@@ -4,6 +4,8 @@ python: | |||
- '3.6' | |||
- '3.7' | |||
- '3.8' | |||
- '3.9' | |||
#- '3.10' | |||
before_install: | |||
- python --version | |||
@@ -1,5 +1,6 @@ | |||
# graphkit-learn | |||
[](https://travis-ci.com/jajupmochi/graphkit-learn) | |||
[](https://app.travis-ci.com/jajupmochi/graphkit-learn) | |||
[](https://ci.appveyor.com/project/jajupmochi/graphkit-learn) | |||
[](https://codecov.io/gh/jajupmochi/graphkit-learn) | |||
[](https://graphkit-learn.readthedocs.io/en/master/?badge=master) | |||
@@ -1,147 +0,0 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Mon Nov 2 16:17:01 2020 | |||
@author: ljia | |||
""" | |||
# This script tests the influence of the ratios between node costs and edge costs on the stability of the GED computation, where the base edit costs are [1, 1, 1, 1, 1, 1]. The minimum solution from given numbers of repeats are computed. | |||
import os | |||
import multiprocessing | |||
import pickle | |||
import logging | |||
from gklearn.ged.util import compute_geds | |||
import time | |||
from utils import get_dataset | |||
import sys | |||
from group_results import group_trials | |||
def xp_compute_ged_matrix(dataset, ds_name, max_num_solutions, ratio, trial): | |||
save_file_suffix = '.' + ds_name + '.mnum_sols_' + str(max_num_solutions) + '.ratio_' + "{:.2f}".format(ratio) + '.trial_' + str(trial) | |||
# Return if the file exists. | |||
if os.path.isfile(save_dir + 'ged_matrix' + save_file_suffix + '.pkl'): | |||
return None, None | |||
"""**2. Set parameters.**""" | |||
# Parameters for GED computation. | |||
ged_options = {'method': 'BIPARTITE', # use BIPARTITE huristic. | |||
# 'initialization_method': 'RANDOM', # or 'NODE', etc. (for GEDEnv) | |||
'lsape_model': 'ECBP', # | |||
# ??when bigger than 1, then the method is considered mIPFP. | |||
# the actual number of computed solutions might be smaller than the specified value | |||
'max_num_solutions': max_num_solutions, | |||
'edit_cost': 'CONSTANT', # use CONSTANT cost. | |||
'greedy_method': 'BASIC', # | |||
# the distance between non-symbolic node/edge labels is computed by euclidean distance. | |||
'attr_distance': 'euclidean', | |||
'optimal': True, # if TRUE, the option --greedy-method has no effect | |||
# parallel threads. Do not work if mpg_options['parallel'] = False. | |||
'threads': multiprocessing.cpu_count(), | |||
'centrality_method': 'NONE', | |||
'centrality_weight': 0.7, | |||
'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES' | |||
} | |||
edit_cost_constants = [i * ratio for i in [1, 1, 1]] + [1, 1, 1] | |||
# edit_cost_constants = [item * 0.01 for item in edit_cost_constants] | |||
# pickle.dump(edit_cost_constants, open(save_dir + "edit_costs" + save_file_suffix + ".pkl", "wb")) | |||
options = ged_options.copy() | |||
options['edit_cost_constants'] = edit_cost_constants | |||
options['node_labels'] = dataset.node_labels | |||
options['edge_labels'] = dataset.edge_labels | |||
options['node_attrs'] = dataset.node_attrs | |||
options['edge_attrs'] = dataset.edge_attrs | |||
parallel = True # if num_solutions == 1 else False | |||
"""**5. Compute GED matrix.**""" | |||
ged_mat = 'error' | |||
runtime = 0 | |||
try: | |||
time0 = time.time() | |||
ged_vec_init, ged_mat, n_edit_operations = compute_geds(dataset.graphs, options=options, repeats=1, parallel=parallel, verbose=True) | |||
runtime = time.time() - time0 | |||
except Exception as exp: | |||
print('An exception occured when running this experiment:') | |||
LOG_FILENAME = save_dir + 'error.txt' | |||
logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | |||
logging.exception(save_file_suffix) | |||
print(repr(exp)) | |||
"""**6. Get results.**""" | |||
with open(save_dir + 'ged_matrix' + save_file_suffix + '.pkl', 'wb') as f: | |||
pickle.dump(ged_mat, f) | |||
with open(save_dir + 'runtime' + save_file_suffix + '.pkl', 'wb') as f: | |||
pickle.dump(runtime, f) | |||
return ged_mat, runtime | |||
def save_trials_as_group(dataset, ds_name, max_num_solutions, ratio): | |||
# Return if the group file exists. | |||
name_middle = '.' + ds_name + '.mnum_sols_' + str(max_num_solutions) + '.ratio_' + "{:.2f}".format(ratio) + '.' | |||
name_group = save_dir + 'groups/ged_mats' + name_middle + 'npy' | |||
if os.path.isfile(name_group): | |||
return | |||
ged_mats = [] | |||
runtimes = [] | |||
for trial in range(1, 101): | |||
print() | |||
print('Trial:', trial) | |||
ged_mat, runtime = xp_compute_ged_matrix(dataset, ds_name, max_num_solutions, ratio, trial) | |||
ged_mats.append(ged_mat) | |||
runtimes.append(runtime) | |||
# Group trials and Remove single files. | |||
name_prefix = 'ged_matrix' + name_middle | |||
group_trials(save_dir, name_prefix, True, True, False) | |||
name_prefix = 'runtime' + name_middle | |||
group_trials(save_dir, name_prefix, True, True, False) | |||
def results_for_a_dataset(ds_name): | |||
"""**1. Get dataset.**""" | |||
dataset = get_dataset(ds_name) | |||
for max_num_solutions in mnum_solutions_list: | |||
print() | |||
print('Max # of solutions:', max_num_solutions) | |||
for ratio in ratio_list: | |||
print() | |||
print('Ratio:', ratio) | |||
save_trials_as_group(dataset, ds_name, max_num_solutions, ratio) | |||
def get_param_lists(ds_name): | |||
if ds_name == 'AIDS_symb': | |||
mnum_solutions_list = [1, 20, 40, 60, 80, 100] | |||
ratio_list = [0.1, 0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9] | |||
else: | |||
mnum_solutions_list = [1, 20, 40, 60, 80, 100] | |||
ratio_list = [0.1, 0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9] | |||
return mnum_solutions_list, ratio_list | |||
if __name__ == '__main__': | |||
if len(sys.argv) > 1: | |||
ds_name_list = sys.argv[1:] | |||
else: | |||
ds_name_list = ['MAO', 'Monoterpenoides', 'MUTAG', 'AIDS_symb'] | |||
save_dir = 'outputs/edit_costs.max_num_sols.ratios.bipartite/' | |||
os.makedirs(save_dir, exist_ok=True) | |||
os.makedirs(save_dir + 'groups/', exist_ok=True) | |||
for ds_name in ds_name_list: | |||
print() | |||
print('Dataset:', ds_name) | |||
mnum_solutions_list, ratio_list = get_param_lists(ds_name) | |||
results_for_a_dataset(ds_name) |
@@ -13,7 +13,7 @@ import pickle | |||
import logging | |||
from gklearn.ged.util import compute_geds | |||
import time | |||
from utils import get_dataset, set_edit_cost_consts, dichotomous_permutation | |||
from utils import get_dataset, set_edit_cost_consts, dichotomous_permutation, mix_param_grids | |||
import sys | |||
from group_results import group_trials, check_group_existence, update_group_marker | |||
@@ -125,9 +125,10 @@ def get_param_lists(ds_name, mode='test'): | |||
elif mode == 'simple': | |||
from sklearn.model_selection import ParameterGrid | |||
param_grid = ParameterGrid([ | |||
{'num_solutions': dichotomous_permutation([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]), 'ratio': [10]}, | |||
{'num_solutions': [10], 'ratio': dichotomous_permutation([0.1, 0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9, 10])}]) | |||
param_grid = mix_param_grids([list(ParameterGrid([ | |||
{'num_solutions': dichotomous_permutation([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 40, 50, 60, 70, 80, 90, 100]), 'ratio': [10]}])), | |||
list(ParameterGrid([ | |||
{'num_solutions': [10], 'ratio': dichotomous_permutation([0.1, 0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9, 10])}]))]) | |||
# print(list(param_grid)) | |||
if ds_name == 'AIDS_symb': | |||
@@ -148,7 +149,7 @@ if __name__ == '__main__': | |||
# ds_name_list = ['MUTAG'] # 'Alkane_unlabeled'] | |||
# ds_name_list = ['Acyclic', 'MAO', 'Monoterpenoides', 'MUTAG', 'AIDS_symb'] | |||
save_dir = 'outputs/edit_costs.real_data.num_sols.ratios.IPFP/' | |||
save_dir = 'outputs/CRIANN/edit_costs.real_data.num_sols.ratios.IPFP/' | |||
os.makedirs(save_dir, exist_ok=True) | |||
os.makedirs(save_dir + 'groups/', exist_ok=True) | |||
@@ -0,0 +1,172 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Mon Nov 2 16:17:01 2020 | |||
@author: ljia | |||
""" | |||
# This script tests the influence of the ratios between node costs and edge costs on the stability of the GED computation, where the base edit costs are [1, 1, 1, 1, 1, 1]. The minimum solution from given numbers of repeats are computed. | |||
import os | |||
import multiprocessing | |||
import pickle | |||
import logging | |||
from gklearn.ged.util import compute_geds | |||
import time | |||
from utils import get_dataset, set_edit_cost_consts, dichotomous_permutation, mix_param_grids | |||
import sys | |||
from group_results import group_trials, check_group_existence, update_group_marker | |||
def xp_compute_ged_matrix(dataset, ds_name, num_solutions, ratio, trial): | |||
save_file_suffix = '.' + ds_name + '.num_sols_' + str(num_solutions) + '.ratio_' + "{:.2f}".format(ratio) + '.trial_' + str(trial) | |||
# Return if the file exists. | |||
if os.path.isfile(save_dir + 'ged_matrix' + save_file_suffix + '.pkl'): | |||
return None, None | |||
"""**2. Set parameters.**""" | |||
# Parameters for GED computation. | |||
ged_options = {'method': 'BIPARTITE', # use BIPARTITE huristic. | |||
# 'initialization_method': 'RANDOM', # or 'NODE', etc. (for GEDEnv) | |||
'lsape_model': 'ECBP', # | |||
# ??when bigger than 1, then the method is considered mIPFP. | |||
# the actual number of computed solutions might be smaller than the specified value | |||
'max_num_solutions': 1, # @ max_num_solutions, | |||
'edit_cost': 'CONSTANT', # use CONSTANT cost. | |||
'greedy_method': 'BASIC', # | |||
# the distance between non-symbolic node/edge labels is computed by euclidean distance. | |||
'attr_distance': 'euclidean', | |||
'optimal': True, # if TRUE, the option --greedy-method has no effect | |||
# parallel threads. Do not work if mpg_options['parallel'] = False. | |||
'threads': multiprocessing.cpu_count(), | |||
'centrality_method': 'NONE', | |||
'centrality_weight': 0.7, | |||
'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES' | |||
} | |||
edit_cost_constants = set_edit_cost_consts(ratio, | |||
node_labeled=len(dataset.node_labels), | |||
edge_labeled=len(dataset.edge_labels), | |||
mode='uniform') | |||
# edit_cost_constants = [item * 0.01 for item in edit_cost_constants] | |||
# pickle.dump(edit_cost_constants, open(save_dir + "edit_costs" + save_file_suffix + ".pkl", "wb")) | |||
options = ged_options.copy() | |||
options['edit_cost_constants'] = edit_cost_constants | |||
options['node_labels'] = dataset.node_labels | |||
options['edge_labels'] = dataset.edge_labels | |||
options['node_attrs'] = dataset.node_attrs | |||
options['edge_attrs'] = dataset.edge_attrs | |||
parallel = True # if num_solutions == 1 else False | |||
"""**5. Compute GED matrix.**""" | |||
ged_mat = 'error' | |||
runtime = 0 | |||
try: | |||
time0 = time.time() | |||
ged_vec_init, ged_mat, n_edit_operations = compute_geds(dataset.graphs, | |||
options=options, | |||
repeats=num_solutions, | |||
permute_nodes=True, | |||
random_state=None, | |||
parallel=parallel, | |||
verbose=True) | |||
runtime = time.time() - time0 | |||
except Exception as exp: | |||
print('An exception occured when running this experiment:') | |||
LOG_FILENAME = save_dir + 'error.txt' | |||
logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) | |||
logging.exception(save_file_suffix) | |||
print(repr(exp)) | |||
"""**6. Get results.**""" | |||
with open(save_dir + 'ged_matrix' + save_file_suffix + '.pkl', 'wb') as f: | |||
pickle.dump(ged_mat, f) | |||
with open(save_dir + 'runtime' + save_file_suffix + '.pkl', 'wb') as f: | |||
pickle.dump(runtime, f) | |||
return ged_mat, runtime | |||
def save_trials_as_group(dataset, ds_name, num_solutions, ratio): | |||
# Return if the group file exists. | |||
name_middle = '.' + ds_name + '.num_sols_' + str(num_solutions) + '.ratio_' + "{:.2f}".format(ratio) + '.' | |||
name_group = save_dir + 'groups/ged_mats' + name_middle + 'npy' | |||
if check_group_existence(name_group): | |||
return | |||
ged_mats = [] | |||
runtimes = [] | |||
num_trials = 100 | |||
for trial in range(1, num_trials + 1): | |||
print() | |||
print('Trial:', trial) | |||
ged_mat, runtime = xp_compute_ged_matrix(dataset, ds_name, num_solutions, ratio, trial) | |||
ged_mats.append(ged_mat) | |||
runtimes.append(runtime) | |||
# Group trials and remove single files. | |||
# @todo: if the program stops between the following lines, then there may be errors. | |||
name_prefix = 'ged_matrix' + name_middle | |||
group_trials(save_dir, name_prefix, True, True, False, num_trials=num_trials) | |||
name_prefix = 'runtime' + name_middle | |||
group_trials(save_dir, name_prefix, True, True, False, num_trials=num_trials) | |||
update_group_marker(name_group) | |||
def results_for_a_dataset(ds_name): | |||
"""**1. Get dataset.**""" | |||
dataset = get_dataset(ds_name) | |||
for params in list(param_grid): | |||
print() | |||
print(params) | |||
save_trials_as_group(dataset, ds_name, params['num_solutions'], params['ratio']) | |||
def get_param_lists(ds_name, mode='test'): | |||
if mode == 'test': | |||
num_solutions_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30] | |||
ratio_list = [10] | |||
return num_solutions_list, ratio_list | |||
elif mode == 'simple': | |||
from sklearn.model_selection import ParameterGrid | |||
param_grid = mix_param_grids([list(ParameterGrid([ | |||
{'num_solutions': dichotomous_permutation([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 40, 50, 60, 70, 80, 90, 100]), 'ratio': [10]}])), | |||
list(ParameterGrid([ | |||
{'num_solutions': [10], 'ratio': dichotomous_permutation([0.1, 0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9, 10])}]))]) | |||
# print(list(param_grid)) | |||
if ds_name == 'AIDS_symb': | |||
num_solutions_list = [1, 20, 40, 60, 80, 100] | |||
ratio_list = [0.1, 0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9] | |||
else: | |||
num_solutions_list = [1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] # [1, 20, 40, 60, 80, 100] | |||
ratio_list = [0.1, 0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9, 10][::-1] | |||
