|
@@ -0,0 +1,262 @@ |
|
|
|
|
|
#!/usr/bin/env python |
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
|
|
import sys |
|
|
|
|
|
from svm import * |
|
|
|
|
|
from svm import __all__ as svm_all |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = ['evaluations', 'svm_load_model', 'svm_predict', 'svm_read_problem', |
|
|
|
|
|
'svm_save_model', 'svm_train'] + svm_all |
|
|
|
|
|
|
|
|
|
|
|
sys.path = [os.path.dirname(os.path.abspath(__file__))] + sys.path |
|
|
|
|
|
|
|
|
|
|
|
def svm_read_problem(data_file_name): |
|
|
|
|
|
""" |
|
|
|
|
|
svm_read_problem(data_file_name) -> [y, x] |
|
|
|
|
|
|
|
|
|
|
|
Read LIBSVM-format data from data_file_name and return labels y |
|
|
|
|
|
and data instances x. |
|
|
|
|
|
""" |
|
|
|
|
|
prob_y = [] |
|
|
|
|
|
prob_x = [] |
|
|
|
|
|
for line in open(data_file_name): |
|
|
|
|
|
line = line.split(None, 1) |
|
|
|
|
|
# In case an instance with all zero features |
|
|
|
|
|
if len(line) == 1: line += [''] |
|
|
|
|
|
label, features = line |
|
|
|
|
|
xi = {} |
|
|
|
|
|
for e in features.split(): |
|
|
|
|
|
ind, val = e.split(":") |
|
|
|
|
|
xi[int(ind)] = float(val) |
|
|
|
|
|
prob_y += [float(label)] |
|
|
|
|
|
prob_x += [xi] |
|
|
|
|
|
return (prob_y, prob_x) |
|
|
|
|
|
|
|
|
|
|
|
def svm_load_model(model_file_name): |
|
|
|
|
|
""" |
|
|
|
|
|
svm_load_model(model_file_name) -> model |
|
|
|
|
|
|
|
|
|
|
|
Load a LIBSVM model from model_file_name and return. |
|
|
|
|
|
""" |
|
|
|
|
|
model = libsvm.svm_load_model(model_file_name.encode()) |
|
|
|
|
|
if not model: |
|
|
|
|
|
print("can't open model file %s" % model_file_name) |
|
|
|
|
|
return None |
|
|
|
|
|
model = toPyModel(model) |
|
|
|
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
def svm_save_model(model_file_name, model): |
|
|
|
|
|
""" |
|
|
|
|
|
svm_save_model(model_file_name, model) -> None |
|
|
|
|
|
|
|
|
|
|
|
Save a LIBSVM model to the file model_file_name. |
|
|
|
|
|
""" |
|
|
|
|
|
libsvm.svm_save_model(model_file_name.encode(), model) |
|
|
|
|
|
|
|
|
|
|
|
def evaluations(ty, pv): |
|
|
|
|
|
""" |
|
|
|
|
|
evaluations(ty, pv) -> (ACC, MSE, SCC) |
|
|
|
|
|
|
|
|
|
|
|
Calculate accuracy, mean squared error and squared correlation coefficient |
|
|
|
|
|
using the true values (ty) and predicted values (pv). |
|
|
|
|
|
""" |
|
|
|
|
|
if len(ty) != len(pv): |
|
|
|
|
|
raise ValueError("len(ty) must equal to len(pv)") |
|
|
|
|
|
total_correct = total_error = 0 |
|
|
|
|
|
sumv = sumy = sumvv = sumyy = sumvy = 0 |
|
|
|
|
|
for v, y in zip(pv, ty): |
|
|
|
|
|
if y == v: |
|
|
|
|
|
total_correct += 1 |
|
|
|
|
|
total_error += (v-y)*(v-y) |
|
|
|
|
|
sumv += v |
|
|
|
|
|
sumy += y |
|
|
|
|
|
sumvv += v*v |
|
|
|
|
|
sumyy += y*y |
|
|
|
|
|
sumvy += v*y |
|
|
|
|
|
