2. modify the treelet kernel, use tuples to store canonkeys instead of strings in case that some labels strings contain more than 1 character.v0.1
@@ -9,6 +9,10 @@ datasets/* | |||||
!datasets/MUTAG/ | !datasets/MUTAG/ | ||||
!datasets/Letter-med/ | !datasets/Letter-med/ | ||||
!datasets/ENZYMES_txt/ | !datasets/ENZYMES_txt/ | ||||
!datasets/DD/ | |||||
!datasets/NCI1/ | |||||
!datasets/NCI109/ | |||||
!datasets/AIDS/ | |||||
notebooks/results/* | notebooks/results/* | ||||
notebooks/check_gm/* | notebooks/check_gm/* | ||||
notebooks/test_parallel/* | notebooks/test_parallel/* | ||||
@@ -12,22 +12,25 @@ import multiprocessing | |||||
from pygraph.kernels.commonWalkKernel import commonwalkkernel | from pygraph.kernels.commonWalkKernel import commonwalkkernel | ||||
dslist = [ | dslist = [ | ||||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
'task': 'regression'}, # node symb | |||||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
# contains single node graph, node symb | |||||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
# node nsymb | |||||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||||
# node symb/nsymb | |||||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
# 'task': 'regression'}, # node symb | |||||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
# # contains single node graph, node symb | |||||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
# # node nsymb | |||||
# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||||
# # node symb/nsymb | |||||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||||
{'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# | |||||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | ||||
# # node/edge symb | # # node/edge symb | ||||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | ||||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | ||||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | ||||
@@ -41,11 +44,6 @@ dslist = [ | |||||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | ||||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | ||||
# # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | ||||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | ||||
@@ -56,10 +54,12 @@ dslist = [ | |||||
# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | ||||
] | ] | ||||
estimator = commonwalkkernel | estimator = commonwalkkernel | ||||
#param_grid_precomputed = [{'compute_method': ['geo'], | |||||
# 'weight': np.linspace(0.01, 0.15, 15)}, | |||||
## 'weight': np.logspace(-1, -10, num=10, base=10)}, | |||||
# {'compute_method': ['exp'], 'weight': range(0, 15)}] | |||||
param_grid_precomputed = [{'compute_method': ['geo'], | param_grid_precomputed = [{'compute_method': ['geo'], | ||||
'weight': np.linspace(0.01, 0.15, 15)}, | |||||
# 'weight': np.logspace(-1, -10, num=10, base=10)}, | |||||
{'compute_method': ['exp'], 'weight': range(0, 15)}] | |||||
'weight': np.linspace(0.01, 0.15, 15)}] | |||||
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | ||||
{'alpha': np.logspace(-10, 10, num=41, base=10)}] | {'alpha': np.logspace(-10, 10, num=41, base=10)}] | ||||
@@ -12,22 +12,25 @@ import multiprocessing | |||||
from pygraph.kernels.marginalizedKernel import marginalizedkernel | from pygraph.kernels.marginalizedKernel import marginalizedkernel | ||||
dslist = [ | dslist = [ | ||||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
'task': 'regression'}, # node symb | |||||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
# contains single node graph, node symb | |||||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
# node nsymb | |||||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||||
# node symb/nsymb | |||||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
# 'task': 'regression'}, # node symb | |||||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
# # contains single node graph, node symb | |||||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
# # node nsymb | |||||
# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||||
# # node symb/nsymb | |||||
# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||||
{'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# | |||||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | ||||
# # node/edge symb | # # node/edge symb | ||||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | ||||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | ||||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | ||||
@@ -41,11 +44,6 @@ dslist = [ | |||||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | ||||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | ||||
# # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | ||||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | ||||
@@ -59,7 +57,7 @@ estimator = marginalizedkernel | |||||
#param_grid_precomputed = {'p_quit': np.linspace(0.1, 0.3, 3), | #param_grid_precomputed = {'p_quit': np.linspace(0.1, 0.3, 3), | ||||
# 'n_iteration': np.linspace(1, 1, 1), | # 'n_iteration': np.linspace(1, 1, 1), | ||||
param_grid_precomputed = {'p_quit': np.linspace(0.1, 0.9, 9), | param_grid_precomputed = {'p_quit': np.linspace(0.1, 0.9, 9), | ||||
'n_iteration': np.linspace(1, 19, 7), | |||||
'n_iteration': np.linspace(5, 20, 4), | |||||
'remove_totters': [False]} | 'remove_totters': [False]} | ||||
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | ||||
{'alpha': np.logspace(-10, 10, num=41, base=10)}] | {'alpha': np.logspace(-10, 10, num=41, base=10)}] | ||||
