|
|
@@ -0,0 +1,293 @@ |
|
|
|
#!/usr/bin/env python3 |
|
|
|
# -*- coding: utf-8 -*- |
|
|
|
""" |
|
|
|
Created on Tue Aug 18 11:21:31 2020 |
|
|
|
|
|
|
|
@author: ljia |
|
|
|
|
|
|
|
@references: |
|
|
|
|
|
|
|
[1] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: |
|
|
|
Hardness results and efficient alternatives. Learning Theory and Kernel |
|
|
|
Machines, pages 129–143, 2003. |
|
|
|
""" |
|
|
|
|
|
|
|
import sys |
|
|
|
from tqdm import tqdm |
|
|
|
import numpy as np |
|
|
|
import networkx as nx |
|
|
|
from gklearn.utils import SpecialLabel |
|
|
|
from gklearn.utils.parallel import parallel_gm, parallel_me |
|
|
|
from gklearn.utils.utils import direct_product_graph |
|
|
|
from gklearn.kernels import GraphKernel |
|
|
|
|
|
|
|
|
|
|
|
class CommonWalk(GraphKernel): |
|
|
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
|
GraphKernel.__init__(self) |
|
|
|
self.__node_labels = kwargs.get('node_labels', []) |
|
|
|
self.__edge_labels = kwargs.get('edge_labels', []) |
|
|
|
self.__weight = kwargs.get('weight', 1) |
|
|
|
self.__compute_method = kwargs.get('compute_method', None) |
|
|
|
self.__ds_infos = kwargs.get('ds_infos', {}) |
|
|
|
self.__compute_method = self.__compute_method.lower() |
|
|
|
|
|
|
|
|
|
|
|
def _compute_gm_series(self): |
|
|
|
self.__check_graphs(self._graphs) |
|
|
|
self.__add_dummy_labels(self._graphs) |
|
|
|
if not self.__ds_infos['directed']: # convert |
|
|
|
self._graphs = [G.to_directed() for G in self._graphs] |
|
|
|
|
|
|
|
# compute Gram matrix. |
|
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
|
|
|
|
|
from itertools import combinations_with_replacement |
|
|
|
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) |
|
|
|
if self._verbose >= 2: |
|
|
|
iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) |
|
|
|
else: |
|
|
|
iterator = itr |
|
|
|
|
|
|
|
# direct product graph method - exponential |
|
|
|
if self.__compute_method == 'exp': |
|
|
|
for i, j in iterator: |
|
|
|
kernel = self.__kernel_do_exp(self._graphs[i], self._graphs[j], self.__weight) |
|
|
|
gram_matrix[i][j] = kernel |
|
|
|
gram_matrix[j][i] = kernel |
|
|
|
# direct product graph method - geometric |
|
|
|
elif self.__compute_method == 'geo': |
|
|
|
for i, j in iterator: |
|
|
|
kernel = self.__kernel_do_geo(self._graphs[i], self._graphs[j], self.__weight) |
|
|
|
gram_matrix[i][j] = kernel |
|
|
|
gram_matrix[j][i] = kernel |
|
|
|
|
|
|
|
return gram_matrix |
|
|
|
|
|
|
|
|
|
|
|
def _compute_gm_imap_unordered(self): |
|
|
|
self.__check_graphs(self._graphs) |
|
|
|
self.__add_dummy_labels(self._graphs) |
|
|
|
if not self.__ds_infos['directed']: # convert |
|
|
|
self._graphs = [G.to_directed() for G in self._graphs] |
|
|
|
|
|
|
|
# compute Gram matrix. |
|
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
|
|
|
|
|
# def init_worker(gn_toshare): |
|
|
|
# global G_gn |
|
|
|
# G_gn = gn_toshare |
|
|
|
|
|
|
|
# direct product graph method - exponential |
|
|
|
if self.__compute_method == 'exp': |
|
|
|
do_fun = self._wrapper_kernel_do_exp |
|
|
|
# direct product graph method - geometric |
|
|
|
elif self.__compute_method == 'geo': |
|
|
|
do_fun = self._wrapper_kernel_do_geo |
|
|
|
|
|
|
|
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=_init_worker_gm, |
|
|
|
glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) |
|
|
|
|
|
|
|
return gram_matrix |
|
|
|
|
|
|
|
|
|
|
|
def _compute_kernel_list_series(self, g1, g_list): |
|
|
|
self.__check_graphs(g_list + [g1]) |
|
|
|