return param_grid | |||
if __name__ == '__main__': | |||
if len(sys.argv) > 1: | |||
ds_name_list = sys.argv[1:] | |||
else: | |||
ds_name_list = ['Acyclic', 'Alkane_unlabeled', 'MAO_lite', 'Monoterpenoides', 'MUTAG'] | |||
# ds_name_list = ['MUTAG'] # 'Alkane_unlabeled'] | |||
# ds_name_list = ['Acyclic', 'MAO', 'Monoterpenoides', 'MUTAG', 'AIDS_symb'] | |||
save_dir = 'outputs/CRIANN/edit_costs.real_data.nums_sols.ratios.bipartite/' | |||
os.makedirs(save_dir, exist_ok=True) | |||
os.makedirs(save_dir + 'groups/', exist_ok=True) | |||
for ds_name in ds_name_list: | |||
print() | |||
print('Dataset:', ds_name) | |||
param_grid = get_param_lists(ds_name, mode='simple') | |||
results_for_a_dataset(ds_name) |
@@ -32,6 +32,7 @@ def check_group_existence(file_name): | |||
def update_group_marker(file_name): | |||
# @todo: possible error when seveal tasks are using this file at the same time. | |||
path, name = os.path.split(file_name) | |||
marker_fn = os.path.join(path, 'group_names_finished.pkl') | |||
if os.path.isfile(marker_fn): | |||
@@ -9,36 +9,45 @@ import os | |||
import re | |||
cur_path = os.path.dirname(os.path.abspath(__file__)) | |||
def get_job_script(arg): | |||
script = r""" | |||
#!/bin/bash | |||
#SBATCH --exclusive | |||
#SBATCH --job-name="st.""" + arg + r""".bp" | |||
#SBATCH --partition=tlong | |||
#SBATCH --partition=court | |||
#SBATCH --mail-type=ALL | |||
#SBATCH --mail-user=jajupmochi@gmail.com | |||
#SBATCH --output="outputs/output_edit_costs.max_num_sols.ratios.bipartite.""" + arg + """.txt" | |||
#SBATCH --error="errors/error_edit_costs.max_num_sols.ratios.bipartite.""" + arg + """.txt" | |||
#SBATCH --output="outputs/output_edit_costs.real_data.nums_sols.ratios.bipartite.""" + arg + """.txt" | |||
#SBATCH --error="errors/error_edit_costs.real_data.nums_sols.ratios.bipartite.""" + arg + """.txt" | |||
# | |||
#SBATCH --ntasks=1 | |||
#SBATCH --nodes=1 | |||
#SBATCH --cpus-per-task=1 | |||
#SBATCH --time=300:00:00 | |||
#SBATCH --time=48:00:00 | |||
#SBATCH --mem-per-cpu=4000 | |||
srun hostname | |||
srun cd /home/2019015/ljia02/graphkit-learn/gklearn/experiments/ged/stability | |||
srun python3 edit_costs.max_nums_sols.ratios.bipartite.py """ + arg | |||
cd """ + cur_path + r""" | |||
echo Working directory : $PWD | |||
echo Local work dir : $LOCAL_WORK_DIR | |||
python3 edit_costs.real_data.nums_sols.ratios.bipartite.py """ + arg | |||
script = script.strip() | |||
script = re.sub('\n\t+', '\n', script) | |||
script = re.sub('\n +', '\n', script) | |||
return script | |||
if __name__ == '__main__': | |||
ds_list = ['MAO', 'Monoterpenoides', 'MUTAG', 'AIDS_symb'] | |||
for ds_name in [ds_list[i] for i in [0, 1, 2, 3]]: | |||
os.makedirs('outputs/', exist_ok=True) | |||
os.makedirs('errors/', exist_ok=True) | |||
ds_list = ['Acyclic', 'Alkane_unlabeled', 'MAO_lite', 'Monoterpenoides', 'MUTAG'] | |||
for ds_name in [ds_list[i] for i in [0, 1, 2, 3, 4]]: | |||
job_script = get_job_script(ds_name) | |||
command = 'sbatch <<EOF\n' + job_script + '\nEOF' | |||
# print(command) |
@@ -325,6 +325,22 @@ def dichotomous_permutation(arr, layer=0): | |||
# return new_arr | |||
def mix_param_grids(list_of_grids): | |||
mixed_grids = [] | |||
not_finished = [True] * len(list_of_grids) | |||
idx = 0 | |||
while sum(not_finished) > 0: | |||
for g_idx, grid in enumerate(list_of_grids): | |||
if idx < len(grid): | |||
mixed_grids.append(grid[idx]) | |||
else: | |||
not_finished[g_idx] = False | |||
idx += 1 | |||
return mixed_grids | |||
if __name__ == '__main__': | |||
root_dir = 'outputs/CRIANN/' | |||
# for dir_ in sorted(os.listdir(root_dir)): | |||
@@ -337,4 +353,4 @@ if __name__ == '__main__': | |||
# get_relative_errors(save_dir) | |||
# except Exception as exp: | |||
# print('An exception occured when running this experiment:') | |||
# print(repr(exp)) | |||
# print(repr(exp)) |
@@ -0,0 +1 @@ | |||
from gklearn.ged.model.ged_model import GEDModel |
@@ -0,0 +1,43 @@ | |||
import numpy as np | |||
def sum_squares(a, b): | |||
""" | |||
Return the sum of squares of the difference between a and b, aka MSE | |||
""" | |||
return np.sum([(a[i] - b[i])**2 for i in range(len(a))]) | |||
def euclid_d(x, y): | |||
""" | |||
1D euclidean distance | |||
""" | |||
return np.sqrt((x-y)**2) | |||
def man_d(x, y): | |||
""" | |||
1D manhattan distance | |||
""" | |||
return np.abs((x-y)) | |||
def classif_d(x, y): | |||
""" | |||
Function adapted to classification problems | |||
""" | |||
return np.array(0 if x == y else 1) | |||
def rmse(pred, ground_truth): | |||
import numpy as np | |||
return np.sqrt(sum_squares(pred, ground_truth)/len(ground_truth)) | |||
def accuracy(pred, ground_truth): | |||
import numpy as np | |||
return np.mean([a == b for a, b in zip(pred, ground_truth)]) | |||
def rbf_k(D, sigma=1): | |||
return np.exp(-(D**2)/sigma) |
@@ -0,0 +1,97 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Thu May 5 14:02:17 2022 | |||
@author: ljia | |||
""" | |||
import sys | |||
from gklearn.ged.model.distances import euclid_d | |||
from gklearn.ged.util import pairwise_ged, get_nb_edit_operations | |||
from gklearn.utils import get_iters | |||
def compute_ged(Gi, Gj, edit_cost, method='BIPARTITE', **kwargs): | |||
""" | |||
Compute GED between two graph according to edit_cost | |||
""" | |||
ged_options = {'edit_cost': 'CONSTANT', | |||
'method': method, | |||
'edit_cost_constants': edit_cost} | |||
node_labels = kwargs.get('node_labels', []) | |||
edge_labels = kwargs.get('edge_labels', []) | |||
dis, pi_forward, pi_backward = pairwise_ged(Gi, Gj, ged_options, repeats=10) | |||
n_eo_tmp = get_nb_edit_operations(Gi, Gj, pi_forward, pi_backward, edit_cost='CONSTANT', node_labels=node_labels, edge_labels=edge_labels) | |||
return dis, n_eo_tmp | |||
def compute_ged_all_dataset(Gn, edit_cost, ed_method, **kwargs): | |||
N = len(Gn) | |||
G_pairs = [] | |||
for i in range(N): | |||
for j in range(i, N): | |||
G_pairs.append([i, j]) | |||
return compute_geds(G_pairs, Gn, edit_cost, ed_method, **kwargs) | |||
def compute_geds(G_pairs, Gn, edit_cost, ed_method, verbose=True, **kwargs): | |||
""" | |||
Compute GED between all indexes in G_pairs given edit_cost | |||
:return: ged_vec : the list of computed distances, n_edit_operations : the list of edit operations | |||
""" | |||
ged_vec = [] | |||
n_edit_operations = [] | |||
for k in get_iters(range(len(G_pairs)), desc='Computing GED', file=sys.stdout, length=len(G_pairs), verbose=verbose): | |||
[i, j] = G_pairs[k] | |||
dis, n_eo_tmp = compute_ged( | |||
Gn[i], Gn[j], edit_cost=edit_cost, method=ed_method, **kwargs) | |||
ged_vec.append(dis) | |||
n_edit_operations.append(n_eo_tmp) | |||
return ged_vec, n_edit_operations | |||
def compute_D(G_app, edit_cost, G_test=None, ed_method='BIPARTITE', **kwargs): | |||
import numpy as np | |||
N = len(G_app) | |||
D_app = np.zeros((N, N)) | |||
for i, G1 in get_iters(enumerate(G_app), desc='Computing D - app', file=sys.stdout, length=N): | |||
for j, G2 in enumerate(G_app[i+1:], i+1): | |||
D_app[i, j], _ = compute_ged(G1, G2, edit_cost, method=ed_method, **kwargs) | |||
D_app[j, i] = D_app[i, j] | |||
if (G_test is None): | |||
return D_app, edit_cost | |||
else: | |||
D_test = np.zeros((len(G_test), N)) | |||
for i, G1 in get_iters(enumerate(G_test), desc='Computing D - test', file=sys.stdout, length=len(G_test)): | |||
for j, G2 in enumerate(G_app): | |||
D_test[i, j], _ = compute_ged(G1, G2, edit_cost, method=ed_method, **kwargs) | |||
return D_app, D_test, edit_cost | |||
def compute_D_random(G_app, G_test=None, ed_method='BIPARTITE', **kwargs): | |||
import numpy as np | |||
edit_costs = np.random.rand(6) | |||
return compute_D(G_app, edit_costs, G_test, ed_method=ed_method, **kwargs) | |||
def compute_D_expert(G_app, G_test=None, ed_method='BIPARTITE', **kwargs): | |||
edit_cost = [3, 3, 1, 3, 3, 1] | |||
return compute_D(G_app, edit_cost, G_test, ed_method=ed_method, **kwargs) | |||
def compute_D_fitted(G_app, y_app, G_test=None, y_distance=euclid_d, | |||
mode='reg', unlabeled=False, ed_method='BIPARTITE', **kwargs): | |||
from gklearn.ged.models.optim_costs import compute_optimal_costs | |||
costs_optim = compute_optimal_costs( | |||
G_app, y_app, y_distance=y_distance, | |||
mode=mode, unlabeled=unlabeled, ed_method=ed_method, **kwargs) | |||
return compute_D(G_app, costs_optim, G_test, ed_method=ed_method, **kwargs) | |||
def compute_D_GH2020(G_app, G_test=None, ed_method='BIPARTITE', **kwargs): | |||
from gklearn.ged.optim_costs import get_optimal_costs_GH2020 | |||
costs_optim = get_optimal_costs_GH2020(**kwargs) | |||
return compute_D(G_app, costs_optim, G_test, ed_method=ed_method, **kwargs) |
@@ -0,0 +1,724 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Thu May 5 09:42:30 2022 | |||
@author: ljia | |||
""" | |||
import sys | |||
import multiprocessing | |||
import time | |||
import numpy as np | |||
import networkx as nx | |||
# from abc import ABC, abstractmethod | |||
from sklearn.base import BaseEstimator # , TransformerMixin | |||
from sklearn.utils.validation import check_is_fitted # check_X_y, check_array, | |||
from sklearn.exceptions import NotFittedError | |||
from gklearn.ged.model.distances import euclid_d | |||
from gklearn.ged.util import pairwise_ged, get_nb_edit_operations | |||
# from gklearn.utils import normalize_gram_matrix | |||
from gklearn.utils import get_iters | |||
class GEDModel(BaseEstimator): #, ABC): | |||
"""The graph edit distance model class compatible with `scikit-learn`. | |||
Attributes | |||
---------- | |||
_graphs : list | |||
Stores the input graphs on fit input data. | |||
Default format of the list objects is `NetworkX` graphs. | |||
**We don't guarantee that the input graphs remain unchanged during the | |||
computation.** | |||
References | |||
---------- | |||
https://ysig.github.io/GraKeL/0.1a8/_modules/grakel/kernels/kernel.html#Kernel. | |||
""" | |||
def __init__(self, | |||
ed_method='BIPARTITE', | |||
edit_cost_fun='CONSTANT', | |||
init_edit_cost_constants=[3, 3, 1, 3, 3, 1], | |||
optim_method='init', | |||
optim_options={'y_distance': euclid_d, 'mode': 'reg'}, | |||
node_labels=[], | |||
edge_labels=[], | |||
parallel=None, | |||
n_jobs=None, | |||
chunksize=None, | |||
# normalize=True, | |||
copy_graphs=True, # make sure it is a full deep copy. and faster! | |||
verbose=2): | |||
"""`__init__` for `GEDModel` object.""" | |||
# @todo: the default settings of the parameters are different from those in the self.compute method. | |||
# self._graphs = None | |||
self.ed_method = ed_method | |||
self.edit_cost_fun = edit_cost_fun | |||
self.init_edit_cost_constants = init_edit_cost_constants | |||
self.optim_method=optim_method | |||
self.optim_options=optim_options | |||
self.node_labels=node_labels | |||
self.edge_labels=edge_labels | |||
self.parallel = parallel | |||
self.n_jobs = n_jobs | |||
self.chunksize = chunksize | |||
# self.normalize = normalize | |||
self.copy_graphs = copy_graphs | |||
self.verbose = verbose | |||
# self._run_time = 0 | |||
# self._gram_matrix = None | |||
# self._gram_matrix_unnorm = None | |||
########################################################################## | |||
# The following is the 1st paradigm to compute GED distance matrix, which is | |||
# compatible with `scikit-learn`. | |||
########################################################################## | |||
def fit(self, X, y=None): | |||
"""Fit a graph dataset for a transformer. | |||
Parameters | |||
---------- | |||
X : iterable | |||
DESCRIPTION. | |||
y : None, optional | |||
There is no need of a target in a transformer, yet the `scikit-learn` | |||
pipeline API requires this parameter. | |||
Returns | |||
------- | |||
object | |||
Returns self. | |||
""" | |||
# self._is_tranformed = False | |||
# Clear any prior attributes stored on the estimator, # @todo: unless warm_start is used; | |||
self.clear_attributes() | |||
# Validate parameters for the transformer. | |||
self.validate_parameters() | |||
# Validate the input. | |||
self._graphs = self.validate_input(X) | |||
if y is not None: | |||
self._targets = y | |||
# self._targets = self.validate_input(y) | |||
# self._X = X | |||
# self._kernel = self._get_kernel_instance() | |||
# Return the transformer. | |||
return self | |||
def transform(self, X=None, return_dm_train=False): | |||
"""Compute the graph kernel matrix between given and fitted data. | |||
Parameters | |||
---------- | |||
X : TYPE | |||
DESCRIPTION. | |||
Raises | |||
------ | |||
ValueError | |||
DESCRIPTION. | |||
Returns | |||
------- | |||
None. | |||
""" | |||
# If `return_dm_train`, return the fitted GED distance matrix of training data. | |||
if return_dm_train: | |||
check_is_fitted(self, '_dm_train') | |||
self._is_transformed = True | |||
return self._dm_train # @todo: copy or not? | |||
# Check if method "fit" had been called. | |||
check_is_fitted(self, '_graphs') | |||
# Validate the input. | |||
Y = self.validate_input(X) | |||
# Transform: compute the graph kernel matrix. | |||
dis_matrix = self.compute_distance_matrix(Y) | |||
self._Y = Y | |||
# Self transform must appear before the diagonal call on normilization. | |||
self._is_transformed = True | |||
# if self.normalize: | |||
# X_diag, Y_diag = self.diagonals() | |||
# old_settings = np.seterr(invalid='raise') # Catch FloatingPointError: invalid value encountered in sqrt. | |||
# try: | |||
# kernel_matrix /= np.sqrt(np.outer(Y_diag, X_diag)) | |||
# except: | |||
# raise | |||
# finally: | |||
# np.seterr(**old_settings) | |||
return dis_matrix | |||
def fit_transform(self, X, y=None, save_dm_train=False): | |||
"""Fit and transform: compute GED distance matrix on the same data. | |||
Parameters | |||
---------- | |||
X : list of graphs | |||
Input graphs. | |||
Returns | |||
------- | |||
dis_matrix : numpy array, shape = [len(X), len(X)] | |||
The distance matrix of X. | |||
""" | |||
self.fit(X, y) | |||
# Compute edit cost constants. | |||
self.compute_edit_costs() | |||
