|
|
@@ -0,0 +1,465 @@ |
|
|
|
#!/usr/bin/env python3 |
|
|
|
# -*- coding: utf-8 -*- |
|
|
|
""" |
|
|
|
Created on Tue Apr 14 15:16:34 2020 |
|
|
|
|
|
|
|
@author: ljia |
|
|
|
|
|
|
|
@references: |
|
|
|
|
|
|
|
[1] Shervashidze N, Schweitzer P, Leeuwen EJ, Mehlhorn K, Borgwardt KM. |
|
|
|
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research. |
|
|
|
2011;12(Sep):2539-61. |
|
|
|
""" |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
import networkx as nx |
|
|
|
from collections import Counter |
|
|
|
from functools import partial |
|
|
|
from gklearn.utils.parallel import parallel_gm |
|
|
|
from gklearn.kernels import GraphKernel |
|
|
|
|
|
|
|
|
|
|
|
class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge user kernel. |
|
|
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
|
GraphKernel.__init__(self) |
|
|
|
self.__node_labels = kwargs.get('node_labels', []) |
|
|
|
self.__edge_labels = kwargs.get('edge_labels', []) |
|
|
|
self.__height = int(kwargs.get('height', 0)) |
|
|
|
self.__base_kernel = kwargs.get('base_kernel', 'subtree') |
|
|
|
self.__ds_infos = kwargs.get('ds_infos', {}) |
|
|
|
|
|
|
|
|
|
|
|
def _compute_gm_series(self): |
|
|
|
self.__add_dummy_node_labels(self._graphs) |
|
|
|
|
|
|
|
# for WL subtree kernel |
|
|
|
if self.__base_kernel == 'subtree': |
|
|
|
gram_matrix = self.__subtree_kernel_do(self._graphs) |
|
|
|
|
|
|
|
# for WL shortest path kernel |
|
|
|
elif self.__base_kernel == 'sp': |
|
|
|
gram_matrix = self.__sp_kernel_do(self._graphs) |
|
|
|
|
|
|
|
# for WL edge kernel |
|
|
|
elif self.__base_kernel == 'edge': |
|
|
|
gram_matrix = self.__edge_kernel_do(self._graphs) |
|
|
|
|
|
|
|
# for user defined base kernel |
|
|
|
else: |
|
|
|
gram_matrix = self.__user_kernel_do(self._graphs) |
|
|
|
|
|
|
|
return gram_matrix |
|
|
|
|
|
|
|
|
|
|
|
def _compute_gm_imap_unordered(self): |
|
|
|
if self._verbose >= 2: |
|
|
|
raise Warning('Only a part of the computation is parallelized due to the structure of this kernel.') |
|
|
|
return self._compute_gm_series() |
|
|
|
|
|
|
|
|
|
|
|
def _compute_kernel_list_series(self, g1, g_list): # @todo: this should be better. |
|
|
|
self.__add_dummy_node_labels(g_list + [g1]) |
|
|
|
|
|
|
|
# for WL subtree kernel |
|
|
|
if self.__base_kernel == 'subtree': |
|
|
|
gram_matrix = self.__subtree_kernel_do(g_list + [g1]) |
|
|
|
|
|
|
|
# for WL shortest path kernel |
|
|
|
elif self.__base_kernel == 'sp': |
|
|
|
gram_matrix = self.__sp_kernel_do(g_list + [g1]) |
|
|
|
|
|
|
|
# for WL edge kernel |
|
|
|
elif self.__base_kernel == 'edge': |
|
|
|
gram_matrix = self.__edge_kernel_do(g_list + [g1]) |
|
|
|
|
|
|
|
# for user defined base kernel |
|
|
|
else: |
|
|
|
gram_matrix = self.__user_kernel_do(g_list + [g1]) |
|
|
|
|
|
|
|
return list(gram_matrix[-1][0:-1]) |
|
|
|
|
|
|
|
|
|
|
|
def _compute_kernel_list_imap_unordered(self, g1, g_list): |
|
|
|
if self._verbose >= 2: |
|
|
|
raise Warning('Only a part of the computation is parallelized due to the structure of this kernel.') |
|
|
|
return self._compute_gm_imap_unordered() |
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_kernel_list_do(self, itr): |
