: | |||||
label1 = g2.edges[((forward_map[idx2], forward_map[idx1]))][el] | |||||
label2 = g1.edges[(n1, n2)][el] | |||||
if label1 != label2: | |||||
n_es += 1 | |||||
break | |||||
# corresponding nodes are in g2, however the edge is removed. | # corresponding nodes are in g2, however the edge is removed. | ||||
else: | else: | ||||
n_er += 1 | n_er += 1 | ||||
@@ -262,6 +262,8 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
self.__edit_cost_constants = self.__init_ecc | self.__edit_cost_constants = self.__init_ecc | ||||
options = self.__ged_options.copy() | options = self.__ged_options.copy() | ||||
options['edit_cost_constants'] = self.__edit_cost_constants # @todo | options['edit_cost_constants'] = self.__edit_cost_constants # @todo | ||||
options['node_labels'] = self._dataset.node_labels | |||||
options['edge_labels'] = self._dataset.edge_labels | |||||
options['node_attrs'] = self._dataset.node_attrs | options['node_attrs'] = self._dataset.node_attrs | ||||
options['edge_attrs'] = self._dataset.edge_attrs | options['edge_attrs'] = self._dataset.edge_attrs | ||||
ged_vec_init, ged_mat, n_edit_operations = compute_geds(graphs, options=options, parallel=self.__parallel) | ged_vec_init, ged_mat, n_edit_operations = compute_geds(graphs, options=options, parallel=self.__parallel) | ||||
@@ -302,6 +304,8 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
# compute new GEDs and numbers of edit operations. | # compute new GEDs and numbers of edit operations. | ||||
options = self.__ged_options.copy() # np.array([self.__edit_cost_constants[0], self.__edit_cost_constants[1], 0.75]) | options = self.__ged_options.copy() # np.array([self.__edit_cost_constants[0], self.__edit_cost_constants[1], 0.75]) | ||||
options['edit_cost_constants'] = self.__edit_cost_constants # @todo | options['edit_cost_constants'] = self.__edit_cost_constants # @todo | ||||
options['node_labels'] = self._dataset.node_labels | |||||
options['edge_labels'] = self._dataset.edge_labels | |||||
options['node_attrs'] = self._dataset.node_attrs | options['node_attrs'] = self._dataset.node_attrs | ||||
options['edge_attrs'] = self._dataset.edge_attrs | options['edge_attrs'] = self._dataset.edge_attrs | ||||
ged_vec, ged_mat, n_edit_operations = compute_geds(graphs, options=options, parallel=self.__parallel) | ged_vec, ged_mat, n_edit_operations = compute_geds(graphs, options=options, parallel=self.__parallel) | ||||
@@ -451,7 +455,7 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4,5]] | nb_cost_mat_new = nb_cost_mat[:,[0,1,3,4,5]] | ||||
x = cp.Variable(nb_cost_mat_new.shape[1]) | x = cp.Variable(nb_cost_mat_new.shape[1]) | ||||
cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | ||||
constraints = [x >= [0.001 for i in range(nb_cost_mat_new.shape[1])], | |||||
constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])], | |||||
np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] | np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] | ||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | prob = cp.Problem(cp.Minimize(cost_fun), constraints) | ||||
self.__execute_cvx(prob) | self.__execute_cvx(prob) | ||||
@@ -524,17 +528,17 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0]).T@x >= 0.0, | np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0]).T@x >= 0.0, | ||||
np.array([0.0, 0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] | np.array([0.0, 0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] | ||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | prob = cp.Problem(cp.Minimize(cost_fun), constraints) | ||||
prob.solve() | |||||
self.__execute_cvx(prob) | |||||
edit_costs_new = x.value | edit_costs_new = x.value | ||||
residual = np.sqrt(prob.value) | residual = np.sqrt(prob.value) | ||||
elif is_n_attr and not is_e_attr: | elif is_n_attr and not is_e_attr: | ||||
nb_cost_mat_new = nb_cost_mat[:,[0,1,2,3,4]] | nb_cost_mat_new = nb_cost_mat[:,[0,1,2,3,4]] | ||||
x = cp.Variable(nb_cost_mat_new.shape[1]) | x = cp.Variable(nb_cost_mat_new.shape[1]) | ||||
cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | ||||
constraints = [x >= [0.001 for i in range(nb_cost_mat_new.shape[1])], | |||||
constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])], | |||||
