Browse Source

New translations ged_env.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
8a5509d158
1 changed files with 733 additions and 0 deletions
  1. +733
    -0
      lang/fr/gklearn/ged/env/ged_env.py

+ 733
- 0
lang/fr/gklearn/ged/env/ged_env.py View File

@@ -0,0 +1,733 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 17 12:02:36 2020

@author: ljia
"""
import numpy as np
import networkx as nx
from gklearn.ged.env import Options, OptionsStringMap
from gklearn.ged.env import GEDData


class GEDEnv(object):

def __init__(self):
self.__initialized = False
self.__new_graph_ids = []
self.__ged_data = GEDData()
# Variables needed for approximating ged_instance_.
self.__lower_bounds = {}
self.__upper_bounds = {}
self.__runtimes = {}
self.__node_maps = {}
self.__original_to_internal_node_ids = []
self.__internal_to_original_node_ids = []
self.__ged_method = None
def set_edit_cost(self, edit_cost, edit_cost_constants=[]):
"""
/*!
* @brief Sets the edit costs to one of the predefined edit costs.
* @param[in] edit_costs Select one of the predefined edit costs.
* @param[in] edit_cost_constants Constants passed to the constructor of the edit cost class selected by @p edit_costs.
*/
"""
self.__ged_data._set_edit_cost(edit_cost, edit_cost_constants)
def add_graph(self, graph_name='', graph_class=''):
"""
/*!
* @brief Adds a new uninitialized graph to the environment. Call init() after calling this method.
* @param[in] graph_name The name of the added graph. Empty if not specified.
* @param[in] graph_class The class of the added graph. Empty if not specified.
* @return The ID of the newly added graph.
*/
"""
# @todo: graphs are not uninitialized.
self.__initialized = False
graph_id = self.__ged_data._num_graphs_without_shuffled_copies
self.__ged_data._num_graphs_without_shuffled_copies += 1
self.__new_graph_ids.append(graph_id)
self.__ged_data._graphs.append(nx.Graph())
self.__ged_data._graph_names.append(graph_name)
self.__ged_data._graph_classes.append(graph_class)
self.__original_to_internal_node_ids.append({})
self.__internal_to_original_node_ids.append({})
self.__ged_data._strings_to_internal_node_ids.append({})
self.__ged_data._internal_node_ids_to_strings.append({})
return graph_id
def clear_graph(self, graph_id):
"""
/*!
* @brief Clears and de-initializes a graph that has previously been added to the environment. Call init() after calling this method.
* @param[in] graph_id ID of graph that has to be cleared.
*/
"""
if graph_id > self.__ged_data.num_graphs_without_shuffled_copies():
raise Exception('The graph', self.get_graph_name(graph_id), 'has not been added to the environment.')
self.__ged_data._graphs[graph_id].clear()
self.__original_to_internal_node_ids[graph_id].clear()
self.__internal_to_original_node_ids[graph_id].clear()
self.__ged_data._strings_to_internal_node_ids[graph_id].clear()
self.__ged_data._internal_node_ids_to_strings[graph_id].clear()
self.__initialized = False
def add_node(self, graph_id, node_id, node_label):
"""
/*!
* @brief Adds a labeled node.
* @param[in] graph_id ID of graph that has been added to the environment.
