Browse Source

New translations lsape_based_method.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
b7bdb4be62
1 changed files with 254 additions and 0 deletions
  1. +254
    -0
      lang/fr/gklearn/ged/methods/lsape_based_method.py

+ 254
- 0
lang/fr/gklearn/ged/methods/lsape_based_method.py View File

@@ -0,0 +1,254 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 18 16:01:24 2020

@author: ljia
"""
import numpy as np
import networkx as nx
from gklearn.ged.methods import GEDMethod
from gklearn.ged.util import LSAPESolver, misc
from gklearn.ged.env import NodeMap

class LSAPEBasedMethod(GEDMethod):
def __init__(self, ged_data):
super().__init__(ged_data)
self._lsape_model = None # @todo: LSAPESolver::ECBP
self._greedy_method = None # @todo: LSAPESolver::BASIC
self._compute_lower_bound = True
self._solve_optimally = True
self._num_threads = 1
self._centrality_method = 'NODE' # @todo
self._centrality_weight = 0.7
self._centralities = {}
self._max_num_solutions = 1
def populate_instance_and_run_as_util(self, g, h): #, lsape_instance):
"""
/*!
* @brief Runs the method with options specified by set_options() and provides access to constructed LSAPE instance.
* @param[in] g Input graph.
* @param[in] h Input graph.
* @param[out] result Result variable.
* @param[out] lsape_instance LSAPE instance.
*/
"""
result = {'node_maps': [], 'lower_bound': 0, 'upper_bound': np.inf}
# Populate the LSAPE instance and set up the solver.
nb1, nb2 = nx.number_of_nodes(g), nx.number_of_nodes(h)
lsape_instance = np.ones((nb1 + nb2, nb1 + nb2)) * np.inf
# lsape_instance = np.empty((nx.number_of_nodes(g) + 1, nx.number_of_nodes(h) + 1))
self.populate_instance(g, h, lsape_instance)
# nb1, nb2 = nx.number_of_nodes(g), nx.number_of_nodes(h)
# lsape_instance_new = np.empty((nb1 + nb2, nb1 + nb2)) * np.inf
# lsape_instance_new[nb1:, nb2:] = 0
# lsape_instance_new[0:nb1, 0:nb2] = lsape_instance[0:nb1, 0:nb2]
# for i in range(nb1): # all u's neighbor
# lsape_instance_new[i, nb2 + i] = lsape_instance[i, nb2]
# for i in range(nb2): # all u's neighbor
# lsape_instance_new[nb1 + i, i] = lsape_instance[nb2, i]
# lsape_solver = LSAPESolver(lsape_instance_new)
lsape_solver = LSAPESolver(lsape_instance)
# Solve the LSAPE instance.
if self._solve_optimally:
lsape_solver.set_model(self._lsape_model)
else:
lsape_solver.set_greedy_method(self._greedy_method)
lsape_solver.solve(self._max_num_solutions)
# Compute and store lower and upper bound.
if self._compute_lower_bound and self._solve_optimally:
result['lower_bound'] = lsape_solver.minimal_cost() * self._lsape_lower_bound_scaling_factor(g, h) # @todo: test
for solution_id in range(0, lsape_solver.num_solutions()):
result['node_maps'].append(NodeMap(nx.number_of_nodes(g), nx.number_of_nodes(h)))
misc.construct_node_map_from_solver(lsape_solver, result['node_maps'][-1], solution_id)
self._ged_data.compute_induced_cost(g, h, result['node_maps'][-1])
# Add centralities and reoptimize.
if self._centrality_weight > 0 and self._centrality_method != 'NODE':
print('This is not implemented.')
pass # @todo
# Sort the node maps and set the upper bound.
if len(result['node_maps']) > 1 or len(result['node_maps']) > self._max_num_solutions:
print('This is not implemented.') # @todo:
pass
if len(result['node_maps']) == 0:
result['upper_bound'] = np.inf
else:
result['upper_bound'] = result['node_maps'][0].induced_cost()
return result
def populate_instance(self, g, h, lsape_instance):
"""
/*!
* @brief Populates the LSAPE instance.
* @param[in] g Input graph.
* @param[in] h Input graph.
* @param[out] lsape_instance LSAPE instance.
*/
"""
if not self._initialized:
pass
# @todo: if (not this->initialized_) {
self._lsape_populate_instance(g, h, lsape_instance)
lsape_instance[nx.number_of_nodes(g):, nx.number_of_nodes(h):] = 0
# lsape_instance[nx.number_of_nodes(g), nx.number_of_nodes(h)] = 0
###########################################################################
# Member functions inherited from GEDMethod.
###########################################################################
def _ged_init(self):
self._lsape_pre_graph_init(False)
for graph in self._ged_data._graphs:
self._init_graph(graph)
self._lsape_init()
def _ged_run(self, g, h):
