|
|
@@ -0,0 +1,190 @@ |
|
|
|
{ |
|
|
|
"cells": [ |
|
|
|
{ |
|
|
|
"cell_type": "code", |
|
|
|
"execution_count": null, |
|
|
|
"metadata": {}, |
|
|
|
"outputs": [ |
|
|
|
{ |
|
|
|
"name": "stdout", |
|
|
|
"output_type": "stream", |
|
|
|
"text": [ |
|
|
|
"\n", |
|
|
|
"Acyclic\n", |
|
|
|
"\n", |
|
|
|
"--- This is a regression problem ---\n", |
|
|
|
"\n", |
|
|
|
"\n", |
|
|
|
"1. Loading dataset from file...\n", |
|
|
|
"\n", |
|
|
|
"2. Calculating gram matrices. This could take a while...\n", |
|
|
|
"getting canonkeys: 183it [00:00, 2869.32it/s]\n", |
|
|
|
"calculating kernels: 16836it [00:00, 289967.90it/s]\n", |
|
|
|
"\n", |
|
|
|
" --- treelet kernel matrix of size 183 built in 0.2736480236053467 seconds ---\n", |
|
|
|
"\n", |
|
|
|
"the gram matrix with parameters {'sub_kernel': <function gaussiankernel at 0x7f12f14ec730>, 'n_jobs': 8, 'verbose': True} is: \n", |
|
|
|
"\n", |
|
|
|
"\n", |
|
|
|
"getting canonkeys: 183it [00:00, 2431.05it/s]\n", |
|
|
|
"calculating kernels: 16836it [00:00, 225177.06it/s]\n", |
|
|
|
"\n", |
|
|
|
" --- treelet kernel matrix of size 183 built in 0.2614881992340088 seconds ---\n", |
|
|
|
"\n", |
|
|
|
"the gram matrix with parameters {'sub_kernel': <function polynomialkernel at 0x7f12f14ec7b8>, 'n_jobs': 8, 'verbose': True} is: \n", |
|
|
|
"\n", |
|
|
|
"\n", |
|
|
|
"\n", |
|
|
|
"2 gram matrices are calculated, 0 of which are ignored.\n", |
|
|
|
"\n", |
|
|
|
"3. Fitting and predicting using nested cross validation. This could really take a while...\n", |
|
|
|
"cross validation: 30it [00:06, 4.34it/s]\n", |
|
|
|
"\n", |
|
|
|
"4. Getting final performance...\n", |
|
|
|
"best_params_out: [{'sub_kernel': <function polynomialkernel at 0x7f12f14ec7b8>, 'n_jobs': 8, 'verbose': True}]\n", |
|
|
|
"best_params_in: [{'alpha': 0.01}]\n", |
|
|
|
"\n", |
|
|
|
"best_val_perf: 8.699254729880051\n", |
|
|
|
"best_val_std: 0.6859488791023038\n", |
|
|
|
"final_performance: [10.449041034883777]\n", |
|
|
|
"final_confidence: [5.005824863496953]\n", |
|
|
|
"train_performance: [1.3405521528763233]\n", |
|
|
|
"train_std: [0.0923786919637616]\n", |
|
|
|
"\n", |
|
|
|
"time to calculate gram matrix with different hyper-params: 0.27±0.01s\n", |
|
|
|
"time to calculate best gram matrix: 0.26±0.00s\n", |
|
|
|
"total training time with all hyper-param choices: 8.18s\n", |
|
|
|
"\n", |
|
|
|
"\n", |
|
|
|
"\n", |
|
|
|
"Alkane\n", |
|
|
|
"\n", |
|
|
|
"--- This is a regression problem ---\n", |
|
|
|
"\n", |
|
|
|
"\n", |
|
|
|
"1. Loading dataset from file...\n", |
|
|
|
"\n", |
|
|
|
"2. Calculating gram matrices. This could take a while...\n", |
|
|
|
"getting canonkeys: 150it [00:00, 1460.40it/s]\n", |
|
|
|
"calculating kernels: 11325it [00:00, 188753.18it/s]\n", |
|
|
|
"\n", |
|
|
|
" --- treelet kernel matrix of size 150 built in 0.452197790145874 seconds ---\n", |
|
|
|
"\n", |
|
|
|
"the gram matrix with parameters {'sub_kernel': <function gaussiankernel at 0x7f12f14ec730>, 'n_jobs': 8, 'verbose': True} is: \n", |
|
|
|
"\n", |
|
|
|
"\n", |
|
|
|
"getting canonkeys: 150it [00:00, 3273.02it/s]\n", |
|
|
|
"calculating kernels: 11325it [00:00, 223074.04it/s]\n", |
|
|
|
"\n", |
|
|
|
" --- treelet kernel matrix of size 150 built in 0.2638716697692871 seconds ---\n", |
|
|
|
"\n", |
|
|
|
"the gram matrix with parameters {'sub_kernel': <function polynomialkernel at 0x7f12f14ec7b8>, 'n_jobs': 8, 'verbose': True} is: \n", |
|
|
|
"\n", |
|
|
|
"\n", |
|
|
|
"\n", |
|
|
|
"2 gram matrices are calculated, 0 of which are ignored.\n", |
|
|
|
"\n", |
|
|
|
"3. Fitting and predicting using nested cross validation. This could really take a while...\n", |
|
|
|
"cross validation: 1it [00:01, 1.41s/it]" |
|
|
|
] |
|
|
|
} |
|
|
|
], |
|
|
|
"source": [ |
|
|
|
"from libs import *\n", |
|
|
|
"import multiprocessing\n", |
|
|
|
"\n", |
|
|
|
"from gklearn.kernels.treeletKernel import treeletkernel\n", |
|
|
|
"from gklearn.utils.kernels import gaussiankernel, polynomialkernel\n", |
|
|
|
"\n", |
|
|
|
"dslist = [\n", |
|
|
|
" {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds',\n", |