@@ -17,22 +17,25 @@ import numpy as np | |||||
dslist = [ | dslist = [ | ||||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
'task': 'regression'}, # node symb | |||||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
# contains single node graph, node symb | |||||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
# node nsymb | |||||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||||
# node symb/nsymb | |||||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
# 'task': 'regression'}, # node symb | |||||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
# # contains single node graph, node symb | |||||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||||
# # node symb/nsymb | |||||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||||
{'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
# # node nsymb | |||||
# | |||||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | ||||
# # node/edge symb | # # node/edge symb | ||||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | ||||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | ||||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | ||||
@@ -40,22 +43,17 @@ dslist = [ | |||||
# | # | ||||
# # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb | ||||
# # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb | ||||
# {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb, missing values | |||||
# {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb, missing values | |||||
# # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb | |||||
# # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb | |||||
# # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb | # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb | ||||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | ||||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | ||||
# # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | ||||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | ||||
# # not working below | |||||
# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, | |||||
# # not working below | |||||
# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, | |||||
# {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',}, | # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',}, | ||||
# {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',}, | # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',}, | ||||
# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | ||||
@@ -63,12 +61,25 @@ dslist = [ | |||||
estimator = randomwalkkernel | estimator = randomwalkkernel | ||||
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | ||||
{'alpha': np.logspace(-10, 10, num=41, base=10)}] | {'alpha': np.logspace(-10, 10, num=41, base=10)}] | ||||
gaussiankernel = functools.partial(gaussiankernel, gamma=0.5) | |||||
## for non-symbolic labels. | |||||
#gkernels = [functools.partial(gaussiankernel, gamma=1 / ga) | |||||
# for ga in np.logspace(0, 10, num=11, base=10)] | |||||
#mixkernels = [functools.partial(kernelproduct, deltakernel, gk) for gk in gkernels] | |||||
#sub_kernels = [{'symb': deltakernel, 'nsymb': gkernels[i], 'mix': mixkernels[i]} | |||||
# for i in range(len(gkernels))] | |||||
# for symbolic labels only. | |||||
#gaussiankernel = functools.partial(gaussiankernel, gamma=0.5) | |||||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
sub_kernels = [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}] | |||||
for ds in dslist: | for ds in dslist: | ||||
print() | print() | ||||
print(ds['name']) | print(ds['name']) | ||||
for compute_method in ['sylvester', 'conjugate', 'fp', 'spectral']: | |||||
# for compute_method in ['sylvester', 'conjugate', 'fp', 'spectral']: | |||||
for compute_method in ['conjugate', 'fp']: | |||||
if compute_method == 'sylvester': | if compute_method == 'sylvester': | ||||
param_grid_precomputed = {'compute_method': ['sylvester'], | param_grid_precomputed = {'compute_method': ['sylvester'], | ||||
# 'weight': np.linspace(0.01, 0.10, 10)} | # 'weight': np.linspace(0.01, 0.10, 10)} | ||||
@@ -76,18 +87,12 @@ for ds in dslist: | |||||
elif compute_method == 'conjugate': | elif compute_method == 'conjugate': | ||||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | ||||
param_grid_precomputed = {'compute_method': ['conjugate'], | param_grid_precomputed = {'compute_method': ['conjugate'], | ||||
'node_kernels': | |||||
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||||
'edge_kernels': | |||||
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||||
'node_kernels': sub_kernels, 'edge_kernels': sub_kernels, | |||||
'weight': np.logspace(-1, -10, num=10, base=10)} | 'weight': np.logspace(-1, -10, num=10, base=10)} | ||||
elif compute_method == 'fp': | elif compute_method == 'fp': | ||||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | ||||
param_grid_precomputed = {'compute_method': ['fp'], | param_grid_precomputed = {'compute_method': ['fp'], | ||||
'node_kernels': | |||||
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||||
'edge_kernels': | |||||
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||||
'node_kernels': sub_kernels, 'edge_kernels': sub_kernels, | |||||
'weight': np.logspace(-3, -10, num=8, base=10)} | 'weight': np.logspace(-3, -10, num=8, base=10)} | ||||
elif compute_method == 'spectral': | elif compute_method == 'spectral': | ||||
param_grid_precomputed = {'compute_method': ['spectral'], | param_grid_precomputed = {'compute_method': ['spectral'], | ||||