np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] | np.array([1.0, 1.0, -1.0, 0.0, 0.0]).T@x >= 0.0] | ||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | prob = cp.Problem(cp.Minimize(cost_fun), constraints) | ||||
self.execute_cvx(prob) | |||||
self.__execute_cvx(prob) | |||||
edit_costs_new = np.concatenate((x.value, np.array([0.0]))) | edit_costs_new = np.concatenate((x.value, np.array([0.0]))) | ||||
residual = np.sqrt(prob.value) | residual = np.sqrt(prob.value) | ||||
elif not is_n_attr and is_e_attr: | elif not is_n_attr and is_e_attr: | ||||
@@ -544,7 +548,7 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])], | constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])], | ||||
np.array([0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] | np.array([0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] | ||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | prob = cp.Problem(cp.Minimize(cost_fun), constraints) | ||||
prob.solve() | |||||
self.__execute_cvx(prob) | |||||
edit_costs_new = np.concatenate((x.value[0:2], np.array([0.0]), x.value[2:])) | edit_costs_new = np.concatenate((x.value[0:2], np.array([0.0]), x.value[2:])) | ||||
residual = np.sqrt(prob.value) | residual = np.sqrt(prob.value) | ||||
else: | else: | ||||
@@ -553,10 +557,20 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | cost_fun = cp.sum_squares(nb_cost_mat_new * x - dis_k_vec) | ||||
constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])]] | constraints = [x >= [0.01 for i in range(nb_cost_mat_new.shape[1])]] | ||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | prob = cp.Problem(cp.Minimize(cost_fun), constraints) | ||||
prob.solve() | |||||
self.__execute_cvx(prob) | |||||
edit_costs_new = np.concatenate((x.value[0:2], np.array([0.0]), | edit_costs_new = np.concatenate((x.value[0:2], np.array([0.0]), | ||||
x.value[2:], np.array([0.0]))) | x.value[2:], np.array([0.0]))) | ||||
residual = np.sqrt(prob.value) | residual = np.sqrt(prob.value) | ||||
elif self.__ged_options['edit_cost'] == 'CONSTANT': # @todo: node/edge may not labeled. | |||||
x = cp.Variable(nb_cost_mat.shape[1]) | |||||
cost_fun = cp.sum_squares(nb_cost_mat * x - dis_k_vec) | |||||
constraints = [x >= [0.01 for i in range(nb_cost_mat.shape[1])], | |||||
np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0]).T@x >= 0.0, | |||||
np.array([0.0, 0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] | |||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | |||||
self.__execute_cvx(prob) | |||||
edit_costs_new = x.value | |||||
residual = np.sqrt(prob.value) | |||||
else: | else: | ||||
# # method 1: simple least square method. | # # method 1: simple least square method. | ||||
# edit_costs_new, residual, _, _ = np.linalg.lstsq(nb_cost_mat, dis_k_vec, | # edit_costs_new, residual, _, _ = np.linalg.lstsq(nb_cost_mat, dis_k_vec, | ||||
@@ -588,7 +602,7 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0]).T@x >= 0.0, | np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0]).T@x >= 0.0, | ||||
np.array([0.0, 0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] | np.array([0.0, 0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] | ||||
prob = cp.Problem(cp.Minimize(cost_fun), constraints) | prob = cp.Problem(cp.Minimize(cost_fun), constraints) | ||||
prob.solve() | |||||
self.__execute_cvx(prob) | |||||
edit_costs_new = x.value | edit_costs_new = x.value | ||||
residual = np.sqrt(prob.value) | residual = np.sqrt(prob.value) | ||||
@@ -647,6 +661,10 @@ class MedianPreimageGenerator(PreimageGenerator): | |||||
# Select the GED algorithm. | # Select the GED algorithm. | ||||
mge.set_options(mge_options_to_string(options)) | mge.set_options(mge_options_to_string(options)) | ||||
mge.set_label_names(node_labels=self._dataset.node_labels, | |||||
edge_labels=self._dataset.edge_labels, | |||||
node_attrs=self._dataset.node_attrs, | |||||
edge_attrs=self._dataset.edge_attrs) | |||||
mge.set_init_method(self.__ged_options['method'], ged_options_to_string(self.__ged_options)) | mge.set_init_method(self.__ged_options['method'], ged_options_to_string(self.__ged_options)) | ||||
