Browse Source

New translations run_structuralspkernel.py (Chinese Simplified)

l10n_v0.2.x
linlin 4 years ago
parent
commit
b2ef91155d
1 changed files with 96 additions and 0 deletions
  1. +96
    -0
      lang/zh/notebooks/run_structuralspkernel.py

+ 96
- 0
lang/zh/notebooks/run_structuralspkernel.py View File

@@ -0,0 +1,96 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 28 16:37:29 2018

@author: ljia
"""

import functools
from libs import *
import multiprocessing

from gklearn.kernels.structuralspKernel import structuralspkernel
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct

dslist = [
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'},
# # contains single node graph, node symb
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds',
# 'task': 'regression'}, # node symb
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
# # node nsymb
# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb
# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
# # node symb/nsymb
{'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb
# {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt'},
# # node nsymb symb
#
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'},
# # node/edge symb
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
# {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
#
# # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
# # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
# # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
# # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
# # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb

# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb

# # not working below
# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},
# {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},
# {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},
# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},
]
estimator = structuralspkernel

## for non-symbolic labels.
#gkernels = [functools.partial(gaussiankernel, gamma=1 / ga)
# for ga in np.logspace(0, 10, num=11, base=10)]
#mixkernels = [functools.partial(kernelproduct, deltakernel, gk) for gk in gkernels]
#sub_kernels = [{'symb': deltakernel, 'nsymb': gkernels[i], 'mix': mixkernels[i]}
# for i in range(len(gkernels))]

# for symbolic labels only.
#gaussiankernel = functools.partial(gaussiankernel, gamma=0.5)
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
sub_kernels = [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}]

param_grid_precomputed = {'node_kernels': sub_kernels, 'edge_kernels': sub_kernels,
'compute_method': ['naive']}
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},
{'alpha': np.logspace(-10, 10, num=41, base=10)}]

for ds in dslist:
print()
print(ds['name'])
model_selection_for_precomputed_kernel(
ds['dataset'],
estimator,
param_grid_precomputed,
(param_grid[1] if ('task' in ds and ds['task']
== 'regression') else param_grid[0]),
(ds['task'] if 'task' in ds else 'classification'),
NUM_TRIALS=30,
datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
ds_name=ds['name'],
n_jobs=multiprocessing.cpu_count(),
read_gm_from_file=False,
verbose=True)
print()

Loading…
Cancel
Save