self.__add_dummy_labels(g_list + [g1]) |
|
|
|
if not self.__ds_infos['directed']: # convert |
|
|
|
g1 = g1.to_directed() |
|
|
|
g_list = [G.to_directed() for G in g_list] |
|
|
|
|
|
|
|
# compute kernel list. |
|
|
|
kernel_list = [None] * len(g_list) |
|
|
|
if self._verbose >= 2: |
|
|
|
iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) |
|
|
|
else: |
|
|
|
iterator = range(len(g_list)) |
|
|
|
|
|
|
|
# direct product graph method - exponential |
|
|
|
if self.__compute_method == 'exp': |
|
|
|
for i in iterator: |
|
|
|
kernel = self.__kernel_do_exp(g1, g_list[i], self.__weight) |
|
|
|
kernel_list[i] = kernel |
|
|
|
# direct product graph method - geometric |
|
|
|
elif self.__compute_method == 'geo': |
|
|
|
for i in iterator: |
|
|
|
kernel = self.__kernel_do_geo(g1, g_list[i], self.__weight) |
|
|
|
kernel_list[i] = kernel |
|
|
|
|
|
|
|
return kernel_list |
|
|
|
|
|
|
|
|
|
|
|
def _compute_kernel_list_imap_unordered(self, g1, g_list): |
|
|
|
self.__check_graphs(g_list + [g1]) |
|
|
|
self.__add_dummy_labels(g_list + [g1]) |
|
|
|
if not self.__ds_infos['directed']: # convert |
|
|
|
g1 = g1.to_directed() |
|
|
|
g_list = [G.to_directed() for G in g_list] |
|
|
|
|
|
|
|
# compute kernel list. |
|
|
|
kernel_list = [None] * len(g_list) |
|
|
|
|
|
|
|
# def init_worker(g1_toshare, g_list_toshare): |
|
|
|
# global G_g1, G_g_list |
|
|
|
# G_g1 = g1_toshare |
|
|
|
# G_g_list = g_list_toshare |
|
|
|
|
|
|
|
# direct product graph method - exponential |
|
|
|
if self.__compute_method == 'exp': |
|
|
|
do_fun = self._wrapper_kernel_list_do_exp |
|
|
|
# direct product graph method - geometric |
|
|
|
elif self.__compute_method == 'geo': |
|
|
|
do_fun = self._wrapper_kernel_list_do_geo |
|
|
|
|
|
|
|
def func_assign(result, var_to_assign): |
|
|
|
var_to_assign[result[0]] = result[1] |
|
|
|
itr = range(len(g_list)) |
|
|
|
len_itr = len(g_list) |
|
|
|
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, |
|
|
|
init_worker=_init_worker_list, glbv=(g1, g_list), method='imap_unordered', |
|
|
|
n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) |
|
|
|
|
|
|
|
return kernel_list |
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_kernel_list_do_exp(self, itr): |
|
|
|
return itr, self.__kernel_do_exp(G_g1, G_g_list[itr], self.__weight) |
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_kernel_list_do_geo(self, itr): |
|
|
|
return itr, self.__kernel_do_geo(G_g1, G_g_list[itr], self.__weight) |
|
|
|
|
|
|
|
|
|
|
|
def _compute_single_kernel_series(self, g1, g2): |
|
|
|
self.__check_graphs([g1] + [g2]) |
|
|
|
self.__add_dummy_labels([g1] + [g2]) |
|
|
|
if not self.__ds_infos['directed']: # convert |
|
|
|
g1 = g1.to_directed() |
|
|
|
g2 = g2.to_directed() |
|
|
|
|
|
|
|
# direct product graph method - exponential |
|
|
|
if self.__compute_method == 'exp': |
|
|
|
kernel = self.__kernel_do_exp(g1, g2, self.__weight) |
|
|
|
# direct product graph method - geometric |
|
|
|
elif self.__compute_method == 'geo': |
|
|
|
kernel = self.__kernel_do_geo(g1, g2, self.__weight) |
|
|
|
|
|
|
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
def __kernel_do_exp(self, g1, g2, beta): |
|
|
|
"""Calculate common walk graph kernel between 2 graphs using exponential |
|
|
|
series. |
|
|
|
|
|
|
|
Parameters |
|
|
|
---------- |
|
|
|
g1, g2 : NetworkX graphs |
|
|
|
Graphs between which the kernels are calculated. |
|
|
|
beta : integer |
|
|
|
Weight. |
|
|
|
|
|
|
|
Return |
|
|
|
------ |
|
|
|
kernel : float |
|