* @param[in] node_id The user-specific ID of the vertex that has to be added.
* @param[in] node_label The label of the vertex that has to be added. Set to ged::NoLabel() if template parameter @p UserNodeLabel equals ged::NoLabel.
*/
"""
# @todo: check ids.
self.__initialized = False
internal_node_id = nx.number_of_nodes(self.__ged_data._graphs[graph_id])
self.__ged_data._graphs[graph_id].add_node(internal_node_id, label=node_label)
self.__original_to_internal_node_ids[graph_id][node_id] = internal_node_id
self.__internal_to_original_node_ids[graph_id][internal_node_id] = node_id
self.__ged_data._strings_to_internal_node_ids[graph_id][str(node_id)] = internal_node_id
self.__ged_data._internal_node_ids_to_strings[graph_id][internal_node_id] = str(node_id)
self.__ged_data._node_label_to_id(node_label)
label_id = self.__ged_data._node_label_to_id(node_label)
# @todo: ged_data_.graphs_[graph_id].set_label
def add_edge(self, graph_id, nd_from, nd_to, edge_label, ignore_duplicates=True):
"""
/*!
* @brief Adds a labeled edge.
* @param[in] graph_id ID of graph that has been added to the environment.
* @param[in] tail The user-specific ID of the tail of the edge that has to be added.
* @param[in] head The user-specific ID of the head of the edge that has to be added.
* @param[in] edge_label The label of the vertex that has to be added. Set to ged::NoLabel() if template parameter @p UserEdgeLabel equals ged::NoLabel.
* @param[in] ignore_duplicates If @p true, duplicate edges are ignores. Otherwise, an exception is thrown if an existing edge is added to the graph.
*/
"""
# @todo: check everything.
self.__initialized = False
# @todo: check ignore_duplicates.
self.__ged_data._graphs[graph_id].add_edge(self.__original_to_internal_node_ids[graph_id][nd_from], self.__original_to_internal_node_ids[graph_id][nd_to], label=edge_label)
label_id = self.__ged_data._edge_label_to_id(edge_label)
# @todo: ged_data_.graphs_[graph_id].set_label
def add_nx_graph(self, g, classe, ignore_duplicates=True) :
"""
Add a Graph (made by networkx) on the environment. Be careful to respect the same format as GXL graphs for labelling nodes and edges.
:param g: The graph to add (networkx graph)
:param ignore_duplicates: If True, duplicate edges are ignored, otherwise it's raise an error if an existing edge is added. True by default
:type g: networkx.graph
:type ignore_duplicates: bool
:return: The ID of the newly added graphe
:rtype: size_t
.. note:: The NX graph must respect the GXL structure. Please see how a GXL graph is construct.
"""
graph_id = self.add_graph(g.name, classe) # check if the graph name already exists.
for node in g.nodes: # @todo: if the keys of labels include int and str at the same time.
self.add_node(graph_id, node, tuple(sorted(g.nodes[node].items(), key=lambda kv: kv[0])))
for edge in g.edges:
self.add_edge(graph_id, edge[0], edge[1], tuple(sorted(g.edges[(edge[0], edge[1])].items(), key=lambda kv: kv[0])), ignore_duplicates)
return graph_id
def load_nx_graph(self, nx_graph, graph_id, graph_name='', graph_class=''):
"""
Loads NetworkX Graph into the GED environment.