|
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
def _compute_single_kernel_series(self, g1, g2): # @todo: this should be better. |
|
|
|
self.__add_dummy_node_labels([g1] + [g2]) |
|
|
|
|
|
|
|
# for WL subtree kernel |
|
|
|
if self.__base_kernel == 'subtree': |
|
|
|
gram_matrix = self.__subtree_kernel_do([g1] + [g2]) |
|
|
|
|
|
|
|
# for WL shortest path kernel |
|
|
|
elif self.__base_kernel == 'sp': |
|
|
|
gram_matrix = self.__sp_kernel_do([g1] + [g2]) |
|
|
|
|
|
|
|
# for WL edge kernel |
|
|
|
elif self.__base_kernel == 'edge': |
|
|
|
gram_matrix = self.__edge_kernel_do([g1] + [g2]) |
|
|
|
|
|
|
|
# for user defined base kernel |
|
|
|
else: |
|
|
|
gram_matrix = self.__user_kernel_do([g1] + [g2]) |
|
|
|
|
|
|
|
return gram_matrix[0][1] |
|
|
|
|
|
|
|
|
|
|
|
def __subtree_kernel_do(self, Gn): |
|
|
|
"""Calculate Weisfeiler-Lehman kernels between graphs. |
|
|
|
|
|
|
|
Parameters |
|
|
|
---------- |
|
|
|
Gn : List of NetworkX graph |
|
|
|
List of graphs between which the kernels are calculated. |
|
|
|
|
|
|
|
Return |
|
|
|
------ |
|
|
|
gram_matrix : Numpy matrix |
|
|
|
Kernel matrix, each element of which is the Weisfeiler-Lehman kernel between 2 praphs. |
|
|
|
""" |
|
|
|
gram_matrix = np.zeros((len(Gn), len(Gn))) |
|
|
|
|
|
|
|
# initial for height = 0 |
|
|
|
all_num_of_each_label = [] # number of occurence of each label in each graph in this iteration |
|
|
|
|
|
|
|
# for each graph |
|
|
|
for G in Gn: |
|
|
|
# set all labels into a tuple. |
|
|
|
for nd, attrs in G.nodes(data=True): # @todo: there may be a better way. |
|
|
|
G.nodes[nd]['label_tuple'] = tuple(attrs[name] for name in self.__node_labels) |
|
|
|
# get the set of original labels |
|
|
|
labels_ori = list(nx.get_node_attributes(G, 'label_tuple').values()) |
|
|
|
# number of occurence of each label in G |
|
|
|
all_num_of_each_label.append(dict(Counter(labels_ori))) |
|
|
|
|
|
|
|
# calculate subtree kernel with the 0th iteration and add it to the final kernel. |
|
|
|
self.__compute_gram_matrix(gram_matrix, all_num_of_each_label, Gn) |
|
|
|
|
|
|
|
# iterate each height |
|
|
|
for h in range(1, self.__height + 1): |
|
|
|
all_set_compressed = {} # a dictionary mapping original labels to new ones in all graphs in this iteration |
|
|
|
num_of_labels_occured = 0 # number of the set of letters that occur before as node labels at least once in all graphs |
|
|
|
# all_labels_ori = set() # all unique orignal labels in all graphs in this iteration |
|
|
|
all_num_of_each_label = [] # number of occurence of each label in G |
|
|
|
|
|
|
|
# @todo: parallel this part. |
|
|
|
for idx, G in enumerate(Gn): |
|
|
|
|
|
|
|
all_multisets = [] |
|
|
|
for node, attrs in G.nodes(data=True): |
|
|
|
# Multiset-label determination. |
|
|
|
multiset = [G.nodes[neighbors]['label_tuple'] for neighbors in G[node]] |
|
|
|
# sorting each multiset |
|
|
|
multiset.sort() |
|
|
|
multiset = [attrs['label_tuple']] + multiset # add the prefix |
|
|
|
all_multisets.append(tuple(multiset)) |
|
|
|
|
|
|
|
# label compression |
|
|
|
set_unique = list(set(all_multisets)) # set of unique multiset labels |
|
|
|