@@ -8,41 +8,40 @@ from pygraph.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||||
# datasets | # datasets | ||||
dslist = [ | dslist = [ | ||||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
'task': 'regression'}, # node symb | |||||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
# contains single node graph, node symb | |||||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
# 'task': 'regression'}, # node symb | |||||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
# # contains single node graph, node symb | |||||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | ||||
# node nsymb | # node nsymb | ||||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | ||||
# node symb/nsymb | # node symb/nsymb | ||||
{'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# | |||||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | ||||
# # node/edge symb | # # node/edge symb | ||||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# | |||||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | |||||
# {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | |||||
# {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | |||||
# {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'}, | |||||
# {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb | |||||
# {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb | |||||
# {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb | |||||
# {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb | |||||
# {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb | |||||
# | |||||
# {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | |||||
# {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | |||||
# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | |||||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | |||||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | |||||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | |||||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | |||||
# {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'}, | |||||
# | |||||
# # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb | |||||
# # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb | |||||
# # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb | |||||
# # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb | |||||
# # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb | |||||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | |||||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | |||||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | |||||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | |||||
# # not working below | # # not working below | ||||
# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, | # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, | ||||
@@ -52,6 +51,7 @@ dslist = [ | |||||
] | ] | ||||
estimator = spkernel | estimator = spkernel | ||||
# hyper-parameters | # hyper-parameters | ||||
#gaussiankernel = functools.partial(gaussiankernel, gamma=0.5) | |||||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | ||||
param_grid_precomputed = {'node_kernels': [ | param_grid_precomputed = {'node_kernels': [ | ||||
{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}]} | {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}]} | ||||
@@ -14,22 +14,25 @@ from pygraph.kernels.structuralspKernel import structuralspkernel | |||||
from pygraph.utils.kernels import deltakernel, gaussiankernel, kernelproduct | from pygraph.utils.kernels import deltakernel, gaussiankernel, kernelproduct | ||||
dslist = [ | dslist = [ | ||||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
'task': 'regression'}, # node symb | |||||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
# contains single node graph, node symb | |||||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
# node nsymb | |||||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||||
# node symb/nsymb | |||||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
# 'task': 'regression'}, # node symb | |||||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
# # contains single node graph, node symb | |||||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
# # node nsymb | |||||
# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||||
# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||||
# # node symb/nsymb | |||||
{'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# | |||||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | ||||
# # node/edge symb | # # node/edge symb | ||||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | ||||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | ||||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | ||||
@@ -37,33 +40,37 @@ dslist = [ | |||||
# | # | ||||
# # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb | ||||
# # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb | ||||
# {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb, missing values | |||||
# {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb, missing values | |||||
# # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb | |||||
# # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb | |||||
# # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb | # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb | ||||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | ||||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | ||||
# # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | ||||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | ||||
# # not working below | |||||
# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, | |||||