|
|
|
" 'task': 'regression'}, # node symb\n", |
|
|
|
" {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',\n", |
|
|
|
" 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, \n", |
|
|
|
" # contains single node graph, node symb\n", |
|
|
|
" {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb\n", |
|
|
|
" {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled\n", |
|
|
|
" {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb\n", |
|
|
|
"# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},\n", |
|
|
|
"# # node nsymb\n", |
|
|
|
" {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},\n", |
|
|
|
" # node symb/nsymb\n", |
|
|
|
"# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'},\n", |
|
|
|
"# # node/edge symb\n", |
|
|
|
"# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb\n", |
|
|
|
"\n", |
|
|
|
" # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb\n", |
|
|
|
" # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb\n", |
|
|
|
" # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb\n", |
|
|
|
" # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},\n", |
|
|
|
" #\n", |
|
|
|
" # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb\n", |
|
|
|
" # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb\n", |
|
|
|
" # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb\n", |
|
|
|
" # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb\n", |
|
|
|
" # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb\n", |
|
|
|
"\n", |
|
|
|
" # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb\n", |
|
|
|
" # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb\n", |
|
|
|
" {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb\n", |
|
|
|
" # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',\n", |
|
|
|
" # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb\n", |
|
|
|
" # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',\n", |
|
|
|
" # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb\n", |
|
|
|
" # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',\n", |
|
|
|
" # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb\n", |
|
|
|
"\n", |
|
|
|
" # # not working below\n", |
|
|
|
" # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},\n", |
|
|
|
" # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},\n", |
|
|
|
" # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},\n", |
|
|
|
" # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},\n", |
|
|
|
"]\n", |
|
|
|
"estimator = treeletkernel\n", |
|
|
|
"param_grid_precomputed = {'sub_kernel': [gaussiankernel, polynomialkernel]}\n", |
|
|
|
"param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},\n", |
|
|
|
" {'alpha': np.logspace(-10, 10, num=41, base=10)}]\n", |
|
|
|
"\n", |
|
|
|
"for ds in dslist:\n", |
|
|
|
" print()\n", |
|
|
|
" print(ds['name'])\n", |
|
|
|
" model_selection_for_precomputed_kernel(\n", |
|
|
|
" ds['dataset'],\n", |
|
|
|
" estimator,\n", |
|
|
|
" param_grid_precomputed,\n", |
|
|
|
" (param_grid[1] if ('task' in ds and ds['task']\n", |
|
|
|
" == 'regression') else param_grid[0]),\n", |
|
|
|
" (ds['task'] if 'task' in ds else 'classification'),\n", |
|
|
|
" NUM_TRIALS=30,\n", |
|
|
|
" datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),\n", |
|
|
|
" extra_params=(ds['extra_params'] if 'extra_params' in ds else None),\n", |
|
|
|
" ds_name=ds['name'],\n", |
|
|
|
" n_jobs=multiprocessing.cpu_count(),\n", |
|
|
|
" read_gm_from_file=False,\n", |
|
|
|
" verbose=True)\n", |
|
|
|
" print()" |
|
|
|
] |
|
|
|
} |
|
|
|
], |
|
|
|
"metadata": { |
|
|
|
"kernelspec": { |
|
|
|
"display_name": "Python 3", |
|
|
|
"language": "python", |
|
|
|
"name": "python3" |
|
|
|
}, |
|
|
|
"language_info": { |
|
|
|
"codemirror_mode": { |
|
|
|
"name": "ipython", |
|
|
|
"version": 3 |
|
|
|
}, |
|
|
|
"file_extension": ".py", |
|
|
|
"mimetype": "text/x-python", |
|
|
|
"name": "python", |
|
|
|
"nbconvert_exporter": "python", |
|
|
|
"pygments_lexer": "ipython3", |
|
|
|
"version": "3.6.7" |
|
|
|
} |
|
|
|
}, |
|
|
|
"nbformat": 4, |
|
|
|
"nbformat_minor": 2 |
|
|
|
} |