# a dictionary mapping original labels to new ones. |
|
|
|
set_compressed = {} |
|
|
|
# if a label occured before, assign its former compressed label, |
|
|
|
# else assign the number of labels occured + 1 as the compressed label. |
|
|
|
for value in set_unique: |
|
|
|
if value in all_set_compressed.keys(): |
|
|
|
set_compressed.update({value: all_set_compressed[value]}) |
|
|
|
else: |
|
|
|
set_compressed.update({value: str(num_of_labels_occured + 1)}) |
|
|
|
num_of_labels_occured += 1 |
|
|
|
|
|
|
|
all_set_compressed.update(set_compressed) |
|
|
|
|
|
|
|
# relabel nodes |
|
|
|
for idx, node in enumerate(G.nodes()): |
|
|
|
G.nodes[node]['label_tuple'] = set_compressed[all_multisets[idx]] |
|
|
|
|
|
|
|
# get the set of compressed labels |
|
|
|
labels_comp = list(nx.get_node_attributes(G, 'label_tuple').values()) |
|
|
|
# all_labels_ori.update(labels_comp) |
|
|
|
all_num_of_each_label.append(dict(Counter(labels_comp))) |
|
|
|
|
|
|
|
# calculate subtree kernel with h iterations and add it to the final kernel |
|
|
|
self.__compute_gram_matrix(gram_matrix, all_num_of_each_label, Gn) |
|
|
|
|
|
|
|
return gram_matrix |
|
|
|
|
|
|
|
|
|
|
|
def __compute_gram_matrix(self, gram_matrix, all_num_of_each_label, Gn): |
|
|
|
"""Compute Gram matrix using the base kernel. |
|
|
|
""" |
|
|
|
if self._parallel == 'imap_unordered': |
|
|
|
# compute kernels. |
|
|
|
def init_worker(alllabels_toshare): |
|
|
|
global G_alllabels |
|
|
|
G_alllabels = alllabels_toshare |
|
|
|
do_partial = partial(self._wrapper_compute_subtree_kernel, gram_matrix) |
|
|
|
parallel_gm(do_partial, gram_matrix, Gn, init_worker=init_worker, |
|
|
|
glbv=(all_num_of_each_label,), n_jobs=self._n_jobs, verbose=self._verbose) |
|
|
|
elif self._parallel is None: |
|
|
|
for i in range(len(gram_matrix)): |
|
|
|
for j in range(i, len(gram_matrix)): |
|
|
|
gram_matrix[i][j] = self.__compute_subtree_kernel(all_num_of_each_label[i], |
|
|
|
all_num_of_each_label[j], gram_matrix[i][j]) |
|
|
|
gram_matrix[j][i] = gram_matrix[i][j] |
|
|
|
|
|
|
|
|
|
|
|
def __compute_subtree_kernel(self, num_of_each_label1, num_of_each_label2, kernel): |
|
|
|
"""Compute the subtree kernel. |
|
|
|
""" |
|
|
|
labels = set(list(num_of_each_label1.keys()) + list(num_of_each_label2.keys())) |
|
|
|
vector1 = np.array([(num_of_each_label1[label] |
|
|
|
if (label in num_of_each_label1.keys()) else 0) |
|
|
|
for label in labels]) |
|
|
|
vector2 = np.array([(num_of_each_label2[label] |
|
|
|
if (label in num_of_each_label2.keys()) else 0) |
|
|
|
for label in labels]) |
|
|
|
kernel += np.dot(vector1, vector2) |
|
|
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
def _wrapper_compute_subtree_kernel(self, gram_matrix, itr): |
|
|
|
i = itr[0] |
|
|
|
j = itr[1] |
|
|
|
return i, j, self.__compute_subtree_kernel(G_alllabels[i], G_alllabels[j], gram_matrix[i][j]) |
|
|
|
|
|
|
|
|
|
|
|
def _wl_spkernel_do(Gn, node_label, edge_label, height): |
|
|
|
"""Calculate Weisfeiler-Lehman shortest path kernels between graphs. |
|
|
|
|
|
|
|
Parameters |
|
|
|
---------- |
|
|
|
Gn : List of NetworkX graph |
|
|
|
List of graphs between which the kernels are calculated. |
|
|
|