# # not working below | |||||
# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, | |||||
# {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',}, | # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',}, | ||||
# {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',}, | # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',}, | ||||
# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | ||||
] | ] | ||||
estimator = structuralspkernel | estimator = structuralspkernel | ||||
## for non-symbolic labels. | |||||
#gkernels = [functools.partial(gaussiankernel, gamma=1 / ga) | |||||
# for ga in np.logspace(0, 10, num=11, base=10)] | |||||
#mixkernels = [functools.partial(kernelproduct, deltakernel, gk) for gk in gkernels] | |||||
#sub_kernels = [{'symb': deltakernel, 'nsymb': gkernels[i], 'mix': mixkernels[i]} | |||||
# for i in range(len(gkernels))] | |||||
# for symbolic labels only. | |||||
#gaussiankernel = functools.partial(gaussiankernel, gamma=0.5) | |||||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | ||||
param_grid_precomputed = {'node_kernels': | |||||
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||||
'edge_kernels': | |||||
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||||
'compute_method': ['naive']} | |||||
sub_kernels = [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}] | |||||
param_grid_precomputed = {'node_kernels': sub_kernels, 'edge_kernels': sub_kernels, | |||||
'compute_method': ['naive']} | |||||
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | ||||
{'alpha': np.logspace(-10, 10, num=41, base=10)}] | {'alpha': np.logspace(-10, 10, num=41, base=10)}] | ||||
@@ -8,27 +8,31 @@ Created on Mon Mar 21 11:19:33 2019 | |||||
from libs import * | from libs import * | ||||
import multiprocessing | import multiprocessing | ||||
import functools | |||||
from pygraph.kernels.treeletKernel import treeletkernel | from pygraph.kernels.treeletKernel import treeletkernel | ||||
from pygraph.utils.kernels import gaussiankernel, linearkernel, polynomialkernel | |||||
from pygraph.utils.kernels import gaussiankernel, polynomialkernel | |||||
dslist = [ | dslist = [ | ||||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
'task': 'regression'}, # node symb | |||||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
# 'task': 'regression'}, # node symb | |||||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | ||||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | ||||
# contains single node graph, node symb | # contains single node graph, node symb | ||||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | ||||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | ||||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | ||||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
# # node nsymb | |||||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | ||||
# node symb/nsymb | # node symb/nsymb | ||||
{'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||||
{'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||||
{'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
# node nsymb | |||||
{'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# | |||||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | ||||
# # node/edge symb | # # node/edge symb | ||||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | ||||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | ||||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | ||||
@@ -42,11 +46,6 @@ dslist = [ | |||||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | ||||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | ||||
{'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | ||||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | ||||
@@ -57,7 +56,12 @@ dslist = [ | |||||
# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | ||||
] | ] | ||||
estimator = treeletkernel | estimator = treeletkernel | ||||
param_grid_precomputed = {'sub_kernel': [gaussiankernel, linearkernel, polynomialkernel]} | |||||
gkernels = [functools.partial(gaussiankernel, gamma=1 / ga) | |||||
# for ga in np.linspace(1, 10, 10)] | |||||
for ga in np.logspace(0, 10, num=11, base=10)] | |||||
pkernels = [functools.partial(polynomialkernel, d=d, c=c) for d in range(1, 11) | |||||
for c in np.logspace(0, 10, num=11, base=10)] | |||||
param_grid_precomputed = {'sub_kernel': pkernels + gkernels} | |||||
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | ||||
{'alpha': np.logspace(-10, 10, num=41, base=10)}] | {'alpha': np.logspace(-10, 10, num=41, base=10)}] | ||||
@@ -12,22 +12,25 @@ import multiprocessing | |||||
from pygraph.kernels.untilHPathKernel import untilhpathkernel | from pygraph.kernels.untilHPathKernel import untilhpathkernel | ||||
dslist = [ | dslist = [ | ||||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
'task': 'regression'}, # node symb | |||||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
# contains single node graph, node symb | |||||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
# node nsymb | |||||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||||
# node symb/nsymb | |||||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
# 'task': 'regression'}, # node symb | |||||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
# # contains single node graph, node symb | |||||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
# # node nsymb | |||||
# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||||