Parameters
----------
nx_graph : NetworkX Graph object
The graph that should be loaded.
graph_id : int or None
The ID of a graph contained the environment (overwrite existing graph) or add new graph if `None`.
graph_name : string, optional
The name of newly added graph. The default is ''. Has no effect unless `graph_id` equals `None`.
graph_class : string, optional
The class of newly added graph. The default is ''. Has no effect unless `graph_id` equals `None`.

Returns
-------
int
The ID of the newly loaded graph.
"""
if graph_id is None: # @todo: undefined.
graph_id = self.add_graph(graph_name, graph_class)
else:
self.clear_graph(graph_id)
for node in nx_graph.nodes:
self.add_node(graph_id, node, tuple(sorted(nx_graph.nodes[node].items(), key=lambda kv: kv[0])))
for edge in nx_graph.edges:
self.add_edge(graph_id, edge[0], edge[1], tuple(sorted(nx_graph.edges[(edge[0], edge[1])].items(), key=lambda kv: kv[0])))
return graph_id
def init(self, init_type=Options.InitType.EAGER_WITHOUT_SHUFFLED_COPIES, print_to_stdout=False):
if isinstance(init_type, str):
init_type = OptionsStringMap.InitType[init_type]
# Throw an exception if no edit costs have been selected.
if self.__ged_data._edit_cost is None:
raise Exception('No edit costs have been selected. Call set_edit_cost() before calling init().')
# Return if the environment is initialized.
if self.__initialized:
return
# Set initialization type.
self.__ged_data._init_type = init_type
# @todo: Construct shuffled graph copies if necessary.
# Re-initialize adjacency matrices (also previously initialized graphs must be re-initialized because of possible re-allocation).
# @todo: setup_adjacency_matrix, don't know if neccessary.
self.__ged_data._max_num_nodes = np.max([nx.number_of_nodes(g) for g in self.__ged_data._graphs])
self.__ged_data._max_num_edges = np.max([nx.number_of_edges(g) for g in self.__ged_data._graphs])
# Initialize cost matrices if necessary.
if self.__ged_data._eager_init():
pass # @todo: init_cost_matrices_: 1. Update node cost matrix if new node labels have been added to the environment; 2. Update edge cost matrix if new edge labels have been added to the environment.
# Mark environment as initialized.
self.__initialized = True
self.__new_graph_ids.clear()
def is_initialized(self):
"""
/*!
* @brief Check if the environment is initialized.
* @return True if the environment is initialized.
*/
"""
return self.__initialized
def get_init_type(self):
"""
/*!
* @brief Returns the initialization type of the last initialization.
* @return Initialization type.
*/
"""
return self.__ged_data._init_type
def set_label_costs(self, node_label_costs=None, edge_label_costs=None):
"""Set the costs between labels.
"""
if node_label_costs is not None:
self.__ged_data._node_label_costs = node_label_costs
if edge_label_costs is not None:
self.__ged_data._edge_label_costs = edge_label_costs
def set_method(self, method, options=''):
"""
/*!
* @brief Sets the GEDMethod to be used by run_method().
* @param[in] method Select the method that is to be used.
* @param[in] options An options string of the form @"[--@<option@> @<arg@>] [...]@" passed to the selected method.
*/
"""
del self.__ged_method
if isinstance(method, str):
method = OptionsStringMap.GEDMethod[method]

if method == Options.GEDMethod.BRANCH:
self.__ged_method = Branch(self.__ged_data)
elif method == Options.GEDMethod.BRANCH_FAST:
self.__ged_method = BranchFast(self.__ged_data)
elif method == Options.GEDMethod.BRANCH_FAST:
self.__ged_method = BranchFast(self.__ged_data)
elif method == Options.GEDMethod.BRANCH_TIGHT:
self.__ged_method = BranchTight(self.__ged_data)
elif method == Options.GEDMethod.BRANCH_UNIFORM:
self.__ged_method = BranchUniform(self.__ged_data)
elif method == Options.GEDMethod.BRANCH_COMPACT:
self.__ged_method = BranchCompact(self.__ged_data)
elif method == Options.GEDMethod.PARTITION:
self.__ged_method = Partition(self.__ged_data)
elif method == Options.GEDMethod.HYBRID:
self.__ged_method = Hybrid(self.__ged_data)
elif method == Options.GEDMethod.RING:
self.__ged_method = Ring(self.__ged_data)
elif method == Options.GEDMethod.ANCHOR_AWARE_GED:
self.__ged_method = AnchorAwareGED(self.__ged_data)
elif method == Options.GEDMethod.WALKS:
self.__ged_method = Walks(self.__ged_data)
elif method == Options.GEDMethod.IPFP:
self.__ged_method = IPFP(self.__ged_data)
elif method == Options.GEDMethod.BIPARTITE:
from gklearn.ged.methods import Bipartite
self.__ged_method = Bipartite(self.__ged_data)
elif method == Options.GEDMethod.SUBGRAPH:
self.__ged_method = Subgraph(self.__ged_data)
elif method == Options.GEDMethod.NODE:
self.__ged_method = Node(self.__ged_data)
elif method == Options.GEDMethod.RING_ML:
self.__ged_method = RingML(self.__ged_data)
elif method == Options.GEDMethod.BIPARTITE_ML:
self.__ged_method = BipartiteML(self.__ged_data)
elif method == Options.GEDMethod.REFINE:
self.__ged_method = Refine(self.__ged_data)
elif method == Options.GEDMethod.BP_BEAM:
self.__ged_method = BPBeam(self.__ged_data)
elif method == Options.GEDMethod.SIMULATED_ANNEALING:
self.__ged_method = SimulatedAnnealing(self.__ged_data)
elif method == Options.GEDMethod.HED:
self.__ged_method = HED(self.__ged_data)
elif method == Options.GEDMethod.STAR:
self.__ged_method = STAR(self.__ged_data)
# #ifdef GUROBI
elif method == Options.GEDMethod.F1:
self.__ged_method = F1(self.__ged_data)
elif method == Options.GEDMethod.F2:
self.__ged_method = F2(self.__ged_data)
elif method == Options.GEDMethod.COMPACT_MIP:
self.__ged_method = CompactMIP(self.__ged_data)
elif method == Options.GEDMethod.BLP_NO_EDGE_LABELS:
self.__ged_method = BLPNoEdgeLabels(self.__ged_data)

