diff --git a/lang/fr/gklearn/ged/learning/cost_matrices_learner.py b/lang/fr/gklearn/ged/learning/cost_matrices_learner.py index a0d8091..d2c39c2 100644 --- a/lang/fr/gklearn/ged/learning/cost_matrices_learner.py +++ b/lang/fr/gklearn/ged/learning/cost_matrices_learner.py @@ -49,7 +49,7 @@ class CostMatricesLearner(CostsLearner): np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0]).T@x >= 0.0, np.array([0.0, 0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] prob = cp.Problem(cp.Minimize(cost_fun), constraints) - self.__execute_cvx(prob) + self._execute_cvx(prob) edit_costs_new = x.value residual = np.sqrt(prob.value) elif not self._triangle_rule and not self._allow_zeros: # @todo @@ -57,7 +57,7 @@ class CostMatricesLearner(CostsLearner): cost_fun = cp.sum_squares(nb_cost_mat @ x - dis_k_vec) constraints = [x >= [0.01 for i in range(nb_cost_mat.shape[1])]] prob = cp.Problem(cp.Minimize(cost_fun), constraints) - self.__execute_cvx(prob) + self._execute_cvx(prob) edit_costs_new = x.value residual = np.sqrt(prob.value) elif self._triangle_rule and not self._allow_zeros: # @todo @@ -67,7 +67,7 @@ class CostMatricesLearner(CostsLearner): np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0]).T@x >= 0.0, np.array([0.0, 0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0] prob = cp.Problem(cp.Minimize(cost_fun), constraints) - self.__execute_cvx(prob) + self._execute_cvx(prob) edit_costs_new = x.value residual = np.sqrt(prob.value) else: @@ -113,7 +113,7 @@ class CostMatricesLearner(CostsLearner): elif abs(cost - self._cost_list[-2][i]) / cost > self._epsilon_ec: self._ec_changed = True break -# if abs(cost - edit_cost_list[-2][i]) > self.__epsilon_ec: +# if abs(cost - edit_cost_list[-2][i]) > self._epsilon_ec: # ec_changed = True # break self._residual_changed = False @@ -135,7 +135,7 @@ class CostMatricesLearner(CostsLearner): print('-------------------------------------------------------------------------') print('States of iteration', self._itrs + 1) print('-------------------------------------------------------------------------') -# print('Time spend:', self.__runtime_optimize_ec) +# print('Time spend:', self._runtime_optimize_ec) print('Total number of iterations for optimizing:', self._itrs + 1) print('Total number of updating edit costs:', self._num_updates_ecs) print('Was optimization of edit costs converged:', self._converged)