# # node symb/nsymb | |||||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||||
# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
{'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# | |||||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | ||||
# # node/edge symb | # # node/edge symb | ||||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | ||||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | ||||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | ||||
@@ -41,11 +44,6 @@ dslist = [ | |||||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | ||||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | ||||
# # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | ||||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | ||||
@@ -57,7 +55,7 @@ dslist = [ | |||||
] | ] | ||||
estimator = untilhpathkernel | estimator = untilhpathkernel | ||||
param_grid_precomputed = {'depth': np.linspace(1, 10, 10), # [2], | param_grid_precomputed = {'depth': np.linspace(1, 10, 10), # [2], | ||||
'k_func': ['MinMax', 'tanimoto'], | |||||
'k_func': ['MinMax'], # ['MinMax', 'tanimoto'], | |||||
'compute_method': ['trie']} # ['MinMax']} | 'compute_method': ['trie']} # ['MinMax']} | ||||
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | ||||
{'alpha': np.logspace(-10, 10, num=41, base=10)}] | {'alpha': np.logspace(-10, 10, num=41, base=10)}] | ||||
@@ -10,26 +10,29 @@ from libs import * | |||||
import multiprocessing | import multiprocessing | ||||
from pygraph.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel | from pygraph.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel | ||||
from pygraph.utils.kernels import gaussiankernel, polynomialkernel | |||||
dslist = [ | dslist = [ | ||||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
'task': 'regression'}, # node symb | |||||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
# contains single node graph, node symb | |||||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
# node nsymb | |||||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||||
# node symb/nsymb | |||||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
# 'task': 'regression'}, # node symb | |||||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
# # contains single node graph, node symb | |||||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
# # node nsymb | |||||
# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||||
# # node symb/nsymb | |||||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
{'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
# | |||||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | ||||
# # node/edge symb | # # node/edge symb | ||||
{'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
# | |||||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | ||||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | ||||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | ||||
@@ -43,9 +46,6 @@ dslist = [ | |||||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | ||||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | ||||
# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
{'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||||
{'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | ||||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | ||||
@@ -13,7 +13,7 @@ | |||||
"text": [ | "text": [ | ||||
"\n", | "\n", | ||||
"Acyclic:\n", | "Acyclic:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : False\n", | "edge_labeled : False\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -38,7 +38,7 @@ | |||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"Alkane:\n", | "Alkane:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : False\n", | "node_labeled : False\n", | ||||
"edge_labeled : False\n", | "edge_labeled : False\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -63,7 +63,7 @@ | |||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"MAO:\n", | "MAO:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : True\n", | "edge_labeled : True\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -88,7 +88,7 @@ | |||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"PAH:\n", | "PAH:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : False\n", | "node_labeled : False\n", | ||||
"edge_labeled : False\n", | "edge_labeled : False\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -113,7 +113,7 @@ | |||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"MUTAG:\n", | "MUTAG:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : True\n", | "edge_labeled : True\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -131,14 +131,14 @@ | |||||
"min_fill_factor : 0.039540816326530615\n", | "min_fill_factor : 0.039540816326530615\n", | ||||
"max_fill_factor : 0.1\n", | "max_fill_factor : 0.1\n", | ||||
"node_label_num : 7\n", | "node_label_num : 7\n", | ||||
"edge_label_num : 11\n", | |||||
"edge_label_num : 4\n", | |||||
"node_attr_dim : 0\n", | "node_attr_dim : 0\n", | ||||
"edge_attr_dim : 0\n", | "edge_attr_dim : 0\n", | ||||
"class_number : 2\n", | "class_number : 2\n", | ||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"Letter-med:\n", | "Letter-med:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : False\n", | "node_labeled : False\n", | ||||