# Transform: compute Gram matrix. | |||
dis_matrix = self.compute_distance_matrix() | |||
# # Normalize. | |||
# if self.normalize: | |||
# self._X_diag = np.diagonal(gram_matrix).copy() | |||
# old_settings = np.seterr(invalid='raise') # Catch FloatingPointError: invalid value encountered in sqrt. | |||
# try: | |||
# gram_matrix /= np.sqrt(np.outer(self._X_diag, self._X_diag)) | |||
# except: | |||
# raise | |||
# finally: | |||
# np.seterr(**old_settings) | |||
if save_dm_train: | |||
self._dm_train = dis_matrix | |||
return dis_matrix | |||
def get_params(self): | |||
pass | |||
def set_params(self): | |||
pass | |||
def clear_attributes(self): # @todo: update | |||
# if hasattr(self, '_X_diag'): | |||
# delattr(self, '_X_diag') | |||
if hasattr(self, '_graphs'): | |||
delattr(self, '_graphs') | |||
if hasattr(self, '_Y'): | |||
delattr(self, '_Y') | |||
if hasattr(self, '_run_time'): | |||
delattr(self, '_run_time') | |||
def validate_parameters(self): | |||
"""Validate all parameters for the transformer. | |||
Returns | |||
------- | |||
None. | |||
""" | |||
if self.parallel is not None and self.parallel != 'imap_unordered': | |||
raise ValueError('Parallel mode is not set correctly.') | |||
if self.parallel == 'imap_unordered' and self.n_jobs is None: | |||
self.n_jobs = multiprocessing.cpu_count() | |||
def validate_input(self, X): | |||
"""Validate the given input and raise errors if it is invalid. | |||
Parameters | |||
---------- | |||
X : list | |||
The input to check. Should be a list of graph. | |||
Raises | |||
------ | |||
ValueError | |||
Raise if the input is not correct. | |||
Returns | |||
------- | |||
X : list | |||
The input. A list of graph. | |||
""" | |||
if X is None: | |||
raise ValueError('Please add graphs before computing.') | |||
elif not isinstance(X, list): | |||
raise ValueError('Cannot detect graphs. The input must be a list.') | |||
elif len(X) == 0: | |||
raise ValueError('The graph list given is empty. No computation will be performed.') | |||
return X | |||
def compute_distance_matrix(self, Y=None): | |||
"""Compute the distance matrix between a given target graphs (Y) and | |||
the fitted graphs (X / self._graphs) or the distance matrix for the fitted | |||
graphs (X / self._graphs). | |||
Parameters | |||
---------- | |||
Y : list of graphs, optional | |||
The target graphs. The default is None. If None kernel is computed | |||
between X and itself. | |||
Returns | |||
------- | |||
kernel_matrix : numpy array, shape = [n_targets, n_inputs] | |||
The computed kernel matrix. | |||
""" | |||
if Y is None: | |||
# Compute Gram matrix for self._graphs (X). | |||
dis_matrix = self._compute_X_distance_matrix() | |||
# self._gram_matrix_unnorm = np.copy(self._gram_matrix) | |||
else: | |||
# Compute kernel matrix between Y and self._graphs (X). | |||
start_time = time.time() | |||
if self.parallel == 'imap_unordered': | |||
dis_matrix = self._compute_distance_matrix_imap_unordered(Y) | |||
elif self.parallel is None: | |||
Y_copy = ([g.copy() for g in Y] if self.copy_graphs else Y) | |||
graphs_copy = ([g.copy() for g in self._graphs] if self.copy_graphs else self._graphs) | |||
dis_matrix = self._compute_distance_matrix_series(Y_copy, graphs_copy) | |||
self._run_time = time.time() - start_time | |||
if self.verbose: | |||
print('Distance matrix of size (%d, %d) built in %s seconds.' | |||
% (len(Y), len(self._graphs), self._run_time)) | |||
return dis_matrix | |||
def _compute_distance_matrix_series(self, X, Y): | |||
"""Compute the GED distance matrix between two sets of graphs (X and Y) | |||
without parallelization. | |||
Parameters | |||
---------- | |||
X, Y : list of graphs | |||
The input graphs. | |||
Returns | |||
------- | |||
dis_matrix : numpy array, shape = [n_X, n_Y] | |||
The computed distance matrix. | |||
""" | |||
dis_matrix = np.zeros((len(X), len(Y))) | |||
for i_x, g_x in enumerate(X): | |||
for i_y, g_y in enumerate(Y): | |||
dis_matrix[i_x, i_y], _ = self.compute_ged(g_x, g_y) | |||
return dis_matrix | |||
def _compute_kernel_matrix_imap_unordered(self, Y): | |||
"""Compute the kernel matrix between a given target graphs (Y) and | |||
the fitted graphs (X / self._graphs) using imap unordered parallelization. | |||
Parameters | |||
---------- | |||
Y : list of graphs, optional | |||
The target graphs. | |||
Returns | |||
------- | |||
kernel_matrix : numpy array, shape = [n_targets, n_inputs] | |||
The computed kernel matrix. | |||
""" | |||
raise Exception('Parallelization for kernel matrix is not implemented.') | |||
def diagonals(self): | |||
"""Compute the kernel matrix diagonals of the fit/transformed data. | |||
Returns | |||
------- | |||
X_diag : numpy array | |||
The diagonal of the kernel matrix between the fitted data. | |||
This consists of each element calculated with itself. | |||
Y_diag : numpy array | |||
The diagonal of the kernel matrix, of the transform. | |||
This consists of each element calculated with itself. | |||
""" | |||
# Check if method "fit" had been called. | |||
check_is_fitted(self, ['_graphs']) | |||
# Check if the diagonals of X exist. | |||
try: | |||
check_is_fitted(self, ['_X_diag']) | |||
except NotFittedError: | |||
# Compute diagonals of X. | |||
self._X_diag = np.empty(shape=(len(self._graphs),)) | |||
graphs = ([g.copy() for g in self._graphs] if self.copy_graphs else self._graphs) | |||
for i, x in enumerate(graphs): | |||
self._X_diag[i] = self.pairwise_kernel(x, x) # @todo: parallel? | |||
try: | |||
# If transform has happened, return both diagonals. | |||
check_is_fitted(self, ['_Y']) | |||
self._Y_diag = np.empty(shape=(len(self._Y),)) | |||
Y = ([g.copy() for g in self._Y] if self.copy_graphs else self._Y) | |||
for (i, y) in enumerate(Y): | |||
self._Y_diag[i] = self.pairwise_kernel(y, y) # @todo: parallel? | |||
return self._X_diag, self._Y_diag | |||
except NotFittedError: | |||
# Else just return both X_diag | |||
return self._X_diag | |||
# @abstractmethod | |||
def pairwise_distance(self, x, y): | |||
"""Compute pairwise kernel between two graphs. | |||
Parameters | |||
---------- | |||
x, y : NetworkX Graph. | |||
Graphs bewteen which the kernel is computed. | |||
Returns | |||
------- | |||
kernel: float | |||
The computed kernel. | |||
# Notes | |||
# ----- | |||
# This method is abstract and must be implemented by a subclass. | |||
""" | |||
raise NotImplementedError('Pairwise kernel computation is not implemented!') | |||
def compute_edit_costs(self, Y=None, Y_targets=None): | |||
"""Compute edit cost constants. When optimizing method is `fiited`, | |||
apply Jia2021's metric learning method by using a given target graphs (Y) | |||
the fitted graphs (X / self._graphs). | |||
Parameters | |||
---------- | |||
Y : TYPE, optional | |||
DESCRIPTION. The default is None. | |||
Returns | |||
------- | |||
None. | |||
""" | |||
# Get or compute. | |||
if self.optim_method == 'random': | |||
self._edit_cost_constants = np.random.rand(6) | |||
elif self.optim_method == 'init': | |||
self._edit_cost_constants = self.init_edit_cost_constants | |||
elif self.optim_method == 'expert': | |||
self._edit_cost_constants = [3, 3, 1, 3, 3, 1] | |||
elif self.optim_method == 'fitted': # Jia2021 method | |||
# Get proper inputs. | |||
if Y is None: | |||
check_is_fitted(self, ['_graphs']) | |||
check_is_fitted(self, ['_targets']) | |||
graphs = ([g.copy() for g in self._graphs] if self.copy_graphs else self._graphs) | |||
targets = self._targets | |||
else: | |||
graphs = ([g.copy() for g in Y] if self.copy_graphs else Y) | |||
targets = Y_targets | |||
# Get optimization options. | |||
node_labels = self.node_labels | |||
edge_labels = self.edge_labels | |||
unlabeled = (len(node_labels) == 0 and len(edge_labels) == 0) | |||
from gklearn.ged.model.optim_costs import compute_optimal_costs | |||
self._edit_cost_constants = compute_optimal_costs( | |||
graphs, targets, | |||
node_labels=node_labels, edge_labels=edge_labels, | |||
unlabeled=unlabeled, ed_method=self.ed_method, | |||
verbose=(self.verbose >= 2), | |||
**self.optim_options) | |||
########################################################################## | |||
# The following is the 2nd paradigm to compute kernel matrix. It is | |||
# simplified and not compatible with `scikit-learn`. | |||
########################################################################## | |||
# def compute(self, *graphs, **kwargs): | |||
# self.parallel = kwargs.get('parallel', 'imap_unordered') | |||
# self.n_jobs = kwargs.get('n_jobs', multiprocessing.cpu_count()) | |||
# self.normalize = kwargs.get('normalize', True) | |||
# self.verbose = kwargs.get('verbose', 2) | |||
# self.copy_graphs = kwargs.get('copy_graphs', True) | |||
# self.save_unnormed = kwargs.get('save_unnormed', True) | |||
# self.validate_parameters() | |||
# # If the inputs is a list of graphs. | |||
# if len(graphs) == 1: | |||
# if not isinstance(graphs[0], list): | |||
# raise Exception('Cannot detect graphs.') | |||
# elif len(graphs[0]) == 0: | |||
# raise Exception('The graph list given is empty. No computation was performed.') | |||
# else: | |||
# if self.copy_graphs: | |||
# self._graphs = [g.copy() for g in graphs[0]] # @todo: might be very slow. | |||
# else: | |||
# self._graphs = graphs | |||
# self._gram_matrix = self._compute_gram_matrix() | |||
# if self.save_unnormed: | |||
# self._gram_matrix_unnorm = np.copy(self._gram_matrix) | |||
# if self.normalize: | |||
# self._gram_matrix = normalize_gram_matrix(self._gram_matrix) | |||
# return self._gram_matrix, self._run_time | |||
# elif len(graphs) == 2: | |||
# # If the inputs are two graphs. | |||
# if self.is_graph(graphs[0]) and self.is_graph(graphs[1]): | |||
# if self.copy_graphs: | |||
# G0, G1 = graphs[0].copy(), graphs[1].copy() | |||
# else: | |||
# G0, G1 = graphs[0], graphs[1] | |||
# kernel = self._compute_single_kernel(G0, G1) | |||
# return kernel, self._run_time | |||
# # If the inputs are a graph and a list of graphs. | |||
# elif self.is_graph(graphs[0]) and isinstance(graphs[1], list): | |||
# if self.copy_graphs: | |||
# g1 = graphs[0].copy() | |||
# g_list = [g.copy() for g in graphs[1]] | |||
# kernel_list = self._compute_kernel_list(g1, g_list) | |||
# else: | |||
# kernel_list = self._compute_kernel_list(graphs[0], graphs[1]) | |||
# return kernel_list, self._run_time | |||
# elif isinstance(graphs[0], list) and self.is_graph(graphs[1]): | |||
# if self.copy_graphs: | |||
# g1 = graphs[1].copy() | |||
# g_list = [g.copy() for g in graphs[0]] | |||
# kernel_list = self._compute_kernel_list(g1, g_list) | |||
# else: | |||
# kernel_list = self._compute_kernel_list(graphs[1], graphs[0]) | |||
# return kernel_list, self._run_time | |||
# else: | |||
# raise Exception('Cannot detect graphs.') | |||
# elif len(graphs) == 0 and self._graphs is None: | |||
# raise Exception('Please add graphs before computing.') | |||
# else: | |||
# raise Exception('Cannot detect graphs.') | |||
# def normalize_gm(self, gram_matrix): | |||
# import warnings | |||
# warnings.warn('gklearn.kernels.graph_kernel.normalize_gm will be deprecated, use gklearn.utils.normalize_gram_matrix instead', DeprecationWarning) | |||
# diag = gram_matrix.diagonal().copy() | |||
# for i in range(len(gram_matrix)): | |||
# for j in range(i, len(gram_matrix)): | |||
# gram_matrix[i][j] /= np.sqrt(diag[i] * diag[j]) | |||
# gram_matrix[j][i] = gram_matrix[i][j] | |||
# return gram_matrix | |||
# def compute_distance_matrix(self): | |||
# if self._gram_matrix is None: | |||
# raise Exception('Please compute the Gram matrix before computing distance matrix.') | |||
# dis_mat = np.empty((len(self._gram_matrix), len(self._gram_matrix))) | |||
# for i in range(len(self._gram_matrix)): | |||
# for j in range(i, len(self._gram_matrix)): | |||
# dis = self._gram_matrix[i, i] + self._gram_matrix[j, j] - 2 * self._gram_matrix[i, j] | |||
# if dis < 0: | |||
# if dis > -1e-10: | |||
# dis = 0 | |||
# else: | |||
# raise ValueError('The distance is negative.') | |||
# dis_mat[i, j] = np.sqrt(dis) | |||
# dis_mat[j, i] = dis_mat[i, j] | |||
# dis_max = np.max(np.max(dis_mat)) | |||
# dis_min = np.min(np.min(dis_mat[dis_mat != 0])) | |||
# dis_mean = np.mean(np.mean(dis_mat)) | |||
# return dis_mat, dis_max, dis_min, dis_mean | |||
def _compute_X_distance_matrix(self): | |||
start_time = time.time() | |||
if self.parallel == 'imap_unordered': | |||
dis_matrix = self._compute_X_dm_imap_unordered() | |||
elif self.parallel is None: | |||
graphs = ([g.copy() for g in self._graphs] if self.copy_graphs else self._graphs) | |||
dis_matrix = self._compute_X_dm_series(graphs) | |||
else: | |||
raise Exception('Parallel mode is not set correctly.') | |||
self._run_time = time.time() - start_time | |||
if self.verbose: | |||
print('Distance matrix of size %d built in %s seconds.' | |||
% (len(self._graphs), self._run_time)) | |||
return dis_matrix | |||
def _compute_X_dm_series(self, graphs): | |||
N = len(graphs) | |||
dis_matrix = np.zeros((N, N)) | |||
for i, G1 in get_iters(enumerate(graphs), desc='Computing distance matrix', file=sys.stdout, verbose=(self.verbose >= 2)): | |||
for j, G2 in enumerate(graphs[i+1:], i+1): | |||
dis_matrix[i, j], _ = self.compute_ged(G1, G2) | |||
dis_matrix[j, i] = dis_matrix[i, j] | |||
return dis_matrix | |||
def _compute_X_dm_imap_unordered(self, graphs): | |||
pass | |||
def compute_ged(self, Gi, Gj, **kwargs): | |||
""" | |||
Compute GED between two graph according to edit_cost. | |||
""" | |||
ged_options = {'edit_cost': self.edit_cost_fun, | |||
'method': self.ed_method, | |||
'edit_cost_constants': self._edit_cost_constants} | |||
dis, pi_forward, pi_backward = pairwise_ged(Gi, Gj, ged_options, repeats=10) | |||
n_eo_tmp = get_nb_edit_operations(Gi, Gj, pi_forward, pi_backward, | |||
edit_cost=self.edit_cost_fun, | |||
node_labels=self.node_labels, | |||
edge_labels=self.edge_labels) | |||
return dis, n_eo_tmp | |||