self.__ged_method.set_options(options)
def run_method(self, g_id, h_id):
"""
/*!
* @brief Runs the GED method specified by call to set_method() between the graphs with IDs @p g_id and @p h_id.
* @param[in] g_id ID of an input graph that has been added to the environment.
* @param[in] h_id ID of an input graph that has been added to the environment.
*/
"""
if g_id >= self.__ged_data.num_graphs():
raise Exception('The graph with ID', str(g_id), 'has not been added to the environment.')
if h_id >= self.__ged_data.num_graphs():
raise Exception('The graph with ID', str(h_id), 'has not been added to the environment.')
if not self.__initialized:
raise Exception('The environment is uninitialized. Call init() after adding all graphs to the environment.')
if self.__ged_method is None:
raise Exception('No method has been set. Call set_method() before calling run().')
# Call selected GEDMethod and store results.
if self.__ged_data.shuffled_graph_copies_available() and (g_id == h_id):
self.__ged_method.run(g_id, self.__ged_data.id_shuffled_graph_copy(h_id)) # @todo: why shuffle?
else:
self.__ged_method.run(g_id, h_id)
self.__lower_bounds[(g_id, h_id)] = self.__ged_method.get_lower_bound()
self.__upper_bounds[(g_id, h_id)] = self.__ged_method.get_upper_bound()
self.__runtimes[(g_id, h_id)] = self.__ged_method.get_runtime()
self.__node_maps[(g_id, h_id)] = self.__ged_method.get_node_map()
def init_method(self):
"""Initializes the method specified by call to set_method().
"""
if not self.__initialized:
raise Exception('The environment is uninitialized. Call init() before calling init_method().')
if self.__ged_method is None:
raise Exception('No method has been set. Call set_method() before calling init_method().')
self.__ged_method.init()
def get_num_node_labels(self):
"""
/*!
* @brief Returns the number of node labels.
* @return Number of pairwise different node labels contained in the environment.
* @note If @p 1 is returned, the nodes are unlabeled.
*/
"""
return len(self.__ged_data._node_labels)
def get_all_node_labels(self):
"""
/*!
* @brief Returns the list of all node labels.
* @return List of pairwise different node labels contained in the environment.
* @note If @p 1 is returned, the nodes are unlabeled.
*/
"""
return self.__ged_data._node_labels
def get_node_label(self, label_id, to_dict=True):
"""
/*!
* @brief Returns node label.
* @param[in] label_id ID of node label that should be returned. Must be between 1 and num_node_labels().
* @return Node label for selected label ID.
*/
"""
if label_id < 1 or label_id > self.get_num_node_labels():
raise Exception('The environment does not contain a node label with ID', str(label_id), '.')
if to_dict:
return dict(self.__ged_data._node_labels[label_id - 1])
return self.__ged_data._node_labels[label_id - 1]
def get_num_edge_labels(self):
"""
/*!
* @brief Returns the number of edge labels.
* @return Number of pairwise different edge labels contained in the environment.
* @note If @p 1 is returned, the edges are unlabeled.
*/
"""
return len(self.__ged_data._edge_labels)
def get_all_edge_labels(self):
"""
/*!
* @brief Returns the list of all edge labels.
* @return List of pairwise different edge labels contained in the environment.
* @note If @p 1 is returned, the edges are unlabeled.
*/
"""
return self.__ged_data._edge_labels
def get_edge_label(self, label_id, to_dict=True):
"""
/*!
* @brief Returns edge label.
* @param[in] label_id ID of edge label that should be returned. Must be between 1 and num_node_labels().
* @return Edge label for selected label ID.
*/
"""
if label_id < 1 or label_id > self.get_num_edge_labels():
raise Exception('The environment does not contain an edge label with ID', str(label_id), '.')
if to_dict:
return dict(self.__ged_data._edge_labels[label_id - 1])
return self.__ged_data._edge_labels[label_id - 1]
def get_upper_bound(self, g_id, h_id):
"""
/*!
* @brief Returns upper bound for edit distance between the input graphs.
* @param[in] g_id ID of an input graph that has been added to the environment.
* @param[in] h_id ID of an input graph that has been added to the environment.
* @return Upper bound computed by the last call to run_method() with arguments @p g_id and @p h_id.
*/
"""
if (g_id, h_id) not in self.__upper_bounds:
raise Exception('Call run(' + str(g_id) + ',' + str(h_id) + ') before calling get_upper_bound(' + str(g_id) + ',' + str(h_id) + ').')
return self.__upper_bounds[(g_id, h_id)]
def get_lower_bound(self, g_id, h_id):
"""
/*!
* @brief Returns lower bound for edit distance between the input graphs.
* @param[in] g_id ID of an input graph that has been added to the environment.
* @param[in] h_id ID of an input graph that has been added to the environment.
* @return Lower bound computed by the last call to run_method() with arguments @p g_id and @p h_id.
*/
"""
if (g_id, h_id) not in self.__lower_bounds:
raise Exception('Call run(' + str(g_id) + ',' + str(h_id) + ') before calling get_lower_bound(' + str(g_id) + ',' + str(h_id) + ').')
return self.__lower_bounds[(g_id, h_id)]
def get_runtime(self, g_id, h_id):
"""
/*!
* @brief Returns runtime.
* @param[in] g_id ID of an input graph that has been added to the environment.
* @param[in] h_id ID of an input graph that has been added to the environment.
* @return Runtime of last call to run_method() with arguments @p g_id and @p h_id.
*/
"""
if (g_id, h_id) not in self.__runtimes:
raise Exception('Call run(' + str(g_id) + ',' + str(h_id) + ') before calling get_runtime(' + str(g_id) + ',' + str(h_id) + ').')
return self.__runtimes[(g_id, h_id)]