l = len(ty) |
|
|
|
|
|
ACC = 100.0*total_correct/l |
|
|
|
|
|
MSE = total_error/l |
|
|
|
|
|
try: |
|
|
|
|
|
SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy)) |
|
|
|
|
|
except: |
|
|
|
|
|
SCC = float('nan') |
|
|
|
|
|
return (ACC, MSE, SCC) |
|
|
|
|
|
|
|
|
|
|
|
def svm_train(arg1, arg2=None, arg3=None): |
|
|
|
|
|
""" |
|
|
|
|
|
svm_train(y, x [, options]) -> model | ACC | MSE |
|
|
|
|
|
svm_train(prob [, options]) -> model | ACC | MSE |
|
|
|
|
|
svm_train(prob, param) -> model | ACC| MSE |
|
|
|
|
|
|
|
|
|
|
|
Train an SVM model from data (y, x) or an svm_problem prob using |
|
|
|
|
|
'options' or an svm_parameter param. |
|
|
|
|
|
If '-v' is specified in 'options' (i.e., cross validation) |
|
|
|
|
|
either accuracy (ACC) or mean-squared error (MSE) is returned. |
|
|
|
|
|
options: |
|
|
|
|
|
-s svm_type : set type of SVM (default 0) |
|
|
|
|
|
0 -- C-SVC (multi-class classification) |
|
|
|
|
|
1 -- nu-SVC (multi-class classification) |
|
|
|
|
|
2 -- one-class SVM |
|
|
|
|
|
3 -- epsilon-SVR (regression) |
|
|
|
|
|
4 -- nu-SVR (regression) |
|
|
|
|
|
-t kernel_type : set type of kernel function (default 2) |
|
|
|
|
|
0 -- linear: u'*v |
|
|
|
|
|
1 -- polynomial: (gamma*u'*v + coef0)^degree |
|
|
|
|
|
2 -- radial basis function: exp(-gamma*|u-v|^2) |
|
|
|
|
|
3 -- sigmoid: tanh(gamma*u'*v + coef0) |
|
|
|
|
|
4 -- precomputed kernel (kernel values in training_set_file) |
|
|
|
|
|
-d degree : set degree in kernel function (default 3) |
|
|
|
|
|
-g gamma : set gamma in kernel function (default 1/num_features) |
|
|
|
|
|
-r coef0 : set coef0 in kernel function (default 0) |
|
|
|
|
|
-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1) |
|
|
|
|
|
-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5) |
|
|
|
|
|
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1) |
|
|
|
|
|
-m cachesize : set cache memory size in MB (default 100) |
|
|
|
|
|
-e epsilon : set tolerance of termination criterion (default 0.001) |
|
|
|
|
|
-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1) |
|
|
|
|
|
-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0) |
|
|
|
|
|
-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1) |
|
|
|
|
|
-v n: n-fold cross validation mode |
|
|
|
|
|
-q : quiet mode (no outputs) |
|
|
|
|
|
""" |
|
|
|
|
|
prob, param = None, None |
|
|
|
|
|
if isinstance(arg1, (list, tuple)): |
|
|
|
|
|
assert isinstance(arg2, (list, tuple)) |
|
|
|
|
|
y, x, options = arg1, arg2, arg3 |
|
|
|
|
|
param = svm_parameter(options) |
|
|
|
|
|
prob = svm_problem(y, x, isKernel=(param.kernel_type == PRECOMPUTED)) |
|
|
|
|
|
elif isinstance(arg1, svm_problem): |
|
|
|
|
|
prob = arg1 |
|
|
|
|
|
if isinstance(arg2, svm_parameter): |
|
|
|
|
|
param = arg2 |
|
|
|
|
|
else: |
|
|
|
|