# def _compute_kernel_list(self, g1, g_list): | |||
# start_time = time.time() | |||
# if self.parallel == 'imap_unordered': | |||
# kernel_list = self._compute_kernel_list_imap_unordered(g1, g_list) | |||
# elif self.parallel is None: | |||
# kernel_list = self._compute_kernel_list_series(g1, g_list) | |||
# else: | |||
# raise Exception('Parallel mode is not set correctly.') | |||
# self._run_time = time.time() - start_time | |||
# if self.verbose: | |||
# print('Graph kernel bewteen a graph and a list of %d graphs built in %s seconds.' | |||
# % (len(g_list), self._run_time)) | |||
# return kernel_list | |||
# def _compute_kernel_list_series(self, g1, g_list): | |||
# pass | |||
# def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
# pass | |||
# def _compute_single_kernel(self, g1, g2): | |||
# start_time = time.time() | |||
# kernel = self._compute_single_kernel_series(g1, g2) | |||
# self._run_time = time.time() - start_time | |||
# if self.verbose: | |||
# print('Graph kernel bewteen two graphs built in %s seconds.' % (self._run_time)) | |||
# return kernel | |||
# def _compute_single_kernel_series(self, g1, g2): | |||
# pass | |||
def is_graph(self, graph): | |||
if isinstance(graph, nx.Graph): | |||
return True | |||
if isinstance(graph, nx.DiGraph): | |||
return True | |||
if isinstance(graph, nx.MultiGraph): | |||
return True | |||
if isinstance(graph, nx.MultiDiGraph): | |||
return True | |||
return False | |||
@property | |||
def graphs(self): | |||
return self._graphs | |||
# @property | |||
# def parallel(self): | |||
# return self.parallel | |||
# @property | |||
# def n_jobs(self): | |||
# return self.n_jobs | |||
# @property | |||
# def verbose(self): | |||
# return self.verbose | |||
# @property | |||
# def normalize(self): | |||
# return self.normalize | |||
@property | |||
def run_time(self): | |||
return self._run_time | |||
@property | |||
def dis_matrix(self): | |||
return self._dis_matrix | |||
@dis_matrix.setter | |||
def dis_matrix(self, value): | |||
self._dis_matrix = value | |||
# @property | |||
# def gram_matrix_unnorm(self): | |||
# return self._gram_matrix_unnorm | |||
# @gram_matrix_unnorm.setter | |||
# def gram_matrix_unnorm(self, value): | |||
# self._gram_matrix_unnorm = value |
@@ -0,0 +1,149 @@ | |||
import numpy as np | |||
from gklearn.ged.model.distances import sum_squares, euclid_d | |||
from gklearn.ged.model.ged_com import compute_geds | |||
def optimize_costs_unlabeled(nb_cost_mat, dis_k_vec): | |||
""" | |||
Optimize edit costs to fit dis_k_vec according to edit operations in nb_cost_mat | |||
! take care that nb_cost_mat do not contains 0 lines | |||
:param nb_cost_mat: \in \mathbb{N}^{N x 6} encoding the number of edit operations for each pair of graph | |||
:param dis_k_vec: The N distances to fit | |||
""" | |||
import cvxpy as cp | |||
import numpy as np | |||
MAX_SAMPLE = 1000 | |||
nb_cost_mat_m = np.array([[x[0], x[1], x[3], x[4]] for x in nb_cost_mat]) | |||
dis_k_vec = np.array(dis_k_vec) | |||
# dis_k_vec_norm = dis_k_vec/np.max(dis_k_vec) | |||
# import pickle | |||
# pickle.dump([nb_cost_mat, dis_k_vec], open('debug', 'wb')) | |||
N = nb_cost_mat_m.shape[0] | |||
sub_sample = np.random.permutation(np.arange(N)) | |||
sub_sample = sub_sample[:MAX_SAMPLE] | |||
x = cp.Variable(nb_cost_mat_m.shape[1]) | |||
cost = cp.sum_squares((nb_cost_mat_m[sub_sample, :] @ x) - dis_k_vec[sub_sample]) | |||
prob = cp.Problem(cp.Minimize(cost), [x >= 0]) | |||
prob.solve() | |||
edit_costs_new = [x.value[0], x.value[1], 0, x.value[2], x.value[3], 0] | |||
edit_costs_new = [xi if xi > 0 else 0 for xi in edit_costs_new] | |||
residual = prob.value | |||
return edit_costs_new, residual | |||
def optimize_costs_classif_unlabeled(nb_cost_mat, Y): | |||
""" | |||
Optimize edit costs to fit dis_k_vec according to edit operations in | |||
nb_cost_mat | |||
! take care that nb_cost_mat do not contains 0 lines | |||
:param nb_cost_mat: \in \mathbb{N}^{N x 6} encoding the number of edit | |||
operations for each pair of graph | |||
:param dis_k_vec: {-1,1}^N vector of common classes | |||
""" | |||
# import cvxpy as cp | |||
from ml import reg_log | |||
# import pickle | |||
# pickle.dump([nb_cost_mat, Y], open('debug', 'wb')) | |||
nb_cost_mat_m = np.array([[x[0], x[1], x[3], x[4]] | |||
for x in nb_cost_mat]) | |||
w, J, _ = reg_log(nb_cost_mat_m, Y, pos_contraint=True) | |||
edit_costs_new = [w[0], w[1], 0, w[2], w[3], 0] | |||
residual = J[-1] | |||
return edit_costs_new, residual | |||
def optimize_costs_classif(nb_cost_mat, Y): | |||
""" | |||
Optimize edit costs to fit dis_k_vec according to edit operations in nb_cost_mat | |||
! take care that nb_cost_mat do not contains 0 lines | |||
:param nb_cost_mat: \in \mathbb{N}^{N x 6} encoding the number of edit operations for each pair of graph | |||
:param dis_k_vec: {-1,1}^N vector of common classes | |||
""" | |||
#import pickle | |||
# pickle.dump([nb_cost_mat, Y], open("test.pickle", "wb")) | |||
from ml import reg_log | |||
w, J, _ = reg_log(nb_cost_mat, Y, pos_contraint=True) | |||
return w, J[-1] | |||
def optimize_costs(nb_cost_mat, dis_k_vec): | |||
""" | |||
Optimize edit costs to fit dis_k_vec according to edit operations in nb_cost_mat | |||
! take care that nb_cost_mat do not contains 0 lines | |||
:param nb_cost_mat: \in \mathbb{N}^{N x 6} encoding the number of edit operations for each pair of graph | |||
:param dis_k_vec: The N distances to fit | |||
""" | |||
import cvxpy as cp | |||
x = cp.Variable(nb_cost_mat.shape[1]) | |||
cost = cp.sum_squares((nb_cost_mat @ x) - dis_k_vec) | |||
constraints = [x >= [0.01 for i in range(nb_cost_mat.shape[1])], | |||
np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0]).T@x >= 0.0, | |||
np.array([0.0, 0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] | |||
prob = cp.Problem(cp.Minimize(cost), constraints) | |||
prob.solve() | |||
edit_costs_new = x.value | |||
residual = prob.value | |||
return edit_costs_new, residual | |||
def compute_optimal_costs(G, y, init_costs=[3, 3, 1, 3, 3, 1], | |||
y_distance=euclid_d, | |||
mode='reg', unlabeled=False, | |||
ed_method='BIPARTITE', | |||
verbose=True, | |||
**kwargs): | |||
N = len(y) | |||
G_pairs = [] | |||
distances_vec = [] | |||
for i in range(N): | |||
for j in range(i+1, N): | |||
G_pairs.append([i, j]) | |||
distances_vec.append(y_distance(y[i], y[j])) | |||
ged_vec_init, n_edit_operations = compute_geds(G_pairs, G, init_costs, ed_method, | |||
verbose=verbose, **kwargs) | |||
residual_list = [sum_squares(ged_vec_init, distances_vec)] | |||
if (mode == 'reg'): | |||
if unlabeled: | |||
method_optim = optimize_costs_unlabeled | |||
else: | |||
method_optim = optimize_costs | |||
elif (mode == 'classif'): | |||
if unlabeled: | |||
method_optim = optimize_costs_classif_unlabeled | |||
else: | |||
method_optim = optimize_costs_classif | |||
ite_max = 5 | |||
for i in range(ite_max): | |||
if verbose: | |||
print('ite', i + 1, '/', ite_max, ':') | |||
# compute GEDs and numbers of edit operations. | |||
edit_costs_new, residual = method_optim( | |||
np.array(n_edit_operations), distances_vec) | |||
ged_vec, n_edit_operations = compute_geds(G_pairs, G, edit_costs_new, ed_method, | |||
verbose=verbose, **kwargs) | |||
residual_list.append(sum_squares(ged_vec, distances_vec)) | |||
return edit_costs_new | |||
def get_optimal_costs_GH2020(**kwargs): | |||
import pickle | |||
import os | |||
dir_root = 'cj/output/' | |||
ds_name = kwargs.get('ds_name') | |||
nb_trial = kwargs.get('nb_trial') | |||
file_name = os.path.join(dir_root, 'costs.' + ds_name + '.' + str(nb_trial) + '.pkl') | |||
with open(file_name, 'rb') as f: | |||
edit_costs = pickle.load(f) | |||
return edit_costs |
@@ -64,10 +64,12 @@ def pairwise_ged(g1, g2, options={}, sort=True, repeats=1, parallel=False, verbo | |||
g = listID[0] | |||
h = listID[1] | |||
dis_min = np.inf | |||
# print('------------------------------------------') | |||
for i in range(0, repeats): | |||
ged_env.run_method(g, h) | |||
upper = ged_env.get_upper_bound(g, h) | |||
dis = upper | |||
# print(dis) | |||
if dis < dis_min: | |||
dis_min = dis | |||
pi_forward = ged_env.get_forward_map(g, h) | |||
@@ -169,12 +171,100 @@ def compute_geds_cml(graphs, options={}, sort=True, parallel=False, verbose=True | |||
return ged_vec, ged_mat, n_edit_operations | |||
def compute_geds(graphs, options={}, sort=True, repeats=1, parallel=False, n_jobs=None, verbose=True): | |||
#%% | |||
def compute_geds(graphs, | |||
options={}, | |||
sort=True, | |||
repeats=1, | |||
permute_nodes=False, | |||
random_state=None, | |||
parallel=False, | |||
n_jobs=None, | |||
verbose=True): | |||
"""Compute graph edit distance matrix using GEDLIB. | |||
""" | |||
if permute_nodes: | |||
return _compute_geds_with_permutation(graphs, | |||
options=options, | |||
sort=sort, | |||
repeats=repeats, | |||
random_state=random_state, | |||
parallel=parallel, | |||
n_jobs=n_jobs, | |||
verbose=verbose) | |||
else: | |||
return _compute_geds_without_permutation(graphs, | |||
options=options, | |||
sort=sort, | |||
repeats=repeats, | |||
parallel=parallel, | |||
n_jobs=n_jobs, | |||
verbose=verbose) | |||
#%% | |||
def _compute_geds_with_permutation(graphs, | |||
options={}, | |||
sort=True, | |||
repeats=1, | |||
random_state=None, | |||
parallel=False, | |||
n_jobs=None, | |||
verbose=True): | |||
from gklearn.utils.utils import nx_permute_nodes | |||
# Initialze variables. | |||
ged_mat_optim = np.full((len(graphs), len(graphs)), np.inf) | |||
np.fill_diagonal(ged_mat_optim, 0) | |||
len_itr = int(len(graphs) * (len(graphs) - 1) / 2) | |||
ged_vec = [0] * len_itr | |||
n_edit_operations = [0] * len_itr | |||
# for each repeats: | |||
for i in range(0, repeats): | |||
# Permutate nodes. | |||
graphs_pmut = [nx_permute_nodes(g, random_state=random_state) for g in graphs] | |||
out = _compute_geds_without_permutation(graphs_pmut, | |||
options=options, | |||
sort=sort, | |||
repeats=1, | |||
parallel=parallel, | |||
n_jobs=n_jobs, | |||
verbose=verbose) | |||
# Compare current results with the best one. | |||
idx_cnt = 0 | |||
for i in range(len(graphs)): | |||
for j in range(i + 1, len(graphs)): | |||
if out[1][i, j] < ged_mat_optim[i ,j]: | |||
ged_mat_optim[i, j] = out[1][i, j] | |||
ged_mat_optim[j, i] = out[1][j, i] | |||
ged_vec[idx_cnt] = out[0][idx_cnt] | |||
n_edit_operations[idx_cnt] = out[2][idx_cnt] | |||
idx_cnt += 1 | |||
return ged_vec, ged_mat_optim, n_edit_operations | |||
def _compute_geds_without_permutation(graphs, | |||
options={}, | |||
sort=True, | |||
repeats=1, | |||
parallel=False, | |||
n_jobs=None, | |||
verbose=True): | |||
from gklearn.gedlib import librariesImport, gedlibpy | |||
# initialize ged env. | |||
ged_env = gedlibpy.GEDEnv() | |||
ged_env.set_edit_cost(options['edit_cost'], edit_cost_constant=options['edit_cost_constants']) | |||
for g in graphs: | |||
ged_env.add_nx_graph(g, '') | |||
listID = ged_env.get_all_graph_ids() | |||
@@ -266,6 +356,11 @@ def _compute_ged(env, gid1, gid2, g1, g2, repeats): | |||
dis = upper | |||
# make the map label correct (label remove map as np.inf) | |||
# Attention: using node indices instead of NetworkX node labels (as | |||
# implemented here) may cause several issues: | |||
# - Fail if NetworkX node labels are not consecutive integers; | |||
# - Return wrong mappings if nodes are permutated (e.g., by using | |||
# `gklearn.utis.utils.nx_permute_nodes()`.) | |||
nodes1 = [n for n in g1.nodes()] | |||
nodes2 = [n for n in g2.nodes()] | |||
nb1 = nx.number_of_nodes(g1) | |||
@@ -278,46 +373,57 @@ def _compute_ged(env, gid1, gid2, g1, g2, repeats): | |||
pi_forward_min = pi_forward | |||
pi_backward_min = pi_backward | |||
# print('-----') | |||
# print(pi_forward_min) | |||
# print(pi_backward_min) | |||
return dis_min, pi_forward_min, pi_backward_min | |||
def label_costs_to_matrix(costs, nb_labels): | |||
"""Reform a label cost vector to a matrix. | |||
#%% | |||
def get_nb_edit_operations(g1, g2, forward_map, backward_map, edit_cost=None, is_cml=False, **kwargs): | |||
"""Calculate the numbers of the occurence of each edit operation in a given | |||
edit path. | |||
Parameters | |||
---------- | |||
costs : numpy.array | |||
The vector containing costs between labels, in the order of node insertion costs, node deletion costs, node substitition costs, edge insertion costs, edge deletion costs, edge substitition costs. | |||
nb_labels : integer | |||
Number of labels. | |||
g1 : TYPE | |||
DESCRIPTION. | |||
g2 : TYPE | |||
DESCRIPTION. | |||
forward_map : TYPE | |||
DESCRIPTION. | |||
backward_map : TYPE | |||
DESCRIPTION. | |||
edit_cost : TYPE, optional | |||
DESCRIPTION. The default is None. | |||
is_cml : TYPE, optional | |||
DESCRIPTION. The default is False. | |||
**kwargs : TYPE | |||
DESCRIPTION. | |||
Raises | |||
------ | |||
Exception | |||
DESCRIPTION. | |||
Returns | |||
------- | |||
cost_matrix : numpy.array. | |||
The reformed label cost matrix of size (nb_labels, nb_labels). Each row/column of cost_matrix corresponds to a label, and the first label is the dummy label. This is the same setting as in GEDData. | |||
TYPE | |||
DESCRIPTION. | |||
Notes | |||
----- | |||
Attention: when implementing a function to get the numbers of edit | |||
operations, make sure that: | |||
- It does not fail if NetworkX node labels are not consecutive integers; | |||
- It returns correct results if nodes are permutated (e.g., by using | |||
`gklearn.utis.utils.nx_permute_nodes()`.) | |||
Generally speaking, it means you need to distinguish the NetworkX label of | |||
a node from the position (index) of that node in the node list. | |||
""" | |||
# Initialize label cost matrix. | |||
cost_matrix = np.zeros((nb_labels + 1, nb_labels + 1)) | |||
i = 0 | |||
# Costs of insertions. | |||
for col in range(1, nb_labels + 1): | |||
cost_matrix[0, col] = costs[i] | |||
i += 1 | |||
# Costs of deletions. | |||
for row in range(1, nb_labels + 1): | |||
cost_matrix[row, 0] = costs[i] | |||
i += 1 | |||
# Costs of substitutions. | |||
for row in range(1, nb_labels + 1): | |||