mge.set_descent_method(self.__ged_options['method'], ged_options_to_string(self.__ged_options)) | mge.set_descent_method(self.__ged_options['method'], ged_options_to_string(self.__ged_options)) | ||||
@@ -37,7 +37,7 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||||
dataset_all.trim_dataset(edge_required=edge_required) | dataset_all.trim_dataset(edge_required=edge_required) | ||||
if irrelevant_labels is not None: | if irrelevant_labels is not None: | ||||
dataset_all.remove_labels(**irrelevant_labels) | dataset_all.remove_labels(**irrelevant_labels) | ||||
# dataset_all.cut_graphs(range(0, 100)) | |||||
# dataset_all.cut_graphs(range(0, 10)) | |||||
datasets = split_dataset_by_target(dataset_all) | datasets = split_dataset_by_target(dataset_all) | ||||
if save_results: | if save_results: | ||||
@@ -67,24 +67,7 @@ class Dataset(object): | |||||
def load_predefined_dataset(self, ds_name): | def load_predefined_dataset(self, ds_name): | ||||
current_path = os.path.dirname(os.path.realpath(__file__)) + '/' | current_path = os.path.dirname(os.path.realpath(__file__)) + '/' | ||||
if ds_name == 'Letter-high': # node non-symb | |||||
ds_file = current_path + '../../datasets/Letter-high/Letter-high_A.txt' | |||||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Letter-med': # node non-symb | |||||
ds_file = current_path + '../../datasets/Letter-high/Letter-med_A.txt' | |||||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Letter-low': # node non-symb | |||||
ds_file = current_path + '../../datasets/Letter-high/Letter-low_A.txt' | |||||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Fingerprint': | |||||
ds_file = current_path + '../../datasets/Fingerprint/Fingerprint_A.txt' | |||||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'SYNTHETIC': | |||||
pass | |||||
elif ds_name == 'SYNTHETICnew': | |||||
ds_file = current_path + '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt' | |||||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Synthie': | |||||
if ds_name == 'acyclic': | |||||
pass | pass | ||||
elif ds_name == 'COIL-DEL': | elif ds_name == 'COIL-DEL': | ||||
ds_file = current_path + '../../datasets/COIL-DEL/COIL-DEL_A.txt' | ds_file = current_path + '../../datasets/COIL-DEL/COIL-DEL_A.txt' | ||||
@@ -95,9 +78,31 @@ class Dataset(object): | |||||
elif ds_name == 'COLORS-3': | elif ds_name == 'COLORS-3': | ||||
ds_file = current_path + '../../datasets/COLORS-3/COLORS-3_A.txt' | ds_file = current_path + '../../datasets/COLORS-3/COLORS-3_A.txt' | ||||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | self.__graphs, self.__targets, label_names = load_dataset(ds_file) | ||||
elif ds_name == 'Fingerprint': | |||||
ds_file = current_path + '../../datasets/Fingerprint/Fingerprint_A.txt' | |||||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'FRANKENSTEIN': | elif ds_name == 'FRANKENSTEIN': | ||||
ds_file = current_path + '../../datasets/FRANKENSTEIN/FRANKENSTEIN_A.txt' | ds_file = current_path + '../../datasets/FRANKENSTEIN/FRANKENSTEIN_A.txt' | ||||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | self.__graphs, self.__targets, label_names = load_dataset(ds_file) | ||||
elif ds_name == 'Letter-high': # node non-symb | |||||
ds_file = current_path + '../../datasets/Letter-high/Letter-high_A.txt' | |||||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Letter-low': # node non-symb | |||||
ds_file = current_path + '../../datasets/Letter-high/Letter-low_A.txt' | |||||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Letter-med': # node non-symb | |||||
ds_file = current_path + '../../datasets/Letter-high/Letter-med_A.txt' | |||||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'MUTAG': | |||||
ds_file = current_path + '../../datasets/MUTAG/MUTAG_A.txt' | |||||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'SYNTHETIC': | |||||
pass | |||||
elif ds_name == 'SYNTHETICnew': | |||||
ds_file = current_path + '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt' | |||||
self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
elif ds_name == 'Synthie': | |||||
pass | |||||
self.__node_labels = label_names['node_labels'] | self.__node_labels = label_names['node_labels'] | ||||
self.__node_attrs = label_names['node_attrs'] | self.__node_attrs = label_names['node_attrs'] | ||||