def get_init_time(self):
"""
/*!
* @brief Returns initialization time.
* @return Runtime of the last call to init_method().
*/
"""
return self.__ged_method.get_init_time()


def get_node_map(self, g_id, h_id):
"""
/*!
* @brief Returns node map between the input graphs.
* @param[in] g_id ID of an input graph that has been added to the environment.
* @param[in] h_id ID of an input graph that has been added to the environment.
* @return Node map computed by the last call to run_method() with arguments @p g_id and @p h_id.
*/
"""
if (g_id, h_id) not in self.__node_maps:
raise Exception('Call run(' + str(g_id) + ',' + str(h_id) + ') before calling get_node_map(' + str(g_id) + ',' + str(h_id) + ').')
return self.__node_maps[(g_id, h_id)]

def get_forward_map(self, g_id, h_id) :
"""
Returns the forward map (or the half of the adjacence matrix) between nodes of the two indicated graphs.
:param g: The Id of the first compared graph
:param h: The Id of the second compared graph
:type g: size_t
:type h: size_t
:return: The forward map to the adjacence matrix between nodes of the two graphs
:rtype: list[npy_uint32]
.. seealso:: run_method(), get_upper_bound(), get_lower_bound(), get_backward_map(), get_runtime(), quasimetric_cost(), get_node_map(), get_assignment_matrix()
.. warning:: run_method() between the same two graph must be called before this function.
.. note:: I don't know how to connect the two map to reconstruct the adjacence matrix. Please come back when I know how it's work !
"""
return self.get_node_map(g_id, h_id).forward_map
def get_backward_map(self, g_id, h_id) :
"""
Returns the backward map (or the half of the adjacence matrix) between nodes of the two indicated graphs.
:param g: The Id of the first compared graph
:param h: The Id of the second compared graph
:type g: size_t
:type h: size_t
:return: The backward map to the adjacence matrix between nodes of the two graphs
:rtype: list[npy_uint32]
.. seealso:: run_method(), get_upper_bound(), get_lower_bound(), get_forward_map(), get_runtime(), quasimetric_cost(), get_node_map(), get_assignment_matrix()
.. warning:: run_method() between the same two graph must be called before this function.
.. note:: I don't know how to connect the two map to reconstruct the adjacence matrix. Please come back when I know how it's work !
"""
return self.get_node_map(g_id, h_id).backward_map
def compute_induced_cost(self, g_id, h_id, node_map):
"""
/*!
* @brief Computes the edit cost between two graphs induced by a node map.
* @param[in] g_id ID of input graph.
* @param[in] h_id ID of input graph.
* @param[in,out] node_map Node map whose induced edit cost is to be computed.
*/
"""
self.__ged_data.compute_induced_cost(self.__ged_data._graphs[g_id], self.__ged_data._graphs[h_id], node_map)
def get_nx_graph(self, graph_id):
"""
* @brief Returns NetworkX.Graph() representation.
* @param[in] graph_id ID of the selected graph.
"""
graph = nx.Graph() # @todo: add graph attributes.
graph.graph['id'] = graph_id
nb_nodes = self.get_graph_num_nodes(graph_id)
original_node_ids = self.get_original_node_ids(graph_id)
node_labels = self.get_graph_node_labels(graph_id, to_dict=True)
graph.graph['original_node_ids'] = original_node_ids
for node_id in range(0, nb_nodes):
graph.add_node(node_id, **node_labels[node_id])
edges = self.get_graph_edges(graph_id, to_dict=True)
for (head, tail), labels in edges.items():
graph.add_edge(head, tail, **labels)

return graph
def get_graph_node_labels(self, graph_id, to_dict=True):
"""
Searchs and returns all the labels of nodes on a graph, selected by its ID.
:param graph_id: The ID of the wanted graph
:type graph_id: size_t
:return: The list of nodes' labels on the selected graph
:rtype: list[dict{string : string}]
.. seealso:: get_graph_internal_id(), get_graph_num_nodes(), get_graph_num_edges(), get_original_node_ids(), get_graph_edges(), get_graph_adjacence_matrix()
.. note:: These functions allow to collect all the graph's informations.
"""
graph = self.__ged_data.graph(graph_id)
node_labels = []
for n in graph.nodes():
node_labels.append(graph.nodes[n]['label'])
if to_dict:
return [dict(i) for i in node_labels]
return node_labels
def get_graph_edges(self, graph_id, to_dict=True):
"""
Searchs and returns all the edges on a graph, selected by its ID.
:param graph_id: The ID of the wanted graph
:type graph_id: size_t
:return: The list of edges on the selected graph
:rtype: dict{tuple(size_t, size_t) : dict{string : string}}
.. seealso::get_graph_internal_id(), get_graph_num_nodes(), get_graph_num_edges(), get_original_node_ids(), get_graph_node_labels(), get_graph_adjacence_matrix()
.. note:: These functions allow to collect all the graph's informations.
"""
graph = self.__ged_data.graph(graph_id)
if to_dict:
edges = {}
for n1, n2, attr in graph.edges(data=True):
edges[(n1, n2)] = dict(attr['label'])
return edges
return {(n1, n2): attr['label'] for n1, n2, attr in graph.edges(data=True)}