for col in range(row + 1, nb_labels + 1): | |||
cost_matrix[row, col] = costs[i] | |||
cost_matrix[col, row] = costs[i] | |||
i += 1 | |||
return cost_matrix | |||
def get_nb_edit_operations(g1, g2, forward_map, backward_map, edit_cost=None, is_cml=False, **kwargs): | |||
if is_cml: | |||
if edit_cost == 'CONSTANT': | |||
node_labels = kwargs.get('node_labels', []) | |||
@@ -611,6 +717,48 @@ def get_nb_edit_operations_nonsymbolic(g1, g2, forward_map, backward_map, | |||
return n_vi, n_vr, sod_vs, n_ei, n_er, sod_es | |||
#%% | |||
def label_costs_to_matrix(costs, nb_labels): | |||
"""Reform a label cost vector to a matrix. | |||
Parameters | |||
---------- | |||
costs : numpy.array | |||
The vector containing costs between labels, in the order of node insertion costs, node deletion costs, node substitition costs, edge insertion costs, edge deletion costs, edge substitition costs. | |||
nb_labels : integer | |||
Number of labels. | |||
Returns | |||
------- | |||
cost_matrix : numpy.array. | |||
The reformed label cost matrix of size (nb_labels, nb_labels). Each row/column of cost_matrix corresponds to a label, and the first label is the dummy label. This is the same setting as in GEDData. | |||
""" | |||
# Initialize label cost matrix. | |||
cost_matrix = np.zeros((nb_labels + 1, nb_labels + 1)) | |||
i = 0 | |||
# Costs of insertions. | |||
for col in range(1, nb_labels + 1): | |||
cost_matrix[0, col] = costs[i] | |||
i += 1 | |||
# Costs of deletions. | |||
for row in range(1, nb_labels + 1): | |||
cost_matrix[row, 0] = costs[i] | |||
i += 1 | |||
# Costs of substitutions. | |||
for row in range(1, nb_labels + 1): | |||
for col in range(row + 1, nb_labels + 1): | |||
cost_matrix[row, col] = costs[i] | |||
cost_matrix[col, row] = costs[i] | |||
i += 1 | |||
return cost_matrix | |||
#%% | |||
def ged_options_to_string(options): | |||
opt_str = ' ' | |||
for key, val in options.items(): | |||
@@ -32,7 +32,13 @@ class GraphKernel(BaseEstimator): #, ABC): | |||
https://ysig.github.io/GraKeL/0.1a8/_modules/grakel/kernels/kernel.html#Kernel. | |||
""" | |||
def __init__(self, parallel=None, n_jobs=None, chunksize=None, normalize=True, verbose=2): | |||
def __init__(self, | |||
parallel=None, | |||
n_jobs=None, | |||
chunksize=None, | |||
normalize=True, | |||
copy_graphs=True, # make sure it is a full deep copy. and faster! | |||
verbose=2): | |||
"""`__init__` for `GraphKernel` object.""" | |||
# @todo: the default settings of the parameters are different from those in the self.compute method. | |||
# self._graphs = None | |||
@@ -40,6 +46,7 @@ class GraphKernel(BaseEstimator): #, ABC): | |||
self.n_jobs = n_jobs | |||
self.chunksize = chunksize | |||
self.normalize = normalize | |||
self.copy_graphs = copy_graphs | |||
self.verbose = verbose | |||
# self._run_time = 0 | |||
# self._gram_matrix = None | |||
@@ -90,7 +97,7 @@ class GraphKernel(BaseEstimator): #, ABC): | |||
return self | |||
def transform(self, X): | |||
def transform(self, X=None, load_gm_train=False): | |||
"""Compute the graph kernel matrix between given and fitted data. | |||
Parameters | |||
@@ -108,6 +115,12 @@ class GraphKernel(BaseEstimator): #, ABC): | |||
None. | |||
""" | |||
# If `load_gm_train`, load Gram matrix of training data. | |||
if load_gm_train: | |||
check_is_fitted(self, '_gm_train') | |||
self._is_transformed = True | |||
return self._gm_train # @todo: copy or not? | |||
# Check if method "fit" had been called. | |||
check_is_fitted(self, '_graphs') | |||
@@ -133,8 +146,7 @@ class GraphKernel(BaseEstimator): #, ABC): | |||
return kernel_matrix | |||
def fit_transform(self, X): | |||
def fit_transform(self, X, save_gm_train=False): | |||
"""Fit and transform: compute Gram matrix on the same data. | |||
Parameters | |||
@@ -164,6 +176,9 @@ class GraphKernel(BaseEstimator): #, ABC): | |||
finally: | |||
np.seterr(**old_settings) | |||
if save_gm_train: | |||
self._gm_train = gram_matrix | |||
return gram_matrix | |||
@@ -260,7 +275,9 @@ class GraphKernel(BaseEstimator): #, ABC): | |||
kernel_matrix = self._compute_kernel_matrix_imap_unordered(Y) | |||
elif self.parallel is None: | |||
kernel_matrix = self._compute_kernel_matrix_series(Y) | |||
Y_copy = ([g.copy() for g in Y] if self.copy_graphs else Y) | |||
graphs_copy = ([g.copy() for g in self._graphs] if self.copy_graphs else self._graphs) | |||
kernel_matrix = self._compute_kernel_matrix_series(Y_copy, graphs_copy) | |||
self._run_time = time.time() - start_time | |||
if self.verbose: | |||
@@ -270,26 +287,25 @@ class GraphKernel(BaseEstimator): #, ABC): | |||
return kernel_matrix | |||
def _compute_kernel_matrix_series(self, Y): | |||
"""Compute the kernel matrix between a given target graphs (Y) and | |||
the fitted graphs (X / self._graphs) without parallelization. | |||
def _compute_kernel_matrix_series(self, X, Y): | |||
"""Compute the kernel matrix between two sets of graphs (X and Y) without parallelization. | |||
Parameters | |||
---------- | |||
Y : list of graphs, optional | |||
The target graphs. | |||
X, Y : list of graphs | |||
The input graphs. | |||
Returns | |||
------- | |||
kernel_matrix : numpy array, shape = [n_targets, n_inputs] | |||
kernel_matrix : numpy array, shape = [n_X, n_Y] | |||
The computed kernel matrix. | |||
""" | |||
kernel_matrix = np.zeros((len(Y), len(self._graphs))) | |||
kernel_matrix = np.zeros((len(X), len(Y))) | |||
for i_y, g_y in enumerate(Y): | |||
for i_x, g_x in enumerate(self._graphs): | |||
kernel_matrix[i_y, i_x] = self.pairwise_kernel(g_y, g_x) | |||
for i_x, g_x in enumerate(X): | |||
for i_y, g_y in enumerate(Y): | |||
kernel_matrix[i_x, i_y] = self.pairwise_kernel(g_x, g_y) | |||
return kernel_matrix | |||
@@ -335,14 +351,16 @@ class GraphKernel(BaseEstimator): #, ABC): | |||
except NotFittedError: | |||
# Compute diagonals of X. | |||
self._X_diag = np.empty(shape=(len(self._graphs),)) | |||
for i, x in enumerate(self._graphs): | |||
graphs = ([g.copy() for g in self._graphs] if self.copy_graphs else self._graphs) | |||
for i, x in enumerate(graphs): | |||
self._X_diag[i] = self.pairwise_kernel(x, x) # @todo: parallel? | |||
try: | |||
# If transform has happened, return both diagonals. | |||
check_is_fitted(self, ['_Y']) | |||
self._Y_diag = np.empty(shape=(len(self._Y),)) | |||
for (i, y) in enumerate(self._Y): | |||
Y = ([g.copy() for g in self._Y] if self.copy_graphs else self._Y) | |||
for (i, y) in enumerate(Y): | |||
self._Y_diag[i] = self.pairwise_kernel(y, y) # @todo: parallel? | |||
return self._X_diag, self._Y_diag | |||
@@ -484,7 +502,8 @@ class GraphKernel(BaseEstimator): #, ABC): | |||
if self.parallel == 'imap_unordered': | |||
gram_matrix = self._compute_gm_imap_unordered() | |||
elif self.parallel is None: | |||
gram_matrix = self._compute_gm_series() | |||
graphs = ([g.copy() for g in self._graphs] if self.copy_graphs else self._graphs) | |||
gram_matrix = self._compute_gm_series(graphs) | |||
else: | |||
raise Exception('Parallel mode is not set correctly.') | |||
@@ -496,11 +515,11 @@ class GraphKernel(BaseEstimator): #, ABC): | |||
return gram_matrix | |||
def _compute_gm_series(self): | |||
def _compute_gm_series(self, graphs): | |||
pass | |||
def _compute_gm_imap_unordered(self): | |||
def _compute_gm_imap_unordered(self, graphs): | |||
pass | |||
@@ -28,16 +28,16 @@ from gklearn.kernels import GraphKernel | |||
class Treelet(GraphKernel): | |||
def __init__(self, parallel=None, n_jobs=None, chunksize=None, normalize=True, verbose=2, precompute_canonkeys=True, save_canonkeys=False, **kwargs): | |||
def __init__(self, **kwargs): | |||
"""Initialise a treelet kernel. | |||
""" | |||
super().__init__(parallel=parallel, n_jobs=n_jobs, chunksize=chunksize, normalize=normalize, verbose=verbose) | |||
GraphKernel.__init__(self, **{k: kwargs.get(k) for k in ['parallel', 'n_jobs', 'chunksize', 'normalize', 'copy_graphs', 'verbose'] if k in kwargs}) | |||
self.node_labels = kwargs.get('node_labels', []) | |||
self.edge_labels = kwargs.get('edge_labels', []) | |||
self.sub_kernel = kwargs.get('sub_kernel', None) | |||
self.ds_infos = kwargs.get('ds_infos', {}) | |||
self.precompute_canonkeys = precompute_canonkeys | |||
self.save_canonkeys = save_canonkeys | |||
self.precompute_canonkeys = kwargs.get('precompute_canonkeys', True) | |||
self.save_canonkeys = kwargs.get('save_canonkeys', True) | |||
########################################################################## | |||
@@ -71,7 +71,7 @@ class Treelet(GraphKernel): | |||
raise ValueError('Sub-kernel not set.') | |||
def _compute_kernel_matrix_series(self, Y): | |||
def _compute_kernel_matrix_series(self, Y, X=None, load_canonkeys=True): | |||
"""Compute the kernel matrix between a given target graphs (Y) and | |||
the fitted graphs (X / self._graphs) without parallelization. | |||
@@ -86,36 +86,45 @@ class Treelet(GraphKernel): | |||
The computed kernel matrix. | |||
""" | |||
if_comp_X_canonkeys = True | |||
# if load saved canonkeys of X from the instance: | |||
if load_canonkeys: | |||
# Canonical keys for self._graphs. | |||
try: | |||
check_is_fitted(self, ['_canonkeys']) | |||
canonkeys_list1 = self._canonkeys | |||
if_comp_X_canonkeys = False | |||
except NotFittedError: | |||
import warnings | |||
warnings.warn('The canonkeys of self._graphs are not computed/saved. The keys of `X` is computed instead.') | |||
if_comp_X_canonkeys = True | |||
# self._add_dummy_labels will modify the input in place. | |||
self._add_dummy_labels() # For self._graphs | |||
# Y = [g.copy() for g in Y] # @todo: ? | |||
self._add_dummy_labels(Y) | |||
# get all canonical keys of all graphs before computing kernels to save | |||
# time, but this may cost a lot of memory for large dataset. | |||
# Canonical keys for self._graphs. | |||
try: | |||
check_is_fitted(self, ['_canonkeys']) | |||
canonkeys_list1 = self._canonkeys | |||
except NotFittedError: | |||
# Compute the canonical keys of X. | |||
if if_comp_X_canonkeys: | |||
if X is None: | |||
raise('X can not be None.') | |||
# self._add_dummy_labels will modify the input in place. | |||
self._add_dummy_labels(X) # for X | |||
canonkeys_list1 = [] | |||
iterator = get_iters(self._graphs, desc='getting canonkeys for X', file=sys.stdout, verbose=(self.verbose >= 2)) | |||
iterator = get_iters(self._graphs, desc='Getting canonkeys for X', file=sys.stdout, verbose=(self.verbose >= 2)) | |||
for g in iterator: | |||
canonkeys_list1.append(self._get_canonkeys(g)) | |||
if self.save_canonkeys: | |||
self._canonkeys = canonkeys_list1 | |||
# Canonical keys for Y. | |||
# Y = [g.copy() for g in Y] # @todo: ? | |||
self._add_dummy_labels(Y) | |||
canonkeys_list2 = [] | |||
iterator = get_iters(Y, desc='getting canonkeys for Y', file=sys.stdout, verbose=(self.verbose >= 2)) | |||
iterator = get_iters(Y, desc='Getting canonkeys for Y', file=sys.stdout, verbose=(self.verbose >= 2)) | |||
for g in iterator: | |||
canonkeys_list2.append(self._get_canonkeys(g)) | |||
if self.save_canonkeys: | |||
self._Y_canonkeys = canonkeys_list2 | |||
# if self.save_canonkeys: | |||
# self._Y_canonkeys = canonkeys_list2 | |||
# compute kernel matrix. | |||
kernel_matrix = np.zeros((len(Y), len(canonkeys_list1))) | |||
@@ -235,13 +244,13 @@ class Treelet(GraphKernel): | |||
########################################################################## | |||
def _compute_gm_series(self): | |||
self._add_dummy_labels(self._graphs) | |||
def _compute_gm_series(self, graphs): | |||
self._add_dummy_labels(graphs) | |||
# get all canonical keys of all graphs before computing kernels to save | |||
# time, but this may cost a lot of memory for large dataset. | |||
canonkeys = [] | |||
iterator = get_iters(self._graphs, desc='getting canonkeys', file=sys.stdout, | |||
iterator = get_iters(graphs, desc='getting canonkeys', file=sys.stdout, | |||
verbose=(self.verbose >= 2)) | |||
for g in iterator: | |||
canonkeys.append(self._get_canonkeys(g)) | |||
@@ -250,11 +259,11 @@ class Treelet(GraphKernel): | |||
self._canonkeys = canonkeys | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
gram_matrix = np.zeros((len(graphs), len(graphs))) | |||
from itertools import combinations_with_replacement | |||
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
itr = combinations_with_replacement(range(0, len(graphs)), 2) | |||
len_itr = int(len(graphs) * (len(graphs) + 1) / 2) | |||
iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, | |||
length=len_itr, verbose=(self.verbose >= 2)) | |||
for i, j in iterator: | |||
@@ -390,6 +399,9 @@ class Treelet(GraphKernel): | |||
Treelet kernel between 2 graphs. | |||
""" | |||
keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs | |||
if len(keys) == 0: # There is nothing in common... | |||
return 0 | |||
vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys]) | |||
vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys]) | |||
@@ -28,7 +28,7 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
def __init__(self, **kwargs): | |||
GraphKernel.__init__(self) | |||
GraphKernel.__init__(self, **{k: kwargs.get(k) for k in ['parallel', 'n_jobs', 'chunksize', 'normalize', 'copy_graphs', 'verbose'] if k in kwargs}) | |||
self.node_labels = kwargs.get('node_labels', []) | |||
self.edge_labels = kwargs.get('edge_labels', []) | |||
self.height = int(kwargs.get('height', 0)) | |||
@@ -50,7 +50,7 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
########################################################################## | |||
def _compute_gm_series(self): | |||
def _compute_gm_series(self, graphs): | |||
# if self.verbose >= 2: | |||
# import warnings | |||
# warnings.warn('A part of the computation is parallelized.') | |||
@@ -59,19 +59,19 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
# for WL subtree kernel | |||
if self._base_kernel == 'subtree': | |||
gram_matrix = self._subtree_kernel_do(self._graphs) | |||
gram_matrix = self._subtree_kernel_do(graphs) | |||
# for WL shortest path kernel | |||
elif self._base_kernel == 'sp': | |||
gram_matrix = self._sp_kernel_do(self._graphs) | |||