node_label : string |
|
|
|
node attribute used as label. |
|
|
|
edge_label : string |
|
|
|
edge attribute used as label. |
|
|
|
height : int |
|
|
|
subtree height. |
|
|
|
|
|
|
|
Return |
|
|
|
------ |
|
|
|
gram_matrix : Numpy matrix |
|
|
|
Kernel matrix, each element of which is the Weisfeiler-Lehman kernel between 2 praphs. |
|
|
|
""" |
|
|
|
pass |
|
|
|
from gklearn.utils.utils import getSPGraph |
|
|
|
|
|
|
|
# init. |
|
|
|
height = int(height) |
|
|
|
gram_matrix = np.zeros((len(Gn), len(Gn))) # init kernel |
|
|
|
|
|
|
|
Gn = [ getSPGraph(G, edge_weight = edge_label) for G in Gn ] # get shortest path graphs of Gn |
|
|
|
|
|
|
|
# initial for height = 0 |
|
|
|
for i in range(0, len(Gn)): |
|
|
|
for j in range(i, len(Gn)): |
|
|
|
for e1 in Gn[i].edges(data = True): |
|
|
|
for e2 in Gn[j].edges(data = True): |
|
|
|
if e1[2]['cost'] != 0 and e1[2]['cost'] == e2[2]['cost'] and ((e1[0] == e2[0] and e1[1] == e2[1]) or (e1[0] == e2[1] and e1[1] == e2[0])): |
|
|
|
gram_matrix[i][j] += 1 |
|
|
|
gram_matrix[j][i] = gram_matrix[i][j] |
|
|
|
|
|
|
|
# iterate each height |
|
|
|
for h in range(1, height + 1): |
|
|
|
all_set_compressed = {} # a dictionary mapping original labels to new ones in all graphs in this iteration |
|
|
|
num_of_labels_occured = 0 # number of the set of letters that occur before as node labels at least once in all graphs |
|
|
|
for G in Gn: # for each graph |
|
|
|
set_multisets = [] |
|
|
|
for node in G.nodes(data = True): |
|
|
|
# Multiset-label determination. |
|
|
|
multiset = [ G.node[neighbors][node_label] for neighbors in G[node[0]] ] |
|
|
|
# sorting each multiset |
|
|
|
multiset.sort() |
|
|
|
multiset = node[1][node_label] + ''.join(multiset) # concatenate to a string and add the prefix |
|
|
|
set_multisets.append(multiset) |
|
|
|
|
|
|
|
# label compression |
|
|
|
set_unique = list(set(set_multisets)) # set of unique multiset labels |
|
|
|
# a dictionary mapping original labels to new ones. |
|
|
|
set_compressed = {} |
|
|
|
# if a label occured before, assign its former compressed label, else assign the number of labels occured + 1 as the compressed label |
|
|
|
for value in set_unique: |
|
|
|
if value in all_set_compressed.keys(): |
|
|
|
set_compressed.update({ value : all_set_compressed[value] }) |
|
|
|
else: |
|
|
|
set_compressed.update({ value : str(num_of_labels_occured + 1) }) |
|
|
|
num_of_labels_occured += 1 |
|
|
|
|
|
|
|
all_set_compressed.update(set_compressed) |
|
|
|
|
|
|
|
# relabel nodes |
|
|
|
for node in G.nodes(data = True): |
|
|
|
node[1][node_label] = set_compressed[set_multisets[node[0]]] |
|
|
|
|
|
|
|
# calculate subtree kernel with h iterations and add it to the final kernel |
|
|
|
for i in range(0, len(Gn)): |
|
|
|
for j in range(i, len(Gn)): |
|
|
|
for e1 in Gn[i].edges(data = True): |
|
|
|
for e2 in Gn[j].edges(data = True): |
|
|
|
if e1[2]['cost'] != 0 and e1[2]['cost'] == e2[2]['cost'] and ((e1[0] == e2[0] and e1[1] == e2[1]) or (e1[0] == e2[1] and e1[1] == e2[0])): |
|
|
|
gram_matrix[i][j] += 1 |
|
|
|
gram_matrix[j][i] = gram_matrix[i][j] |
|
|
|
|
|
|
|