|
param = svm_parameter(arg2) |
|
|
|
|
|
if prob == None or param == None: |
|
|
|
|
|
raise TypeError("Wrong types for the arguments") |
|
|
|
|
|
|
|
|
|
|
|
if param.kernel_type == PRECOMPUTED: |
|
|
|
|
|
for xi in prob.x_space: |
|
|
|
|
|
idx, val = xi[0].index, xi[0].value |
|
|
|
|
|
if xi[0].index != 0: |
|
|
|
|
|
raise ValueError('Wrong input format: first column must be 0:sample_serial_number') |
|
|
|
|
|
if val <= 0 or val > prob.n: |
|
|
|
|
|
raise ValueError('Wrong input format: sample_serial_number out of range') |
|
|
|
|
|
|
|
|
|
|
|
if param.gamma == 0 and prob.n > 0: |
|
|
|
|
|
param.gamma = 1.0 / prob.n |
|
|
|
|
|
libsvm.svm_set_print_string_function(param.print_func) |
|
|
|
|
|
err_msg = libsvm.svm_check_parameter(prob, param) |
|
|
|
|
|
if err_msg: |
|
|
|
|
|
raise ValueError('Error: %s' % err_msg) |
|
|
|
|
|
|
|
|
|
|
|
if param.cross_validation: |
|
|
|
|
|
l, nr_fold = prob.l, param.nr_fold |
|
|
|
|
|
target = (c_double * l)() |
|
|
|
|
|
libsvm.svm_cross_validation(prob, param, nr_fold, target) |
|
|
|
|
|
ACC, MSE, SCC = evaluations(prob.y[:l], target[:l]) |
|
|
|
|
|
if param.svm_type in [EPSILON_SVR, NU_SVR]: |
|
|
|
|
|
print("Cross Validation Mean squared error = %g" % MSE) |
|
|
|
|
|
print("Cross Validation Squared correlation coefficient = %g" % SCC) |
|
|
|
|
|
return MSE |
|
|
|
|
|
else: |
|
|
|
|
|
print("Cross Validation Accuracy = %g%%" % ACC) |
|
|
|
|
|
return ACC |
|
|
|
|
|
else: |
|
|
|
|
|
m = libsvm.svm_train(prob, param) |
|
|
|
|
|
m = toPyModel(m) |
|
|
|
|
|
|
|
|
|
|
|
# If prob is destroyed, data including SVs pointed by m can remain. |
|
|
|
|
|
m.x_space = prob.x_space |
|
|
|
|
|
return m |
|
|
|
|
|
|
|
|
|
|
|
def svm_predict(y, x, m, options=""): |
|
|
|
|
|
""" |
|
|
|
|
|
svm_predict(y, x, m [, options]) -> (p_labels, p_acc, p_vals) |
|
|
|
|
|
|
|
|
|
|
|
Predict data (y, x) with the SVM model m. |
|
|
|
|
|
options: |
|
|
|
|
|
-b probability_estimates: whether to predict probability estimates, |
|
|
|
|
|
0 or 1 (default 0); for one-class SVM only 0 is supported. |
|
|
|
|
|
-q : quiet mode (no outputs). |
|
|
|
|
|
|
|
|
|
|
|
The return tuple contains |
|
|
|
|
|
p_labels: a list of predicted labels |
|
|
|
|
|
p_acc: a tuple including accuracy (for classification), mean-squared |
|
|
|
|
|
error, and squared correlation coefficient (for regression). |
|
|
|
|
|
p_vals: a list of decision values or probability estimates (if '-b 1' |
|
|
|
|
|
is specified). If k is the number of classes, for decision values, |
|
|
|
|
|
each element includes results of predicting k(k-1)/2 binary-class |
|
|
|
|
|
SVMs. For probabilities, each element contains k values indicating |
|
|
|
|
|
the probability that the testing instance is in each class. |
|
|
|
|
|