gram_matrix = self._sp_kernel_do(graphs) | |||
# for WL edge kernel | |||
elif self._base_kernel == 'edge': | |||
gram_matrix = self._edge_kernel_do(self._graphs) | |||
gram_matrix = self._edge_kernel_do(graphs) | |||
# for user defined base kernel | |||
else: | |||
gram_matrix = self._user_kernel_do(self._graphs) | |||
gram_matrix = self._user_kernel_do(graphs) | |||
return gram_matrix | |||
@@ -204,70 +204,13 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
def pairwise_kernel(self, g1, g2): | |||
Gn = [g1.copy(), g2.copy()] # @todo: make sure it is a full deep copy. and faster! | |||
kernel = 0 | |||
# initial for height = 0 | |||
all_num_of_each_label = [] # number of occurence of each label in each graph in this iteration | |||
# for each graph | |||
for G in Gn: | |||
# set all labels into a tuple. | |||
for nd, attrs in G.nodes(data=True): # @todo: there may be a better way. | |||
G.nodes[nd]['lt'] = tuple(attrs[name] for name in self.node_labels) | |||
# get the set of original labels | |||
labels_ori = list(nx.get_node_attributes(G, 'lt').values()) | |||
# number of occurence of each label in G | |||
all_num_of_each_label.append(dict(Counter(labels_ori))) | |||
# Compute subtree kernel with the 0th iteration and add it to the final kernel. | |||
kernel = self._compute_kernel_itr(kernel, all_num_of_each_label) | |||
# iterate each height | |||
for h in range(1, self.height + 1): | |||
all_set_compressed = {} # a dictionary mapping original labels to new ones in all graphs in this iteration | |||
num_of_labels_occured = 0 # number of the set of letters that occur before as node labels at least once in all graphs | |||
# all_labels_ori = set() # all unique orignal labels in all graphs in this iteration | |||
all_num_of_each_label = [] # number of occurence of each label in G | |||
# @todo: parallel this part. | |||
for G in Gn: | |||
all_multisets = [] | |||
for node, attrs in G.nodes(data=True): | |||
# Multiset-label determination. | |||
multiset = [G.nodes[neighbors]['lt'] for neighbors in G[node]] | |||
# sorting each multiset | |||
multiset.sort() | |||
multiset = [attrs['lt']] + multiset # add the prefix | |||
all_multisets.append(tuple(multiset)) | |||
# label compression | |||
set_unique = list(set(all_multisets)) # set of unique multiset labels | |||
# a dictionary mapping original labels to new ones. | |||
set_compressed = {} | |||
# if a label occured before, assign its former compressed label, | |||
# else assign the number of labels occured + 1 as the compressed label. | |||
for value in set_unique: | |||
if value in all_set_compressed.keys(): | |||
set_compressed[value] = all_set_compressed[value] | |||
else: | |||
set_compressed[value] = str(num_of_labels_occured + 1) | |||
num_of_labels_occured += 1 | |||
all_set_compressed.update(set_compressed) | |||
# relabel nodes | |||
for idx, node in enumerate(G.nodes()): | |||
G.nodes[node]['lt'] = set_compressed[all_multisets[idx]] | |||
# get the set of compressed labels | |||
labels_comp = list(nx.get_node_attributes(G, 'lt').values()) | |||
# all_labels_ori.update(labels_comp) | |||
all_num_of_each_label.append(dict(Counter(labels_comp))) | |||
# Gn = [g1.copy(), g2.copy()] # @todo: make sure it is a full deep copy. and faster! | |||
Gn = [g1, g2] | |||
# for WL subtree kernel | |||
if self._base_kernel == 'subtree': | |||
kernel = self._subtree_kernel_do(Gn, return_mat=False) | |||
# Compute subtree kernel with h iterations and add it to the final kernel | |||
kernel = self._compute_kernel_itr(kernel, all_num_of_each_label) | |||
# @todo: other subkernels. | |||
return kernel | |||
@@ -291,7 +234,7 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
return kernel | |||
def _subtree_kernel_do_nl(self, Gn): | |||
def _subtree_kernel_do_nl(self, Gn, return_mat=True): | |||
"""Compute Weisfeiler-Lehman kernels between graphs with node labels. | |||
Parameters | |||
@@ -301,10 +244,11 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
Return | |||
------ | |||
gram_matrix : Numpy matrix | |||
kernel_matrix : Numpy matrix / float | |||
Kernel matrix, each element of which is the Weisfeiler-Lehman kernel between 2 praphs. | |||
""" | |||
gram_matrix = np.zeros((len(Gn), len(Gn))) | |||
kernel_matrix = (np.zeros((len(Gn), len(Gn))) if return_mat else 0) | |||
gram_itr_fun = (self._compute_gram_itr if return_mat else self._compute_kernel_itr) | |||
# initial for height = 0 | |||
all_num_of_each_label = [] # number of occurence of each label in each graph in this iteration | |||
@@ -324,7 +268,7 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
all_num_of_each_label.append(dict(Counter(labels_ori))) | |||
# Compute subtree kernel with the 0th iteration and add it to the final kernel. | |||
self._compute_gram_itr(gram_matrix, all_num_of_each_label) | |||
kernel_matrix = gram_itr_fun(kernel_matrix, all_num_of_each_label) | |||
# iterate each height | |||
for h in range(1, self.height + 1): | |||
@@ -342,12 +286,12 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
num_of_labels_occured = self._subtree_1graph_nl(G, all_set_compressed, all_num_of_each_label, num_of_labels_occured) | |||
# Compute subtree kernel with h iterations and add it to the final kernel | |||
self._compute_gram_itr(gram_matrix, all_num_of_each_label) | |||
kernel_matrix = gram_itr_fun(kernel_matrix, all_num_of_each_label) | |||
return gram_matrix | |||
return kernel_matrix | |||
def _subtree_kernel_do_el(self, Gn): | |||
def _subtree_kernel_do_el(self, Gn, return_mat=True): | |||
"""Compute Weisfeiler-Lehman kernels between graphs with edge labels. | |||
Parameters | |||
@@ -357,19 +301,20 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
Return | |||
------ | |||
gram_matrix : Numpy matrix | |||
kernel_matrix : Numpy matrix | |||
Kernel matrix, each element of which is the Weisfeiler-Lehman kernel between 2 praphs. | |||
""" | |||
gram_matrix = np.zeros((len(Gn), len(Gn))) | |||
kernel_matrix = (np.zeros((len(Gn), len(Gn))) if return_mat else 0) | |||
gram_itr_fun = (self._compute_gram_itr if return_mat else self._compute_kernel_itr) | |||
# initial for height = 0 | |||
all_num_of_each_label = [] # number of occurence of each label in each graph in this iteration | |||
# Compute subtree kernel with the 0th iteration and add it to the final kernel. | |||
iterator = combinations_with_replacement(range(0, len(gram_matrix)), 2) | |||
for i, j in iterator: | |||
gram_matrix[i][j] += nx.number_of_nodes(Gn[i]) * nx.number_of_nodes(Gn[j]) | |||
gram_matrix[j][i] = gram_matrix[i][j] | |||
iterator = combinations_with_replacement(range(0, len(kernel_matrix)), 2) | |||
for i, j in iterator: # @todo: not correct if return_mat == False. | |||
kernel_matrix[i][j] += nx.number_of_nodes(Gn[i]) * nx.number_of_nodes(Gn[j]) | |||
kernel_matrix[j][i] = kernel_matrix[i][j] | |||
# if h >= 1. | |||
@@ -393,7 +338,7 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
num_of_labels_occured = self._subtree_1graph_el(G, all_set_compressed, all_num_of_each_label, num_of_labels_occured) | |||
# Compute subtree kernel with h iterations and add it to the final kernel. | |||
self._compute_gram_itr(gram_matrix, all_num_of_each_label) | |||
kernel_matrix = gram_itr_fun(kernel_matrix, all_num_of_each_label) | |||
# Iterate along heights (>= 2). | |||
@@ -407,12 +352,12 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
num_of_labels_occured = self._subtree_1graph_nl(G, all_set_compressed, all_num_of_each_label, num_of_labels_occured) | |||
# Compute subtree kernel with h iterations and add it to the final kernel. | |||
self._compute_gram_itr(gram_matrix, all_num_of_each_label) | |||
kernel_matrix = gram_itr_fun(kernel_matrix, all_num_of_each_label) | |||
return gram_matrix | |||
return kernel_matrix | |||
def _subtree_kernel_do_labeled(self, Gn): | |||
def _subtree_kernel_do_labeled(self, Gn, return_mat=True): | |||
"""Compute Weisfeiler-Lehman kernels between graphs with both node and | |||
edge labels. | |||
@@ -423,10 +368,11 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
Return | |||
------ | |||
gram_matrix : Numpy matrix | |||
kernel_matrix : Numpy matrix | |||
Kernel matrix, each element of which is the Weisfeiler-Lehman kernel between 2 praphs. | |||
""" | |||
gram_matrix = np.zeros((len(Gn), len(Gn))) | |||
kernel_matrix = (np.zeros((len(Gn), len(Gn))) if return_mat else 0) | |||
gram_itr_fun = (self._compute_gram_itr if return_mat else self._compute_kernel_itr) | |||
# initial for height = 0 | |||
all_num_of_each_label = [] # number of occurence of each label in each graph in this iteration | |||
@@ -446,10 +392,10 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
all_num_of_each_label.append(dict(Counter(labels_ori))) | |||
# Compute subtree kernel with the 0th iteration and add it to the final kernel. | |||
self._compute_gram_itr(gram_matrix, all_num_of_each_label) | |||
kernel_matrix = gram_itr_fun(kernel_matrix, all_num_of_each_label) | |||
# if h >= 1. | |||
# if h >= 1: | |||
if self.height > 0: | |||
# Set all edge labels into a tuple. # @todo: remove this original labels or not? | |||
if self.verbose >= 2: | |||
@@ -470,7 +416,7 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
num_of_labels_occured = self._subtree_1graph_labeled(G, all_set_compressed, all_num_of_each_label, num_of_labels_occured) | |||
# Compute subtree kernel with h iterations and add it to the final kernel. | |||
self._compute_gram_itr(gram_matrix, all_num_of_each_label) | |||
kernel_matrix = gram_itr_fun(kernel_matrix, all_num_of_each_label) | |||
# Iterate along heights. | |||
@@ -484,12 +430,12 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
num_of_labels_occured = self._subtree_1graph_nl(G, all_set_compressed, all_num_of_each_label, num_of_labels_occured) | |||
# Compute subtree kernel with h iterations and add it to the final kernel. | |||
self._compute_gram_itr(gram_matrix, all_num_of_each_label) | |||
kernel_matrix = gram_itr_fun(kernel_matrix, all_num_of_each_label) | |||
return gram_matrix | |||
return kernel_matrix | |||
def _subtree_kernel_do_unlabeled(self, Gn): | |||
def _subtree_kernel_do_unlabeled(self, Gn, return_mat=True): | |||
"""Compute Weisfeiler-Lehman kernels between graphs without labels. | |||
Parameters | |||
@@ -499,19 +445,20 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
Return | |||
------ | |||
gram_matrix : Numpy matrix | |||
kernel_matrix : Numpy matrix | |||
Kernel matrix, each element of which is the Weisfeiler-Lehman kernel between 2 praphs. | |||
""" | |||
gram_matrix = np.zeros((len(Gn), len(Gn))) | |||
kernel_matrix = (np.zeros((len(Gn), len(Gn))) if return_mat else 0) | |||
gram_itr_fun = (self._compute_gram_itr if return_mat else self._compute_kernel_itr) | |||
# initial for height = 0 | |||
all_num_of_each_label = [] # number of occurence of each label in each graph in this iteration | |||
# Compute subtree kernel with the 0th iteration and add it to the final kernel. | |||
iterator = combinations_with_replacement(range(0, len(gram_matrix)), 2) | |||
for i, j in iterator: | |||
gram_matrix[i][j] += nx.number_of_nodes(Gn[i]) * nx.number_of_nodes(Gn[j]) | |||
gram_matrix[j][i] = gram_matrix[i][j] | |||
iterator = combinations_with_replacement(range(0, len(kernel_matrix)), 2) | |||
for i, j in iterator: # @todo: not correct if return_mat == False. | |||
kernel_matrix[i][j] += nx.number_of_nodes(Gn[i]) * nx.number_of_nodes(Gn[j]) | |||
kernel_matrix[j][i] = kernel_matrix[i][j] | |||
# if h >= 1. | |||
@@ -526,7 +473,7 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
num_of_labels_occured = self._subtree_1graph_unlabeled(G, all_set_compressed, all_num_of_each_label, num_of_labels_occured) | |||
# Compute subtree kernel with h iterations and add it to the final kernel. | |||
self._compute_gram_itr(gram_matrix, all_num_of_each_label) | |||
kernel_matrix = gram_itr_fun(kernel_matrix, all_num_of_each_label) | |||
# Iterate along heights (>= 2). | |||
@@ -540,9 +487,9 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
num_of_labels_occured = self._subtree_1graph_nl(G, all_set_compressed, all_num_of_each_label, num_of_labels_occured) | |||
# Compute subtree kernel with h iterations and add it to the final kernel. | |||
self._compute_gram_itr(gram_matrix, all_num_of_each_label) | |||
kernel_matrix = gram_itr_fun(kernel_matrix, all_num_of_each_label) | |||
return gram_matrix | |||
return kernel_matrix | |||
def _subtree_1graph_nl(self, G, all_set_compressed, all_num_of_each_label, num_of_labels_occured): | |||
@@ -717,6 +664,8 @@ class WeisfeilerLehman(GraphKernel): # @todo: sp, edge user kernel. | |||
all_num_of_each_label[j]) | |||
gram_matrix[j][i] = gram_matrix[i][j] | |||
return gram_matrix | |||
def _compute_subtree_kernel(self, num_of_each_label1, num_of_each_label2): | |||
"""Compute the subtree kernel. | |||
@@ -0,0 +1,24 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Fri Jun 24 14:25:57 2022 | |||
@author: ljia | |||
""" | |||
from ._split import BaseCrossValidatorWithValid | |||
# from ._split import BaseShuffleSplit | |||
from ._split import KFoldWithValid | |||
# from ._split import GroupKFold | |||
# from ._split import StratifiedKFoldWithValid | |||
# from ._split import TimeSeriesSplit | |||
# from ._split import LeaveOneGroupOut | |||
# from ._split import LeaveOneOut | |||
# from ._split import LeavePGroupsOut | |||
# from ._split import LeavePOut | |||
from ._split import RepeatedKFoldWithValid | |||
# from ._split import RepeatedStratifiedKFold | |||
# from ._split import ShuffleSplit | |||
# from ._split import GroupShuffleSplit | |||
# from ._split import StratifiedShuffleSplit | |||
# from ._split import StratifiedGroupKFold | |||
# from ._split import PredefinedSplit |
@@ -0,0 +1,287 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Fri Jun 24 11:13:26 2022 | |||
@author: ljia | |||
Reference: scikit-learn. | |||
""" | |||
from abc import abstractmethod | |||
import numbers | |||
import warnings | |||
import numpy as np | |||