return gram_matrix |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _wl_edgekernel_do(Gn, node_label, edge_label, height): |
|
|
|
"""Calculate Weisfeiler-Lehman edge kernels between graphs. |
|
|
|
|
|
|
|
Parameters |
|
|
|
---------- |
|
|
|
Gn : List of NetworkX graph |
|
|
|
List of graphs between which the kernels are calculated. |
|
|
|
node_label : string |
|
|
|
node attribute used as label. |
|
|
|
edge_label : string |
|
|
|
edge attribute used as label. |
|
|
|
height : int |
|
|
|
subtree height. |
|
|
|
|
|
|
|
Return |
|
|
|
------ |
|
|
|
gram_matrix : Numpy matrix |
|
|
|
Kernel matrix, each element of which is the Weisfeiler-Lehman kernel between 2 praphs. |
|
|
|
""" |
|
|
|
pass |
|
|
|
# init. |
|
|
|
height = int(height) |
|
|
|
gram_matrix = np.zeros((len(Gn), len(Gn))) # init kernel |
|
|
|
|
|
|
|
# initial for height = 0 |
|
|
|
for i in range(0, len(Gn)): |
|
|
|
for j in range(i, len(Gn)): |
|
|
|
for e1 in Gn[i].edges(data = True): |
|
|
|
for e2 in Gn[j].edges(data = True): |
|
|
|
if e1[2][edge_label] == e2[2][edge_label] and ((e1[0] == e2[0] and e1[1] == e2[1]) or (e1[0] == e2[1] and e1[1] == e2[0])): |
|
|
|
gram_matrix[i][j] += 1 |
|
|
|
gram_matrix[j][i] = gram_matrix[i][j] |
|
|
|
|
|
|
|
# iterate each height |
|
|
|
for h in range(1, height + 1): |
|
|
|
all_set_compressed = {} # a dictionary mapping original labels to new ones in all graphs in this iteration |
|
|
|
num_of_labels_occured = 0 # number of the set of letters that occur before as node labels at least once in all graphs |
|
|
|
for G in Gn: # for each graph |
|
|
|
set_multisets = [] |
|
|
|
for node in G.nodes(data = True): |
|
|
|
# Multiset-label determination. |
|
|
|
multiset = [ G.node[neighbors][node_label] for neighbors in G[node[0]] ] |
|
|
|
# sorting each multiset |
|
|
|
multiset.sort() |
|
|
|
multiset = node[1][node_label] + ''.join(multiset) # concatenate to a string and add the prefix |
|
|
|
set_multisets.append(multiset) |
|
|
|
|
|
|
|
# label compression |
|
|
|
set_unique = list(set(set_multisets)) # set of unique multiset labels |
|
|
|
# a dictionary mapping original labels to new ones. |
|
|
|
set_compressed = {} |
|
|
|
# if a label occured before, assign its former compressed label, else assign the number of labels occured + 1 as the compressed label |
|
|
|
for value in set_unique: |
|
|
|
if value in all_set_compressed.keys(): |
|
|
|
set_compressed.update({ value : all_set_compressed[value] }) |
|
|
|
else: |
|
|
|
set_compressed.update({ value : str(num_of_labels_occured + 1) }) |
|
|
|
num_of_labels_occured += 1 |
|
|
|
|
|
|
|
all_set_compressed.update(set_compressed) |
|
|
|
|
|
|
|
# relabel nodes |
|
|
|
for node in G.nodes(data = True): |
|
|
|
node[1][node_label] = set_compressed[set_multisets[node[0]]] |
|
|
|
|
|
|
|
# calculate subtree kernel with h iterations and add it to the final kernel |
|
|
|
for i in range(0, len(Gn)): |
|
|
|
for j in range(i, len(Gn)): |
|
|
|
for e1 in Gn[i].edges(data = True): |
|
|
|
for e2 in Gn[j].edges(data = True): |
|
|
|
if e1[2][edge_label] == e2[2][edge_label] and ((e1[0] == e2[0] and e1[1] == e2[1]) or (e1[0] == e2[1] and e1[1] == e2[0])): |
|
|
|
gram_matrix[i][j] += 1 |
|
|
|