Note that the order of classes here is the same as 'model.label' |
|
|
|
|
|
field in the model structure. |
|
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
def info(s): |
|
|
|
|
|
print(s) |
|
|
|
|
|
|
|
|
|
|
|
predict_probability = 0 |
|
|
|
|
|
argv = options.split() |
|
|
|
|
|
i = 0 |
|
|
|
|
|
while i < len(argv): |
|
|
|
|
|
if argv[i] == '-b': |
|
|
|
|
|
i += 1 |
|
|
|
|
|
predict_probability = int(argv[i]) |
|
|
|
|
|
elif argv[i] == '-q': |
|
|
|
|
|
info = print_null |
|
|
|
|
|
else: |
|
|
|
|
|
raise ValueError("Wrong options") |
|
|
|
|
|
i+=1 |
|
|
|
|
|
|
|
|
|
|
|
svm_type = m.get_svm_type() |
|
|
|
|
|
is_prob_model = m.is_probability_model() |
|
|
|
|
|
nr_class = m.get_nr_class() |
|
|
|
|
|
pred_labels = [] |
|
|
|
|
|
pred_values = [] |
|
|
|
|
|
|
|
|
|
|
|
if predict_probability: |
|
|
|
|
|
if not is_prob_model: |
|
|
|
|
|
raise ValueError("Model does not support probabiliy estimates") |
|
|
|
|
|
|
|
|
|
|
|
if svm_type in [NU_SVR, EPSILON_SVR]: |
|
|
|
|
|
info("Prob. model for test data: target value = predicted value + z,\n" |
|
|
|
|
|
"z: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g" % m.get_svr_probability()); |
|
|
|
|
|
nr_class = 0 |
|
|
|
|
|
|
|
|
|
|
|
prob_estimates = (c_double * nr_class)() |
|
|
|
|
|
for xi in x: |
|
|
|
|
|
xi, idx = gen_svm_nodearray(xi, isKernel=(m.param.kernel_type == PRECOMPUTED)) |
|
|
|
|
|
label = libsvm.svm_predict_probability(m, xi, prob_estimates) |
|
|
|
|
|
values = prob_estimates[:nr_class] |
|
|
|
|
|
pred_labels += [label] |
|
|
|
|
|
pred_values += [values] |
|
|
|
|
|
else: |
|
|
|
|
|
if is_prob_model: |
|
|
|
|
|
info("Model supports probability estimates, but disabled in predicton.") |
|
|
|
|
|
if svm_type in (ONE_CLASS, EPSILON_SVR, NU_SVC): |
|
|
|
|
|
nr_classifier = 1 |
|
|
|
|
|
else: |
|
|
|
|
|
nr_classifier = nr_class*(nr_class-1)//2 |
|
|
|
|
|
dec_values = (c_double * nr_classifier)() |
|
|
|
|
|
for xi in x: |
|
|
|
|
|
xi, idx = gen_svm_nodearray(xi, isKernel=(m.param.kernel_type == PRECOMPUTED)) |
|
|
|
|
|
label = libsvm.svm_predict_values(m, xi, dec_values) |
|
|
|
|
|
if(nr_class == 1): |
|
|
|
|
|
values = [1] |
|
|
|
|
|
else: |
|
|
|
|
|
values = dec_values[:nr_classifier] |
|
|
|
|
|
pred_labels += [label] |
|
|
|
|
|
pred_values += [values] |
|
|
|
|
|
|
|
|
|
|
|
ACC, MSE, SCC = evaluations(y, pred_labels) |
|
|
|
|
|
l = len(y) |
|
|
|
|
|
if svm_type in [EPSILON_SVR, NU_SVR]: |
|
|
|
|
|
info("Mean squared error = %g (regression)" % MSE) |
|
|
|
|
|
info("Squared correlation coefficient = %g (regression)" % SCC) |
|
|
|
|
|
else: |
|
|
|
|
|
info("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(l*ACC/100), l)) |
|
|
|
|
|
|
|
|
|
|
|
return pred_labels, (ACC, MSE, SCC), pred_values |
|
|
|
|
|
|
|
|
|
|
|
|