"edge_labeled : False\n", | "edge_labeled : False\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -163,7 +163,7 @@ | |||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"ENZYMES:\n", | "ENZYMES:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : False\n", | "edge_labeled : False\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -187,33 +187,8 @@ | |||||
"class_number : 6\n", | "class_number : 6\n", | ||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"Mutagenicity:\n", | |||||
"substructures : {'non linear', 'linear'}\n", | |||||
"node_labeled : True\n", | |||||
"edge_labeled : True\n", | |||||
"is_directed : False\n", | |||||
"dataset_size : 4337\n", | |||||
"ave_node_num : 30.317731150564907\n", | |||||
"min_node_num : 4\n", | |||||
"max_node_num : 417\n", | |||||
"ave_edge_num : 30.76942587041734\n", | |||||
"min_edge_num : 3\n", | |||||
"max_edge_num : 112\n", | |||||
"ave_node_degree : 2.0379886162441148\n", | |||||
"min_node_degree : 0.47961630695443647\n", | |||||
"max_node_degree : 2.3703703703703702\n", | |||||
"ave_fill_factor : 0.0431047931997047\n", | |||||
"min_fill_factor : 0.0005750795047415305\n", | |||||
"max_fill_factor : 0.1875\n", | |||||
"node_label_num : 14\n", | |||||
"edge_label_num : 3\n", | |||||
"node_attr_dim : 0\n", | |||||
"edge_attr_dim : 0\n", | |||||
"class_number : 2\n", | |||||
"\n", | |||||
"\n", | |||||
"D&D:\n", | "D&D:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : False\n", | "edge_labeled : False\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -237,8 +212,58 @@ | |||||
"class_number : 2\n", | "class_number : 2\n", | ||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"NCI1:\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | |||||
"edge_labeled : False\n", | |||||
"is_directed : False\n", | |||||
"dataset_size : 4110\n", | |||||
"ave_node_num : 29.8654501216545\n", | |||||
"min_node_num : 3\n", | |||||
"max_node_num : 111\n", | |||||
"ave_edge_num : 32.3\n", | |||||
"min_edge_num : 2\n", | |||||
"max_edge_num : 119\n", | |||||
"ave_node_degree : 2.155013792267071\n", | |||||
"min_node_degree : 0.8\n", | |||||
"max_node_degree : 2.769230769230769\n", | |||||
"ave_fill_factor : 0.04239828192835043\n", | |||||
"min_fill_factor : 0.009522961908152367\n", | |||||
"max_fill_factor : 0.2222222222222222\n", | |||||
"node_label_num : 37\n", | |||||
"edge_label_num : 0\n", | |||||
"node_attr_dim : 0\n", | |||||
"edge_attr_dim : 0\n", | |||||
"class_number : 2\n", | |||||
"\n", | |||||
"\n", | |||||
"NCI109:\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | |||||
"edge_labeled : False\n", | |||||
"is_directed : False\n", | |||||
"dataset_size : 4127\n", | |||||
"ave_node_num : 29.681124303368065\n", | |||||
"min_node_num : 4\n", | |||||
"max_node_num : 111\n", | |||||
"ave_edge_num : 32.13084565059365\n", | |||||
"min_edge_num : 3\n", | |||||
"max_edge_num : 119\n", | |||||
"ave_node_degree : 2.156446168619097\n", | |||||
"min_node_degree : 1.0909090909090908\n", | |||||
"max_node_degree : 2.769230769230769\n", | |||||
"ave_fill_factor : 0.04263668408405519\n", | |||||
"min_fill_factor : 0.009522961908152367\n", | |||||
"max_fill_factor : 0.1875\n", | |||||
"node_label_num : 38\n", | |||||
"edge_label_num : 0\n", | |||||
"node_attr_dim : 0\n", | |||||
"edge_attr_dim : 0\n", | |||||
"class_number : 2\n", | |||||
"\n", | |||||
"\n", | |||||
"AIDS:\n", | "AIDS:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : True\n", | "edge_labeled : True\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -262,6 +287,31 @@ | |||||
"class_number : 2\n", | "class_number : 2\n", | ||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"Mutagenicity:\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | |||||
"edge_labeled : True\n", | |||||
"is_directed : False\n", | |||||
"dataset_size : 4337\n", | |||||
"ave_node_num : 30.317731150564907\n", | |||||
"min_node_num : 4\n", | |||||
"max_node_num : 417\n", | |||||
"ave_edge_num : 30.76942587041734\n", | |||||
"min_edge_num : 3\n", | |||||
"max_edge_num : 112\n", | |||||
"ave_node_degree : 2.0379886162441148\n", | |||||
"min_node_degree : 0.47961630695443647\n", | |||||
"max_node_degree : 2.3703703703703702\n", | |||||
"ave_fill_factor : 0.0431047931997047\n", | |||||
"min_fill_factor : 0.0005750795047415305\n", | |||||
"max_fill_factor : 0.1875\n", | |||||
"node_label_num : 14\n", | |||||
"edge_label_num : 3\n", | |||||
"node_attr_dim : 0\n", | |||||
"edge_attr_dim : 0\n", | |||||
"class_number : 2\n", | |||||
"\n", | |||||
"\n", | |||||
"FIRSTMM_DB:\n", | "FIRSTMM_DB:\n", | ||||
"substructures : {'non linear'}\n", | "substructures : {'non linear'}\n", | ||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
@@ -288,7 +338,7 @@ | |||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"MSRC9:\n", | "MSRC9:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : False\n", | "edge_labeled : False\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -313,7 +363,7 @@ | |||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"MSRC21:\n", | "MSRC21:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : False\n", | "edge_labeled : False\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -335,10 +385,16 @@ | |||||
"node_attr_dim : 0\n", | "node_attr_dim : 0\n", | ||||
"edge_attr_dim : 0\n", | "edge_attr_dim : 0\n", | ||||
"class_number : 20\n", | "class_number : 20\n", | ||||
"\n", | |||||
"\n" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"\n", | "\n", | ||||
