|
|
@@ -0,0 +1,71 @@ |
|
|
|
#!/usr/bin/env python3 |
|
|
|
# -*- coding: utf-8 -*- |
|
|
|
""" |
|
|
|
Created on Tue Jan 14 15:39:29 2020 |
|
|
|
|
|
|
|
@author: ljia |
|
|
|
""" |
|
|
|
import multiprocessing |
|
|
|
import functools |
|
|
|
from gklearn.preimage.utils import generate_median_preimages_by_class |
|
|
|
|
|
|
|
|
|
|
|
def test_median_preimage_generator(): |
|
|
|
"""MAO, Treelet, using CONSTANT, symbolic only. |
|
|
|
""" |
|
|
|
from gklearn.utils.kernels import polynomialkernel |
|
|
|
# set parameters. |
|
|
|
ds_name = 'MAO' # |
|
|
|
mpg_options = {'fit_method': 'k-graphs', |
|
|
|
'init_ecc': [4, 4, 2, 1, 1, 1], # |
|
|
|
'ds_name': ds_name, |
|
|
|
'parallel': True, # False |
|
|
|
'time_limit_in_sec': 0, |
|
|
|
'max_itrs': 3, # |
|
|
|
'max_itrs_without_update': 3, |
|
|
|
'epsilon_residual': 0.01, |
|
|
|
'epsilon_ec': 0.1, |
|
|
|
'verbose': 2} |
|
|
|
pkernel = functools.partial(polynomialkernel, d=4, c=1e+7) |
|
|
|
kernel_options = {'name': 'Treelet', # |
|
|
|
'sub_kernel': pkernel, |
|
|
|
'parallel': 'imap_unordered', |
|
|
|
# 'parallel': None, |
|
|
|
'n_jobs': multiprocessing.cpu_count(), |
|
|
|
'normalize': True, |
|
|
|
'verbose': 2} |
|
|
|
ged_options = {'method': 'IPFP', |
|
|
|
'initialization_method': 'RANDOM', # 'NODE' |
|
|
|
'initial_solutions': 1, # 1 |
|
|
|
'edit_cost': 'CONSTANT', # |
|
|
|
'attr_distance': 'euclidean', |
|
|
|
'ratio_runs_from_initial_solutions': 1, |
|
|
|
'threads': multiprocessing.cpu_count(), |
|
|
|
'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'} |
|
|
|
mge_options = {'init_type': 'MEDOID', |
|
|
|
'random_inits': 10, |
|
|
|
'time_limit': 600, |
|
|
|
'verbose': 2, |
|
|
|
'refine': False} |
|
|
|
save_results = True |
|
|
|
dir_save = ds_name + '.' + kernel_options['name'] + '.symb.pytest/' |
|
|
|
irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} # |
|
|
|
edge_required = False # |
|
|
|
|
|
|
|
# print settings. |
|
|
|
print('parameters:') |
|
|
|
print('dataset name:', ds_name) |
|
|
|
print('mpg_options:', mpg_options) |
|
|
|
print('kernel_options:', kernel_options) |
|
|
|
print('ged_options:', ged_options) |
|
|
|
print('mge_options:', mge_options) |
|
|
|
print('save_results:', save_results) |
|
|
|
print('irrelevant_labels:', irrelevant_labels) |
|
|
|
print() |
|
|
|
|
|
|
|
# generate preimages. |
|
|
|
for fit_method in ['k-graphs', 'expert', 'random']: |
|
|
|
print('\n-------------------------------------') |
|
|
|
print('fit method:', fit_method, '\n') |
|
|
|
mpg_options['fit_method'] = fit_method |
|
|
|
generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=range(0, 4)) |