# lsape_instance = np.empty((0, 0))
result = self.populate_instance_and_run_as_util(g, h) # , lsape_instance)
return result
def _ged_parse_option(self, option, arg):
is_valid_option = False
if option == 'threads': # @todo: try.. catch...
self._num_threads = arg
is_valid_option = True
elif option == 'lsape_model':
self._lsape_model = arg # @todo
is_valid_option = True
elif option == 'greedy_method':
self._greedy_method = arg # @todo
is_valid_option = True
elif option == 'optimal':
self._solve_optimally = arg # @todo
is_valid_option = True
elif option == 'centrality_method':
self._centrality_method = arg # @todo
is_valid_option = True
elif option == 'centrality_weight':
self._centrality_weight = arg # @todo
is_valid_option = True
elif option == 'max_num_solutions':
if arg == 'ALL':
self._max_num_solutions = -1
else:
self._max_num_solutions = arg # @todo
is_valid_option = True
is_valid_option = is_valid_option or self._lsape_parse_option(option, arg)
is_valid_option = True # @todo: this is not in the C++ code.
return is_valid_option
def _ged_set_default_options(self):
self._lsape_model = None # @todo: LSAPESolver::ECBP
self._greedy_method = None # @todo: LSAPESolver::BASIC
self._solve_optimally = True
self._num_threads = 1
self._centrality_method = 'NODE' # @todo
self._centrality_weight = 0.7
self._max_num_solutions = 1
###########################################################################
# Private helper member functions.
###########################################################################
def _init_graph(self, graph):
if self._centrality_method != 'NODE':
self._init_centralities(graph) # @todo
self._lsape_init_graph(graph)
###########################################################################
# Virtual member functions to be overridden by derived classes.
###########################################################################
def _lsape_init(self):
"""
/*!
* @brief Initializes the method after initializing the global variables for the graphs.
* @note Must be overridden by derived classes of ged::LSAPEBasedMethod that require custom initialization.
*/
"""
pass
def _lsape_parse_option(self, option, arg):
"""
/*!
* @brief Parses one option that is not among the ones shared by all derived classes of ged::LSAPEBasedMethod.
* @param[in] option The name of the option.
* @param[in] arg The argument of the option.
* @return Returns true if @p option is a valid option name for the method and false otherwise.
* @note Must be overridden by derived classes of ged::LSAPEBasedMethod that have options that are not among the ones shared by all derived classes of ged::LSAPEBasedMethod.
*/
"""
return False
def _lsape_set_default_options(self):
"""
/*!
* @brief Sets all options that are not among the ones shared by all derived classes of ged::LSAPEBasedMethod to default values.
* @note Must be overridden by derived classes of ged::LSAPEBasedMethod that have options that are not among the ones shared by all derived classes of ged::LSAPEBasedMethod.
*/
"""
pass
def _lsape_populate_instance(self, g, h, lsape_instance):
"""
/*!
* @brief Populates the LSAPE instance.
* @param[in] g Input graph.
* @param[in] h Input graph.
* @param[out] lsape_instance LSAPE instance of size (n + 1) x (m + 1), where n and m are the number of nodes in @p g and @p h. The last row and the last column represent insertion and deletion.
* @note Must be overridden by derived classes of ged::LSAPEBasedMethod.
*/
"""
pass
def _lsape_init_graph(self, graph):
"""
/*!
* @brief Initializes global variables for one graph.
* @param[in] graph Graph for which the global variables have to be initialized.
* @note Must be overridden by derived classes of ged::LSAPEBasedMethod that require to initialize custom global variables.
*/
"""
pass
def _lsape_pre_graph_init(self, called_at_runtime):
"""
/*!
* @brief Initializes the method at runtime or during initialization before initializing the global variables for the graphs.
* @param[in] called_at_runtime Equals @p true if called at runtime and @p false if called during initialization.
* @brief Must be overridden by derived classes of ged::LSAPEBasedMethod that require default initialization at runtime before initializing the global variables for the graphs.
*/
"""
pass

Loading…
Cancel
Save