"SYNTHETIC:\n", | "SYNTHETIC:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : False\n", | "edge_labeled : False\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -363,7 +419,7 @@ | |||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"BZR:\n", | "BZR:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : False\n", | "edge_labeled : False\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -385,16 +441,10 @@ | |||||
"node_attr_dim : 3\n", | "node_attr_dim : 3\n", | ||||
"edge_attr_dim : 0\n", | "edge_attr_dim : 0\n", | ||||
"class_number : 2\n", | "class_number : 2\n", | ||||
"\n" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"\n", | |||||
"\n", | "\n", | ||||
"COX2:\n", | "COX2:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : False\n", | "edge_labeled : False\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -419,7 +469,7 @@ | |||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"DHFR:\n", | "DHFR:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : False\n", | "edge_labeled : False\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -444,7 +494,7 @@ | |||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"PROTEINS:\n", | "PROTEINS:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : False\n", | "edge_labeled : False\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -469,7 +519,7 @@ | |||||
"\n", | "\n", | ||||
"\n", | "\n", | ||||
"PROTEINS_full:\n", | "PROTEINS_full:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : False\n", | "edge_labeled : False\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -492,61 +542,11 @@ | |||||
"edge_attr_dim : 0\n", | "edge_attr_dim : 0\n", | ||||
"class_number : 2\n", | "class_number : 2\n", | ||||
"\n", | "\n", | ||||
"\n", | |||||
"NCI1:\n", | |||||
"substructures : {'non linear', 'linear'}\n", | |||||
"node_labeled : True\n", | |||||
"edge_labeled : False\n", | |||||
"is_directed : False\n", | |||||
"dataset_size : 4110\n", | |||||
"ave_node_num : 29.8654501216545\n", | |||||
"min_node_num : 3\n", | |||||
"max_node_num : 111\n", | |||||
"ave_edge_num : 32.3\n", | |||||
"min_edge_num : 2\n", | |||||
"max_edge_num : 119\n", | |||||
"ave_node_degree : 2.155013792267071\n", | |||||
"min_node_degree : 0.8\n", | |||||
"max_node_degree : 2.769230769230769\n", | |||||
"ave_fill_factor : 0.04239828192835043\n", | |||||
"min_fill_factor : 0.009522961908152367\n", | |||||
"max_fill_factor : 0.2222222222222222\n", | |||||
"node_label_num : 37\n", | |||||
"edge_label_num : 0\n", | |||||
"node_attr_dim : 0\n", | |||||
"edge_attr_dim : 0\n", | |||||
"class_number : 2\n", | |||||
"\n", | |||||
"\n", | |||||
"NCI109:\n", | |||||
"substructures : {'non linear', 'linear'}\n", | |||||
"node_labeled : True\n", | |||||
"edge_labeled : False\n", | |||||
"is_directed : False\n", | |||||
"dataset_size : 4127\n", | |||||
"ave_node_num : 29.681124303368065\n", | |||||
"min_node_num : 4\n", | |||||
"max_node_num : 111\n", | |||||
"ave_edge_num : 32.13084565059365\n", | |||||
"min_edge_num : 3\n", | |||||
"max_edge_num : 119\n", | |||||
"ave_node_degree : 2.156446168619097\n", | |||||
"min_node_degree : 1.0909090909090908\n", | |||||
"max_node_degree : 2.769230769230769\n", | |||||
"ave_fill_factor : 0.04263668408405519\n", | |||||
"min_fill_factor : 0.009522961908152367\n", | |||||
"max_fill_factor : 0.1875\n", | |||||
"node_label_num : 38\n", | |||||
"edge_label_num : 0\n", | |||||
"node_attr_dim : 0\n", | |||||
"edge_attr_dim : 0\n", | |||||
"class_number : 2\n", | |||||
"\n", | |||||
"load SDF: 100%|██████████| 4457424/4457424 [00:08<00:00, 497346.72it/s]\n", | |||||
"ajust data: 100%|██████████| 42687/42687 [00:09<00:00, 4689.76it/s] \n", | |||||
"load SDF: 100%|██████████| 4457424/4457424 [00:09<00:00, 489414.03it/s]\n", | |||||
"ajust data: 100%|██████████| 42687/42687 [00:09<00:00, 4562.13it/s] \n", | |||||
"\n", | "\n", | ||||
"NCI-HIV:\n", | "NCI-HIV:\n", | ||||
"substructures : {'non linear', 'linear'}\n", | |||||
"substructures : {'linear', 'non linear'}\n", | |||||
"node_labeled : True\n", | "node_labeled : True\n", | ||||
"edge_labeled : True\n", | "edge_labeled : True\n", | ||||
"is_directed : False\n", | "is_directed : False\n", | ||||
@@ -584,14 +584,15 @@ | |||||
" 'dataset_y': '../../datasets/Alkane/dataset_boiling_point_names.txt',},\n", | " 'dataset_y': '../../datasets/Alkane/dataset_boiling_point_names.txt',},\n", | ||||
" {'name': 'MAO', 'dataset': '../../datasets/MAO/dataset.ds',},\n", | " {'name': 'MAO', 'dataset': '../../datasets/MAO/dataset.ds',},\n", | ||||
" {'name': 'PAH', 'dataset': '../../datasets/PAH/dataset.ds',},\n", | " {'name': 'PAH', 'dataset': '../../datasets/PAH/dataset.ds',},\n", | ||||
" {'name': 'MUTAG', 'dataset': '../../datasets/MUTAG/MUTAG.mat',\n", | |||||
" 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}},\n", | |||||
" {'name': 'MUTAG', 'dataset': '../../datasets/MUTAG/MUTAG_A.txt'},\n", | |||||
" {'name': 'Letter-med', 'dataset': '../../datasets/Letter-med/Letter-med_A.txt'},\n", | " {'name': 'Letter-med', 'dataset': '../../datasets/Letter-med/Letter-med_A.txt'},\n", | ||||
" {'name': 'ENZYMES', 'dataset': '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},\n", | " {'name': 'ENZYMES', 'dataset': '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},\n", | ||||
" {'name': 'Mutagenicity', 'dataset': '../../datasets/Mutagenicity/Mutagenicity_A.txt'},\n", | |||||
" {'name': 'D&D', 'dataset': '../../datasets/D&D/DD.mat',\n", | |||||