from sklearn.utils import check_random_state, check_array, column_or_1d, indexable | |||
from sklearn.utils.validation import _num_samples | |||
from sklearn.utils.multiclass import type_of_target | |||
class BaseCrossValidatorWithValid(object): | |||
"""Base class for all cross-validators. | |||
Implementations must define `_iter_valid_test_masks` or `_iter_valid_stest_indices`. | |||
""" | |||
def split(self, X, y=None, groups=None): | |||
"""Generate indices to split data into training, valid, and test set. | |||
Parameters | |||
---------- | |||
X : array-like of shape (n_samples, n_features) | |||
Training data, where `n_samples` is the number of samples | |||
and `n_features` is the number of features. | |||
y : array-like of shape (n_samples,) | |||
The target variable for supervised learning problems. | |||
groups : array-like of shape (n_samples,), default=None | |||
Group labels for the samples used while splitting the dataset into | |||
train/test set. | |||
Yields | |||
------ | |||
train : ndarray | |||
The training set indices for that split. | |||
valid : ndarray | |||
The valid set indices for that split. | |||
test : ndarray | |||
The testing set indices for that split. | |||
""" | |||
X, y, groups = indexable(X, y, groups) | |||
indices = np.arange(_num_samples(X)) | |||
for valid_index, test_index in self._iter_valid_test_masks(X, y, groups): | |||
train_index = indices[np.logical_not(np.logical_or(valid_index, test_index))] | |||
valid_index = indices[valid_index] | |||
test_index = indices[test_index] | |||
yield train_index, valid_index, test_index | |||
# Since subclasses must implement either _iter_valid_test_masks or | |||
# _iter_valid_test_indices, neither can be abstract. | |||
def _iter_valid_test_masks(self, X=None, y=None, groups=None): | |||
"""Generates boolean masks corresponding to valid and test sets. | |||
By default, delegates to _iter_valid_test_indices(X, y, groups) | |||
""" | |||
for valid_index, test_index in self._iter_valid_test_indices(X, y, groups): | |||
valid_mask = np.zeros(_num_samples(X), dtype=bool) | |||
test_mask = np.zeros(_num_samples(X), dtype=bool) | |||
valid_mask[valid_index] = True | |||
test_mask[test_index] = True | |||
yield valid_mask, test_mask | |||
def _iter_valid_test_indices(self, X=None, y=None, groups=None): | |||
"""Generates integer indices corresponding to valid and test sets.""" | |||
raise NotImplementedError | |||
@abstractmethod | |||
def get_n_splits(self, X=None, y=None, groups=None): | |||
"""Returns the number of splitting iterations in the cross-validator""" | |||
def __repr__(self): | |||
return _build_repr(self) | |||
class _BaseKFoldWithValid(BaseCrossValidatorWithValid): | |||
"""Base class for KFoldWithValid, GroupKFoldWithValid, and StratifiedKFoldWithValid""" | |||
@abstractmethod | |||
def __init__(self, n_splits, *, stratify, shuffle, random_state): | |||
if not isinstance(n_splits, numbers.Integral): | |||
raise ValueError( | |||
'The number of folds must be of Integral type. ' | |||
'%s of type %s was passed.' % (n_splits, type(n_splits)) | |||
) | |||
n_splits = int(n_splits) | |||
if n_splits <= 2: | |||
raise ValueError( | |||
'k-fold cross-validation requires at least one' | |||
' train/valid/test split by setting n_splits=3 or more,' | |||
' got n_splits={0}.'.format(n_splits) | |||
) | |||
if not isinstance(shuffle, bool): | |||
raise TypeError('shuffle must be True or False; got {0}'.format(shuffle)) | |||
if not shuffle and random_state is not None: # None is the default | |||
raise ValueError( | |||
'Setting a random_state has no effect since shuffle is ' | |||
'False. You should leave ' | |||
'random_state to its default (None), or set shuffle=True.', | |||
) | |||
self.n_splits = n_splits | |||
self.stratify = stratify | |||
self.shuffle = shuffle | |||
self.random_state = random_state | |||
def split(self, X, y=None, groups=None): | |||
"""Generate indices to split data into training, valid and test set.""" | |||
X, y, groups = indexable(X, y, groups) | |||
n_samples = _num_samples(X) | |||
if self.n_splits > n_samples: | |||
raise ValueError( | |||
( | |||
'Cannot have number of splits n_splits={0} greater' | |||
' than the number of samples: n_samples={1}.' | |||
).format(self.n_splits, n_samples) | |||
) | |||
for train, valid, test in super().split(X, y, groups): | |||
yield train, valid, test | |||
class KFoldWithValid(_BaseKFoldWithValid): | |||
def __init__( | |||
self, | |||
n_splits=5, | |||
*, | |||
stratify=False, | |||
shuffle=False, | |||
random_state=None | |||
): | |||
super().__init__( | |||
n_splits=n_splits, | |||
stratify=stratify, | |||
shuffle=shuffle, | |||
random_state=random_state | |||
) | |||
def _make_valid_test_folds(self, X, y=None): | |||
rng = check_random_state(self.random_state) | |||
y = np.asarray(y) | |||
type_of_target_y = type_of_target(y) | |||
allowed_target_types = ('binary', 'multiclass') | |||
if type_of_target_y not in allowed_target_types: | |||
raise ValueError( | |||
'Supported target types are: {}. Got {!r} instead.'.format( | |||
allowed_target_types, type_of_target_y | |||
) | |||
) | |||
y = column_or_1d(y) | |||
_, y_idx, y_inv = np.unique(y, return_index=True, return_inverse=True) | |||
# y_inv encodes y according to lexicographic order. We invert y_idx to | |||
# map the classes so that they are encoded by order of appearance: | |||
# 0 represents the first label appearing in y, 1 the second, etc. | |||
_, class_perm = np.unique(y_idx, return_inverse=True) | |||
y_encoded = class_perm[y_inv] | |||
n_classes = len(y_idx) | |||
y_counts = np.bincount(y_encoded) | |||
min_groups = np.min(y_counts) | |||
if np.all(self.n_splits > y_counts): | |||
raise ValueError( | |||
"n_splits=%d cannot be greater than the" | |||
" number of members in each class." % (self.n_splits) | |||
) | |||
if self.n_splits > min_groups: | |||
warnings.warn( | |||
"The least populated class in y has only %d" | |||
" members, which is less than n_splits=%d." | |||
% (min_groups, self.n_splits), | |||
UserWarning, | |||
) | |||
# Determine the optimal number of samples from each class in each fold, | |||
# using round robin over the sorted y. (This can be done direct from | |||
# counts, but that code is unreadable.) | |||
y_order = np.sort(y_encoded) | |||
allocation = np.asarray( | |||
[ | |||
np.bincount(y_order[i :: self.n_splits], minlength=n_classes) | |||
for i in range(self.n_splits) | |||
] | |||
) | |||
# To maintain the data order dependencies as best as possible within | |||
# the stratification constraint, we assign samples from each class in | |||
# blocks (and then mess that up when shuffle=True). | |||
test_folds = np.empty(len(y), dtype='i') | |||
for k in range(n_classes): | |||
# since the kth column of allocation stores the number of samples | |||
# of class k in each test set, this generates blocks of fold | |||
# indices corresponding to the allocation for class k. | |||
folds_for_class = np.arange(self.n_splits).repeat(allocation[:, k]) | |||
if self.shuffle: | |||
rng.shuffle(folds_for_class) | |||
test_folds[y_encoded == k] = folds_for_class | |||
return test_folds | |||
def _iter_valid_test_masks(self, X, y=None, groups=None): | |||
test_folds = self._make_valid_test_folds(X, y) | |||
for i in range(self.n_splits): | |||
if i + 1 < self.n_splits: | |||
j = i + 1 | |||
else: | |||
j = 0 | |||
yield test_folds == i, test_folds == j | |||
def split(self, X, y, groups=None): | |||
y = check_array(y, input_name='y', ensure_2d=False, dtype=None) | |||
return super().split(X, y, groups) | |||
class _RepeatedSplitsWithValid(object): | |||
def __init__( | |||
self, | |||
cv, | |||
*, | |||
n_repeats=10, | |||
random_state=None, | |||
**cvargs | |||
): | |||
if not isinstance(n_repeats, int): | |||
raise ValueError('Number of repetitions must be of integer type.') | |||
if n_repeats <= 0: | |||
raise ValueError('Number of repetitions must be greater than 0.') | |||
self.cv = cv | |||
self.n_repeats = n_repeats | |||
self.random_state = random_state | |||
self.cvargs = cvargs | |||
def split(self, X, y=None, groups=None): | |||
n_repeats = self.n_repeats | |||
rng = check_random_state(self.random_state) | |||
for idx in range(n_repeats): | |||
cv = self.cv(random_state=rng, shuffle=True, **self.cvargs) | |||
for train_index, valid_index, test_index in cv.split(X, y, groups): | |||
yield train_index, valid_index, test_index | |||
class RepeatedKFoldWithValid(_RepeatedSplitsWithValid): | |||
def __init__( | |||
self, | |||
*, | |||
n_splits=5, | |||
n_repeats=10, | |||
stratify=False, | |||
random_state=None | |||
): | |||
super().__init__( | |||
KFoldWithValid, | |||
n_repeats=n_repeats, | |||
stratify=stratify, | |||
random_state=random_state, | |||
n_splits=n_splits, | |||
) |
@@ -4,7 +4,7 @@ These kernels are defined between pairs of vectors. | |||
import numpy as np | |||
def delta_kernel(x, y): | |||
def kronecker_delta_kernel(x, y): | |||
"""Delta kernel. Return 1 if x == y, 0 otherwise. | |||
Parameters | |||
@@ -23,6 +23,10 @@ def delta_kernel(x, y): | |||
labeled graphs. In Proceedings of the 20th International Conference on | |||
Machine Learning, Washington, DC, United States, 2003. | |||
""" | |||
return (1 if np.array_equal(x, y) else 0) | |||
def delta_kernel(x, y): | |||
return x == y #(1 if condition else 0) | |||
@@ -64,6 +68,11 @@ def gaussian_kernel(x, y, gamma=None): | |||
return np.exp((np.sum(np.subtract(x, y) ** 2)) * -gamma) | |||
def tanimoto_kernel(x, y): | |||
xy = np.dot(x, y) | |||
return xy / (np.dot(x, x) + np.dot(y, y) - xy) | |||
def gaussiankernel(x, y, gamma=None): | |||
return gaussian_kernel(x, y, gamma=gamma) | |||
@@ -123,7 +132,7 @@ def linearkernel(x, y): | |||
def cosine_kernel(x, y): | |||
return np.dot(x, y) / (np.abs(x) * np.abs(y)) | |||
return np.dot(x, y) / (np.linalg.norm(x) * np.linalg.norm(y)) | |||
def sigmoid_kernel(x, y, gamma=None, coef0=1): | |||
@@ -142,7 +151,7 @@ def laplacian_kernel(x, y, gamma=None): | |||
if gamma is None: | |||
gamma = 1.0 / len(x) | |||
k = -gamma * np.abs(np.subtract(x, y)) | |||
k = -gamma * np.linalg.norm(np.subtract(x, y)) | |||
k = np.exp(k) | |||
return k | |||
@@ -7,6 +7,9 @@ from enum import Enum, unique | |||
# from tqdm import tqdm | |||
#%% | |||
def getSPLengths(G1): | |||
sp = nx.shortest_path(G1) | |||
distances = np.zeros((G1.number_of_nodes(), G1.number_of_nodes())) | |||
@@ -286,81 +289,146 @@ def direct_product_graph(G1, G2, node_labels, edge_labels): | |||
return gt | |||
def graph_deepcopy(G): | |||
"""Deep copy a graph, including deep copy of all nodes, edges and | |||
attributes of the graph, nodes and edges. | |||
def find_paths(G, source_node, length): | |||
"""Find all paths with a certain length those start from a source node. | |||
A recursive depth first search is applied. | |||
Note | |||
---- | |||
It is the same as the NetworkX function graph.copy(), as far as I know. | |||
Parameters | |||
---------- | |||
G : NetworkX graphs | |||
The graph in which paths are searched. | |||
source_node : integer | |||
The number of the node from where all paths start. | |||
length : integer | |||
The length of paths. | |||
Return | |||
------ | |||
path : list of list | |||
List of paths retrieved, where each path is represented by a list of nodes. | |||
""" | |||
# add graph attributes. | |||
labels = {} | |||
for k, v in G.graph.items(): | |||
labels[k] = deepcopy(v) | |||
if G.is_directed(): | |||
G_copy = nx.DiGraph(**labels) | |||
else: | |||
G_copy = nx.Graph(**labels) | |||
if length == 0: | |||
return [[source_node]] | |||
path = [[source_node] + path for neighbor in G[source_node] \ | |||
for path in find_paths(G, neighbor, length - 1) if source_node not in path] | |||
return path | |||
# add nodes | |||
for nd, attrs in G.nodes(data=True): | |||
labels = {} | |||
for k, v in attrs.items(): | |||
labels[k] = deepcopy(v) | |||
G_copy.add_node(nd, **labels) | |||
# add edges. | |||
for nd1, nd2, attrs in G.edges(data=True): | |||
labels = {} | |||
for k, v in attrs.items(): | |||
labels[k] = deepcopy(v) | |||
G_copy.add_edge(nd1, nd2, **labels) | |||
def find_all_paths(G, length, is_directed): | |||
"""Find all paths with a certain length in a graph. A recursive depth first | |||
search is applied. | |||
return G_copy | |||
Parameters | |||
---------- | |||
G : NetworkX graphs | |||
The graph in which paths are searched. | |||
length : integer | |||
The length of paths. | |||
Return | |||
------ | |||
path : list of list | |||
List of paths retrieved, where each path is represented by a list of nodes. | |||
""" | |||
all_paths = [] | |||
for node in G: | |||
all_paths.extend(find_paths(G, node, length)) | |||
def graph_isIdentical(G1, G2): | |||
"""Check if two graphs are identical, including: same nodes, edges, node | |||
labels/attributes, edge labels/attributes. | |||
if not is_directed: | |||
# For each path, two presentations are retrieved from its two extremities. | |||
# Remove one of them. | |||
all_paths_r = [path[::-1] for path in all_paths] | |||
for idx, path in enumerate(all_paths[:-1]): | |||
for path2 in all_paths_r[idx+1::]: | |||
if path == path2: | |||
all_paths[idx] = [] | |||
break | |||
all_paths = list(filter(lambda a: a != [], all_paths)) | |||
Notes | |||
----- | |||
1. The type of graphs has to be the same. | |||
return all_paths | |||
2. Global/Graph attributes are neglected as they may contain names for graphs. | |||
""" | |||
# check nodes. | |||
nlist1 = [n for n in G1.nodes(data=True)] | |||
nlist2 = [n for n in G2.nodes(data=True)] | |||
if not nlist1 == nlist2: | |||
return False | |||
# check edges. | |||
elist1 = [n for n in G1.edges(data=True)] | |||
elist2 = [n for n in G2.edges(data=True)] | |||
if not elist1 == elist2: | |||
return False | |||
# check graph attributes. | |||
return True | |||
# @todo: use it in ShortestPath. | |||
def compute_vertex_kernels(g1, g2, node_kernels, node_labels=[], node_attrs=[]): | |||
"""Compute kernels between each pair of vertices in two graphs. | |||
Parameters | |||
---------- | |||