gram_matrix[j][i] = gram_matrix[i][j] |
|
|
|
|
|
|
|
return gram_matrix |
|
|
|
|
|
|
|
|
|
|
|
def _wl_userkernel_do(Gn, node_label, edge_label, height, base_kernel): |
|
|
|
"""Calculate Weisfeiler-Lehman kernels based on user-defined kernel between graphs. |
|
|
|
|
|
|
|
Parameters |
|
|
|
---------- |
|
|
|
Gn : List of NetworkX graph |
|
|
|
List of graphs between which the kernels are calculated. |
|
|
|
node_label : string |
|
|
|
node attribute used as label. |
|
|
|
edge_label : string |
|
|
|
edge attribute used as label. |
|
|
|
height : int |
|
|
|
subtree height. |
|
|
|
base_kernel : string |
|
|
|
Name of the base kernel function used in each iteration of WL kernel. This function returns a Numpy matrix, each element of which is the user-defined Weisfeiler-Lehman kernel between 2 praphs. |
|
|
|
|
|
|
|
Return |
|
|
|
------ |
|
|
|
gram_matrix : Numpy matrix |
|
|
|
Kernel matrix, each element of which is the Weisfeiler-Lehman kernel between 2 praphs. |
|
|
|
""" |
|
|
|
pass |
|
|
|
# init. |
|
|
|
height = int(height) |
|
|
|
gram_matrix = np.zeros((len(Gn), len(Gn))) # init kernel |
|
|
|
|
|
|
|
# initial for height = 0 |
|
|
|
gram_matrix = base_kernel(Gn, node_label, edge_label) |
|
|
|
|
|
|
|
# iterate each height |
|
|
|
for h in range(1, height + 1): |
|
|
|
all_set_compressed = {} # a dictionary mapping original labels to new ones in all graphs in this iteration |
|
|
|
num_of_labels_occured = 0 # number of the set of letters that occur before as node labels at least once in all graphs |
|
|
|
for G in Gn: # for each graph |
|
|
|
set_multisets = [] |
|
|
|
for node in G.nodes(data = True): |
|
|
|
# Multiset-label determination. |
|
|
|
multiset = [ G.node[neighbors][node_label] for neighbors in G[node[0]] ] |
|
|
|
# sorting each multiset |
|
|
|
multiset.sort() |
|
|
|
multiset = node[1][node_label] + ''.join(multiset) # concatenate to a string and add the prefix |
|
|
|
set_multisets.append(multiset) |
|
|
|
|
|
|
|
# label compression |
|
|
|
set_unique = list(set(set_multisets)) # set of unique multiset labels |
|
|
|
# a dictionary mapping original labels to new ones. |
|
|
|
set_compressed = {} |
|
|
|
# if a label occured before, assign its former compressed label, else assign the number of labels occured + 1 as the compressed label |
|
|
|
for value in set_unique: |
|
|
|
if value in all_set_compressed.keys(): |
|
|
|
set_compressed.update({ value : all_set_compressed[value] }) |
|
|
|
else: |
|
|
|
set_compressed.update({ value : str(num_of_labels_occured + 1) }) |
|
|
|
num_of_labels_occured += 1 |
|
|
|
|
|
|
|
all_set_compressed.update(set_compressed) |
|
|
|
|
|
|
|
# relabel nodes |
|
|
|
for node in G.nodes(data = True): |
|
|
|
node[1][node_label] = set_compressed[set_multisets[node[0]]] |
|
|
|
|
|
|
|
# calculate kernel with h iterations and add it to the final kernel |
|
|
|
gram_matrix += base_kernel(Gn, node_label, edge_label) |
|
|
|
|
|
|
|
return gram_matrix |
|
|
|
|
|
|
|
|
|
|
|
def __add_dummy_node_labels(self, Gn): |
|
|
|
if len(self.__node_labels) == 0: |
|
|
|
for G in Gn: |
|
|
|
nx.set_node_attributes(G, '0', 'dummy') |
|
|
|
self.__node_labels.append('dummy') |