def get_graph_name(self, graph_id):
"""
/*!
* @brief Returns the graph name.
* @param[in] graph_id ID of an input graph that has been added to the environment.
* @return Name of the input graph.
*/
"""
return self.__ged_data._graph_names[graph_id]
def get_graph_num_nodes(self, graph_id):
"""
/*!
* @brief Returns the number of nodes.
* @param[in] graph_id ID of an input graph that has been added to the environment.
* @return Number of nodes in the graph.
*/
"""
return nx.number_of_nodes(self.__ged_data.graph(graph_id))
def get_original_node_ids(self, graph_id):
"""
Searchs and returns all th Ids of nodes on a graph, selected by its ID.
:param graph_id: The ID of the wanted graph
:type graph_id: size_t
:return: The list of IDs's nodes on the selected graph
:rtype: list[string]
.. seealso::get_graph_internal_id(), get_graph_num_nodes(), get_graph_num_edges(), get_graph_node_labels(), get_graph_edges(), get_graph_adjacence_matrix()
.. note:: These functions allow to collect all the graph's informations.
"""
return [i for i in self.__internal_to_original_node_ids[graph_id].values()]
def get_node_cost(self, node_label_1, node_label_2):
return self.__ged_data.node_cost(node_label_1, node_label_2)
def get_node_rel_cost(self, node_label_1, node_label_2):
"""
/*!
* @brief Returns node relabeling cost.
* @param[in] node_label_1 First node label.
* @param[in] node_label_2 Second node label.
* @return Node relabeling cost for the given node labels.
*/
"""
if isinstance(node_label_1, dict):
node_label_1 = tuple(sorted(node_label_1.items(), key=lambda kv: kv[0]))
if isinstance(node_label_2, dict):
node_label_2 = tuple(sorted(node_label_2.items(), key=lambda kv: kv[0]))
return self.__ged_data._edit_cost.node_rel_cost_fun(node_label_1, node_label_2) # @todo: may need to use node_cost() instead (or change node_cost() and modify ged_method for pre-defined cost matrices.)
def get_node_del_cost(self, node_label):
"""
/*!
* @brief Returns node deletion cost.
* @param[in] node_label Node label.
* @return Cost of deleting node with given label.
*/
"""
if isinstance(node_label, dict):
node_label = tuple(sorted(node_label.items(), key=lambda kv: kv[0]))
return self.__ged_data._edit_cost.node_del_cost_fun(node_label)
def get_node_ins_cost(self, node_label):
"""
/*!
* @brief Returns node insertion cost.
* @param[in] node_label Node label.
* @return Cost of inserting node with given label.
*/
"""
if isinstance(node_label, dict):
node_label = tuple(sorted(node_label.items(), key=lambda kv: kv[0]))
return self.__ged_data._edit_cost.node_ins_cost_fun(node_label)
def get_edge_cost(self, edge_label_1, edge_label_2):
return self.__ged_data.edge_cost(edge_label_1, edge_label_2)
def get_edge_rel_cost(self, edge_label_1, edge_label_2):
"""
/*!
* @brief Returns edge relabeling cost.
* @param[in] edge_label_1 First edge label.
* @param[in] edge_label_2 Second edge label.
* @return Edge relabeling cost for the given edge labels.
*/
"""
if isinstance(edge_label_1, dict):
edge_label_1 = tuple(sorted(edge_label_1.items(), key=lambda kv: kv[0]))
if isinstance(edge_label_2, dict):
edge_label_2 = tuple(sorted(edge_label_2.items(), key=lambda kv: kv[0]))
return self.__ged_data._edit_cost.edge_rel_cost_fun(edge_label_1, edge_label_2)
def get_edge_del_cost(self, edge_label):
"""
/*!
* @brief Returns edge deletion cost.
* @param[in] edge_label Edge label.
* @return Cost of deleting edge with given label.
*/
"""
if isinstance(edge_label, dict):
edge_label = tuple(sorted(edge_label.items(), key=lambda kv: kv[0]))
return self.__ged_data._edit_cost.edge_del_cost_fun(edge_label)
def get_edge_ins_cost(self, edge_label):
"""
/*!
* @brief Returns edge insertion cost.
* @param[in] edge_label Edge label.
* @return Cost of inserting edge with given label.
*/
"""
if isinstance(edge_label, dict):
edge_label = tuple(sorted(edge_label.items(), key=lambda kv: kv[0]))
return self.__ged_data._edit_cost.edge_ins_cost_fun(edge_label)
def get_all_graph_ids(self):
return [i for i in range(0, self.__ged_data._num_graphs_without_shuffled_copies)]

Loading…
Cancel
Save