g1, g2 : NetworkX graph | |||
The kernels bewteen pairs of vertices in these two graphs are computed. | |||
node_kernels : dict | |||
A dictionary of kernel functions for nodes, including 3 items: 'symb' | |||
for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix' | |||
for both labels. The first 2 functions take two node labels as | |||
parameters, and the 'mix' function takes 4 parameters, a symbolic and a | |||
non-symbolic label for each the two nodes. Each label is in form of 2-D | |||
dimension array (n_samples, n_features). Each function returns a number | |||
as the kernel value. Ignored when nodes are unlabeled. This argument | |||
is designated to conjugate gradient method and fixed-point iterations. | |||
node_labels : list, optional | |||
The list of the name strings of the node labels. The default is []. | |||
node_attrs : list, optional | |||
The list of the name strings of the node attributes. The default is []. | |||
def get_node_labels(Gn, node_label): | |||
"""Get node labels of dataset Gn. | |||
""" | |||
nl = set() | |||
for G in Gn: | |||
nl = nl | set(nx.get_node_attributes(G, node_label).values()) | |||
return nl | |||
Returns | |||
------- | |||
vk_dict : dict | |||
Vertex kernels keyed by vertices. | |||
Notes | |||
----- | |||
This function is used by ``gklearn.kernels.FixedPoint'' and | |||
``gklearn.kernels.StructuralSP''. The method is borrowed from FCSP [1]. | |||
def get_edge_labels(Gn, edge_label): | |||
"""Get edge labels of dataset Gn. | |||
References | |||
---------- | |||
.. [1] Lifan Xu, Wei Wang, M Alvarez, John Cavazos, and Dongping Zhang. | |||
Parallelization of shortest path graph kernels on multi-core cpus and gpus. | |||
Proceedings of the Programmability Issues for Heterogeneous Multicores | |||
(MultiProg), Vienna, Austria, 2014. | |||
""" | |||
el = set() | |||
for G in Gn: | |||
el = el | set(nx.get_edge_attributes(G, edge_label).values()) | |||
return el | |||
vk_dict = {} # shortest path matrices dict | |||
if len(node_labels) > 0: | |||
# node symb and non-synb labeled | |||
if len(node_attrs) > 0: | |||
kn = node_kernels['mix'] | |||
for n1 in g1.nodes(data=True): | |||
for n2 in g2.nodes(data=True): | |||
n1_labels = [n1[1][nl] for nl in node_labels] | |||
n2_labels = [n2[1][nl] for nl in node_labels] | |||
n1_attrs = [n1[1][na] for na in node_attrs] | |||
n2_attrs = [n2[1][na] for na in node_attrs] | |||
vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels, n1_attrs, n2_attrs) | |||
# node symb labeled | |||
else: | |||
kn = node_kernels['symb'] | |||
for n1 in g1.nodes(data=True): | |||
for n2 in g2.nodes(data=True): | |||
n1_labels = [n1[1][nl] for nl in node_labels] | |||
n2_labels = [n2[1][nl] for nl in node_labels] | |||
vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels) | |||
else: | |||
# node non-synb labeled | |||
if len(node_attrs) > 0: | |||
kn = node_kernels['nsymb'] | |||
for n1 in g1.nodes(data=True): | |||
for n2 in g2.nodes(data=True): | |||
n1_attrs = [n1[1][na] for na in node_attrs] | |||
n2_attrs = [n2[1][na] for na in node_attrs] | |||
vk_dict[(n1[0], n2[0])] = kn(n1_attrs, n2_attrs) | |||
# node unlabeled | |||
else: | |||
pass # @todo: add edge weights. | |||
# for e1 in g1.edges(data=True): | |||
# for e2 in g2.edges(data=True): | |||
# if e1[2]['cost'] == e2[2]['cost']: | |||
# kernel += 1 | |||
# return kernel | |||
return vk_dict | |||
#%% | |||
def get_graph_kernel_by_name(name, node_labels=None, edge_labels=None, node_attrs=None, edge_attrs=None, ds_infos=None, kernel_options={}, **kwargs): | |||
@@ -513,79 +581,6 @@ def compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, d | |||
print('\ncomplete.') | |||
def find_paths(G, source_node, length): | |||
"""Find all paths with a certain length those start from a source node. | |||
A recursive depth first search is applied. | |||
Parameters | |||
---------- | |||
G : NetworkX graphs | |||
The graph in which paths are searched. | |||
source_node : integer | |||
The number of the node from where all paths start. | |||
length : integer | |||
The length of paths. | |||
Return | |||
------ | |||
path : list of list | |||
List of paths retrieved, where each path is represented by a list of nodes. | |||
""" | |||
if length == 0: | |||
return [[source_node]] | |||
path = [[source_node] + path for neighbor in G[source_node] \ | |||
for path in find_paths(G, neighbor, length - 1) if source_node not in path] | |||
return path | |||
def find_all_paths(G, length, is_directed): | |||
"""Find all paths with a certain length in a graph. A recursive depth first | |||
search is applied. | |||
Parameters | |||
---------- | |||
G : NetworkX graphs | |||
The graph in which paths are searched. | |||
length : integer | |||
The length of paths. | |||
Return | |||
------ | |||
path : list of list | |||
List of paths retrieved, where each path is represented by a list of nodes. | |||
""" | |||
all_paths = [] | |||
for node in G: | |||
all_paths.extend(find_paths(G, node, length)) | |||
if not is_directed: | |||
# For each path, two presentations are retrieved from its two extremities. | |||
# Remove one of them. | |||
all_paths_r = [path[::-1] for path in all_paths] | |||
for idx, path in enumerate(all_paths[:-1]): | |||
for path2 in all_paths_r[idx+1::]: | |||
if path == path2: | |||
all_paths[idx] = [] | |||
break | |||
all_paths = list(filter(lambda a: a != [], all_paths)) | |||
return all_paths | |||
def get_mlti_dim_node_attrs(G, attr_names): | |||
attributes = [] | |||
for nd, attrs in G.nodes(data=True): | |||
attributes.append(tuple(attrs[aname] for aname in attr_names)) | |||
return attributes | |||
def get_mlti_dim_edge_attrs(G, attr_names): | |||
attributes = [] | |||
for ed, attrs in G.edges(data=True): | |||
attributes.append(tuple(attrs[aname] for aname in attr_names)) | |||
return attributes | |||
def normalize_gram_matrix(gram_matrix): | |||
diag = gram_matrix.diagonal().copy() | |||
old_settings = np.seterr(invalid='raise') # Catch FloatingPointError: invalid value encountered in sqrt. | |||
@@ -621,84 +616,162 @@ def compute_distance_matrix(gram_matrix): | |||
return dis_mat, dis_max, dis_min, dis_mean | |||
# @todo: use it in ShortestPath. | |||
def compute_vertex_kernels(g1, g2, node_kernels, node_labels=[], node_attrs=[]): | |||
"""Compute kernels between each pair of vertices in two graphs. | |||
#%% | |||
def graph_deepcopy(G): | |||
"""Deep copy a graph, including deep copy of all nodes, edges and | |||
attributes of the graph, nodes and edges. | |||
Note | |||
---- | |||
- It is the same as the NetworkX function graph.copy(), as far as I know. | |||
- This function only supports Networkx.Graph and Networkx.DiGraph. | |||
""" | |||
# add graph attributes. | |||
labels = {} | |||
for k, v in G.graph.items(): | |||
labels[k] = deepcopy(v) | |||
if G.is_directed(): | |||
G_copy = nx.DiGraph(**labels) | |||
else: | |||
G_copy = nx.Graph(**labels) | |||
# add nodes | |||
for nd, attrs in G.nodes(data=True): | |||
labels = {} | |||
for k, v in attrs.items(): | |||
labels[k] = deepcopy(v) | |||
G_copy.add_node(nd, **labels) | |||
# add edges. | |||
for nd1, nd2, attrs in G.edges(data=True): | |||
labels = {} | |||
for k, v in attrs.items(): | |||
labels[k] = deepcopy(v) | |||
G_copy.add_edge(nd1, nd2, **labels) | |||
return G_copy | |||
def graph_isIdentical(G1, G2): | |||
"""Check if two graphs are identical, including: same nodes, edges, node | |||
labels/attributes, edge labels/attributes. | |||
Notes | |||
----- | |||
1. The type of graphs has to be the same. | |||
2. Global/Graph attributes are neglected as they may contain names for graphs. | |||
""" | |||
# check nodes. | |||
nlist1 = [n for n in G1.nodes(data=True)] | |||
nlist2 = [n for n in G2.nodes(data=True)] | |||
if not nlist1 == nlist2: | |||
return False | |||
# check edges. | |||
elist1 = [n for n in G1.edges(data=True)] | |||
elist2 = [n for n in G2.edges(data=True)] | |||
if not elist1 == elist2: | |||
return False | |||
# check graph attributes. | |||
return True | |||
def get_node_labels(Gn, node_label): | |||
"""Get node labels of dataset Gn. | |||
""" | |||
nl = set() | |||
for G in Gn: | |||
nl = nl | set(nx.get_node_attributes(G, node_label).values()) | |||
return nl | |||
def get_edge_labels(Gn, edge_label): | |||
"""Get edge labels of dataset Gn. | |||
""" | |||
el = set() | |||
for G in Gn: | |||
el = el | set(nx.get_edge_attributes(G, edge_label).values()) | |||
return el | |||
def get_mlti_dim_node_attrs(G, attr_names): | |||
attributes = [] | |||
for nd, attrs in G.nodes(data=True): | |||
attributes.append(tuple(attrs[aname] for aname in attr_names)) | |||
return attributes | |||
def get_mlti_dim_edge_attrs(G, attr_names): | |||
attributes = [] | |||
for ed, attrs in G.edges(data=True): | |||
attributes.append(tuple(attrs[aname] for aname in attr_names)) | |||
return attributes | |||
def nx_permute_nodes(G, random_state=None): | |||
"""Permute node indices in a NetworkX graph. | |||
Parameters | |||
---------- | |||
g1, g2 : NetworkX graph | |||
The kernels bewteen pairs of vertices in these two graphs are computed. | |||
node_kernels : dict | |||
A dictionary of kernel functions for nodes, including 3 items: 'symb' | |||
for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix' | |||
for both labels. The first 2 functions take two node labels as | |||
parameters, and the 'mix' function takes 4 parameters, a symbolic and a | |||
non-symbolic label for each the two nodes. Each label is in form of 2-D | |||
dimension array (n_samples, n_features). Each function returns a number | |||
as the kernel value. Ignored when nodes are unlabeled. This argument | |||
is designated to conjugate gradient method and fixed-point iterations. | |||
node_labels : list, optional | |||
The list of the name strings of the node labels. The default is []. | |||
node_attrs : list, optional | |||
The list of the name strings of the node attributes. The default is []. | |||
G : TYPE | |||
DESCRIPTION. | |||
random_state : TYPE, optional | |||
DESCRIPTION. The default is None. | |||
Returns | |||
------- | |||
vk_dict : dict | |||
Vertex kernels keyed by vertices. | |||
G_new : TYPE | |||
DESCRIPTION. | |||
Notes | |||
----- | |||
This function is used by ``gklearn.kernels.FixedPoint'' and | |||
``gklearn.kernels.StructuralSP''. The method is borrowed from FCSP [1]. | |||
References | |||
---------- | |||
.. [1] Lifan Xu, Wei Wang, M Alvarez, John Cavazos, and Dongping Zhang. | |||
Parallelization of shortest path graph kernels on multi-core cpus and gpus. | |||
Proceedings of the Programmability Issues for Heterogeneous Multicores | |||
(MultiProg), Vienna, Austria, 2014. | |||
- This function only supports Networkx.Graph and Networkx.DiGraph. | |||
""" | |||
vk_dict = {} # shortest path matrices dict | |||
if len(node_labels) > 0: | |||
# node symb and non-synb labeled | |||
if len(node_attrs) > 0: | |||
kn = node_kernels['mix'] | |||
for n1 in g1.nodes(data=True): | |||
for n2 in g2.nodes(data=True): | |||
n1_labels = [n1[1][nl] for nl in node_labels] | |||
n2_labels = [n2[1][nl] for nl in node_labels] | |||
n1_attrs = [n1[1][na] for na in node_attrs] | |||
n2_attrs = [n2[1][na] for na in node_attrs] | |||
vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels, n1_attrs, n2_attrs) | |||
# node symb labeled | |||
else: | |||
kn = node_kernels['symb'] | |||
for n1 in g1.nodes(data=True): | |||
for n2 in g2.nodes(data=True): | |||
n1_labels = [n1[1][nl] for nl in node_labels] | |||
n2_labels = [n2[1][nl] for nl in node_labels] | |||
vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels) | |||
# @todo: relabel node with integers? (in case something went wrong...) | |||
# Add graph attributes. | |||
labels = {} | |||
for k, v in G.graph.items(): | |||
labels[k] = deepcopy(v) | |||
if G.is_directed(): | |||
G_new = nx.DiGraph(**labels) | |||
else: | |||
# node non-synb labeled | |||
if len(node_attrs) > 0: | |||
kn = node_kernels['nsymb'] | |||
for n1 in g1.nodes(data=True): | |||
for n2 in g2.nodes(data=True): | |||
n1_attrs = [n1[1][na] for na in node_attrs] | |||
n2_attrs = [n2[1][na] for na in node_attrs] | |||
vk_dict[(n1[0], n2[0])] = kn(n1_attrs, n2_attrs) | |||
# node unlabeled | |||
else: | |||
pass # @todo: add edge weights. | |||
# for e1 in g1.edges(data=True): | |||
# for e2 in g2.edges(data=True): | |||
# if e1[2]['cost'] == e2[2]['cost']: | |||
# kernel += 1 | |||
# return kernel | |||
G_new = nx.Graph(**labels) | |||
return vk_dict | |||
# Create a random mapping old node indices <-> new indices. | |||
nb_nodes = nx.number_of_nodes(G) | |||
indices_orig = range(nb_nodes) | |||
idx_mapping = np.random.RandomState(seed=random_state).permutation(indices_orig) | |||
# Add nodes. | |||
nodes_orig = list(G.nodes) | |||
for i_orig in range(nb_nodes): | |||
i_new = idx_mapping[i_orig] | |||
labels = {} | |||
for k, v in G.nodes[nodes_orig[i_new]].items(): | |||
labels[k] = deepcopy(v) | |||
G_new.add_node(nodes_orig[i_new], **labels) | |||
# Add edges. | |||
for nd1, nd2, attrs in G.edges(data=True): | |||
labels = {} | |||
for k, v in attrs.items(): | |||
labels[k] = deepcopy(v) | |||
G_new.add_edge(nd1, nd2, **labels) | |||
# # create a random mapping old label -> new label | |||
# node_mapping = dict(zip(G.nodes(), np.random.RandomState(seed=random_state).permutation(G.nodes()))) | |||
# # build a new graph | |||
# G_new = nx.relabel_nodes(G, node_mapping) | |||
return G_new | |||
#%% | |||
def dummy_node(): | |||
@@ -2,7 +2,7 @@ numpy>=1.16.2 | |||
scipy>=1.1.0 | |||
matplotlib>=3.1.0 | |||
networkx>=2.2 | |||
scikit-learn>=0.20.0 | |||
scikit-learn>=1.1.0 | |||
tabulate>=0.8.2 | |||
tqdm>=4.26.0 | |||
control>=0.8.2 # for generalized random walk kernels only. | |||
@@ -1,8 +1,8 @@ | |||
numpy>=1.16.2 | |||
scipy>=1.1.0 | |||
matplotlib>=3.0.0 | |||
matplotlib>=3.1.0 | |||
networkx>=2.2 | |||
scikit-learn>=0.20.0 | |||
scikit-learn>=1.1.0 | |||
tabulate>=0.8.2 | |||
tqdm>=4.26.0 | |||
control>=0.8.2 # for generalized random walk kernels only. | |||