|
|
The common walk Kernel between 2 graphs. |
|
|
|
""" |
|
|
|
# get tensor product / direct product |
|
|
|
gp = direct_product_graph(g1, g2, self.__node_labels, self.__edge_labels) |
|
|
|
# return 0 if the direct product graph have no more than 1 node. |
|
|
|
if nx.number_of_nodes(gp) < 2: |
|
|
|
return 0 |
|
|
|
A = nx.adjacency_matrix(gp).todense() |
|
|
|
|
|
|
|
ew, ev = np.linalg.eig(A) |
|
|
|
# # remove imaginary part if possible. |
|
|
|
# # @todo: don't know if it is necessary. |
|
|
|
# for i in range(len(ew)): |
|
|
|
# if np.abs(ew[i].imag) < 1e-9: |
|
|
|
# ew[i] = ew[i].real |
|
|
|
# for i in range(ev.shape[0]): |
|
|
|
# for j in range(ev.shape[1]): |
|
|
|
# if np.abs(ev[i, j].imag) < 1e-9: |
|
|
|
# ev[i, j] = ev[i, j].real |
|
|
|
|
|
|
|
D = np.zeros((len(ew), len(ew)), dtype=complex) # @todo: use complex? |
|
|
|
for i in range(len(ew)): |
|
|
|
D[i][i] = np.exp(beta * ew[i]) |
|
|
|
|
|
|
|
exp_D = ev * D * ev.T |
|
|
|
kernel = exp_D.sum() |
|
|
|
if (kernel.real == 0 and np.abs(kernel.imag) < 1e-9) or np.abs(kernel.imag / kernel.real) < 1e-9: |
|
|
|
kernel = kernel.real |
|
|
|
|
|
|
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_kernel_do_exp(self, itr): |
|
|
|
i = itr[0] |
|
|
|
j = itr[1] |
|
|
|
return i, j, self.__kernel_do_exp(G_gn[i], G_gn[j], self.__weight) |
|
|
|
|
|
|
|
|
|
|
|
def __kernel_do_geo(self, g1, g2, gamma): |
|
|
|
"""Calculate common walk graph kernel between 2 graphs using geometric |
|
|
|
series. |
|
|
|
|
|
|
|
Parameters |
|
|
|
---------- |
|
|
|
g1, g2 : NetworkX graphs |
|
|
|
Graphs between which the kernels are calculated. |
|
|
|
gamma : integer |
|
|
|
Weight. |
|
|
|
|
|
|
|
Return |
|
|
|
------ |
|
|
|
kernel : float |
|
|
|
The common walk Kernel between 2 graphs. |
|
|
|
""" |
|
|
|
# get tensor product / direct product |
|
|
|
gp = direct_product_graph(g1, g2, self.__node_labels, self.__edge_labels) |
|
|
|
# return 0 if the direct product graph have no more than 1 node. |
|
|
|
if nx.number_of_nodes(gp) < 2: |
|
|
|
return 0 |
|
|
|
A = nx.adjacency_matrix(gp).todense() |
|
|
|
mat = np.identity(len(A)) - gamma * A |
|
|
|
# try: |
|
|
|
return mat.I.sum() |
|
|
|
# except np.linalg.LinAlgError: |
|
|
|
# return np.nan |
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_kernel_do_geo(self, itr): |
|
|
|
i = itr[0] |
|
|
|
j = itr[1] |
|
|
|
return i, j, self.__kernel_do_geo(G_gn[i], G_gn[j], self.__weight) |
|
|
|
|
|
|
|
|
|
|
|
def __check_graphs(self, Gn): |
|
|
|
for g in Gn: |
|
|
|
if nx.number_of_nodes(g) == 1: |
|
|
|
raise Exception('Graphs must contain more than 1 nodes to construct adjacency matrices.') |
|
|
|
|
|
|
|
|
|
|
|
def __add_dummy_labels(self, Gn): |
|
|
|
if len(self.__node_labels) == 0 or (len(self.__node_labels) == 1 and self.__node_labels[0] == SpecialLabel.DUMMY): |
|
|
|
for i in range(len(Gn)): |
|
|
|
nx.set_node_attributes(Gn[i], '0', SpecialLabel.DUMMY) |
|
|
|
self.__node_labels = [SpecialLabel.DUMMY] |
|
|
|
if len(self.__edge_labels) == 0 or (len(self.__edge_labels) == 1 and self.__edge_labels[0] == SpecialLabel.DUMMY): |
|
|
|
for i in range(len(Gn)): |
|
|
|
nx.set_edge_attributes(Gn[i], '0', SpecialLabel.DUMMY) |
|
|
|
self.__edge_labels = [SpecialLabel.DUMMY] |
|
|
|
|
|
|
|
|
|
|
|
def _init_worker_gm(gn_toshare): |
|
|
|
global G_gn |
|
|
|
G_gn = gn_toshare |
|
|
|
|
|
|
|
|
|
|
|
def _init_worker_list(g1_toshare, g_list_toshare): |
|
|
|
global G_g1, G_g_list |
|
|
|
G_g1 = g1_toshare |
|
|
|
G_g_list = g_list_toshare |