" 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}},\n", | |||||
" {'name': 'D&D', 'dataset': '../../datasets/DD/DD_A.txt'},\n", | |||||
" {'name': 'NCI1', 'dataset': '../../datasets/NCI1/NCI1_A.txt'},\n", | |||||
" {'name': 'NCI109', 'dataset': '../../datasets/NCI109/NCI109_A.txt'},\n", | |||||
" {'name': 'AIDS', 'dataset': '../../datasets/AIDS/AIDS_A.txt'},\n", | " {'name': 'AIDS', 'dataset': '../../datasets/AIDS/AIDS_A.txt'},\n", | ||||
" \n", | |||||
" {'name': 'Mutagenicity', 'dataset': '../../datasets/Mutagenicity/Mutagenicity_A.txt'},\n", | |||||
" {'name': 'FIRSTMM_DB', 'dataset': '../../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'},\n", | " {'name': 'FIRSTMM_DB', 'dataset': '../../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'},\n", | ||||
" {'name': 'MSRC9', 'dataset': '../../datasets/MSRC_9_txt/MSRC_9_A.txt'},\n", | " {'name': 'MSRC9', 'dataset': '../../datasets/MSRC_9_txt/MSRC_9_A.txt'},\n", | ||||
" {'name': 'MSRC21', 'dataset': '../../datasets/MSRC_21_txt/MSRC_21_A.txt'},\n", | " {'name': 'MSRC21', 'dataset': '../../datasets/MSRC_21_txt/MSRC_21_A.txt'},\n", | ||||
@@ -601,10 +602,6 @@ | |||||
" {'name': 'DHFR', 'dataset': '../../datasets/DHFR_txt/DHFR_A_sparse.txt'}, \n", | " {'name': 'DHFR', 'dataset': '../../datasets/DHFR_txt/DHFR_A_sparse.txt'}, \n", | ||||
" {'name': 'PROTEINS', 'dataset': '../../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'},\n", | " {'name': 'PROTEINS', 'dataset': '../../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'},\n", | ||||
" {'name': 'PROTEINS_full', 'dataset': '../../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, \n", | " {'name': 'PROTEINS_full', 'dataset': '../../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, \n", | ||||
" {'name': 'NCI1', 'dataset': '../../datasets/NCI1/NCI1.mat',\n", | |||||
" 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}},\n", | |||||
" {'name': 'NCI109', 'dataset': '../../datasets/NCI109/NCI109.mat',\n", | |||||
" 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}},\n", | |||||
" {'name': 'NCI-HIV', 'dataset': '../../datasets/NCI-HIV/AIDO99SD.sdf',\n", | " {'name': 'NCI-HIV', 'dataset': '../../datasets/NCI-HIV/AIDO99SD.sdf',\n", | ||||
" 'dataset_y': '../../datasets/NCI-HIV/aids_conc_may04.txt',},\n", | " 'dataset_y': '../../datasets/NCI-HIV/aids_conc_may04.txt',},\n", | ||||
"\n", | "\n", | ||||
@@ -646,7 +643,7 @@ | |||||
"name": "python", | "name": "python", | ||||
"nbconvert_exporter": "python", | "nbconvert_exporter": "python", | ||||
"pygments_lexer": "ipython3", | "pygments_lexer": "ipython3", | ||||
"version": "3.6.7" | |||||
"version": "3.6.8" | |||||
} | } | ||||
}, | }, | ||||
"nbformat": 4, | "nbformat": 4, | ||||
@@ -22,6 +22,11 @@ from iam import iam, test_iam_with_more_graphs_as_init, test_iam_moreGraphsAsIni | |||||
sys.path.insert(0, "../") | sys.path.insert(0, "../") | ||||
from pygraph.kernels.marginalizedKernel import marginalizedkernel | from pygraph.kernels.marginalizedKernel import marginalizedkernel | ||||
from pygraph.kernels.untilHPathKernel import untilhpathkernel | from pygraph.kernels.untilHPathKernel import untilhpathkernel | ||||
from pygraph.kernels.spKernel import spkernel | |||||
import functools | |||||
from pygraph.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||||
from pygraph.kernels.structuralspKernel import structuralspkernel | |||||
from median import draw_Letter_graph | |||||
def gk_iam(Gn, alpha): | def gk_iam(Gn, alpha): | ||||
@@ -119,6 +124,8 @@ def gk_iam_nearest(Gn, alpha, idx_gi, Kmatrix, k, r_max): | |||||
for gi in Gk: | for gi in Gk: | ||||
nx.draw_networkx(gi) | nx.draw_networkx(gi) | ||||
plt.show() | plt.show() | ||||
print(gi.nodes(data=True)) | |||||
print(gi.edges(data=True)) | |||||
Gs_nearest = Gk.copy() | Gs_nearest = Gk.copy() | ||||
# gihat_list = [] | # gihat_list = [] | ||||
@@ -132,6 +139,8 @@ def gk_iam_nearest(Gn, alpha, idx_gi, Kmatrix, k, r_max): | |||||
g_tmp = test_iam_with_more_graphs_as_init(Gs_nearest, Gs_nearest, c_ei=1, c_er=1, c_es=1) | g_tmp = test_iam_with_more_graphs_as_init(Gs_nearest, Gs_nearest, c_ei=1, c_er=1, c_es=1) | ||||
nx.draw_networkx(g_tmp) | nx.draw_networkx(g_tmp) | ||||
plt.show() | plt.show() | ||||
print(g_tmp.nodes(data=True)) | |||||
print(g_tmp.edges(data=True)) | |||||
# compute distance between phi and the new generated graph. | # compute distance between phi and the new generated graph. | ||||
gi_list = [Gn[i] for i in idx_gi] | gi_list = [Gn[i] for i in idx_gi] | ||||
@@ -166,28 +175,249 @@ def gk_iam_nearest(Gn, alpha, idx_gi, Kmatrix, k, r_max): | |||||
return dhat, ghat | return dhat, ghat | ||||
def dis_gstar(idx_g, idx_gi, alpha, Kmatrix): | |||||
#def gk_iam_nearest_multi(Gn, alpha, idx_gi, Kmatrix, k, r_max): | |||||
# """This function constructs graph pre-image by the iterative pre-image | |||||
# framework in reference [1], algorithm 1, where the step of generating new | |||||
# graphs randomly is replaced by the IAM algorithm in reference [2]. | |||||
# | |||||
# notes | |||||
# ----- | |||||
# Every time a set of n better graphs is acquired, their distances in kernel space are | |||||
# compared with the k nearest ones, and the k nearest distances from the k+n | |||||
# distances will be used as the new ones. | |||||
# """ | |||||
# Gn_median = [Gn[idx].copy() for idx in idx_gi] | |||||
# # compute k nearest neighbors of phi in DN. | |||||
# dis_list = [] # distance between g_star and each graph. | |||||
# for ig, g in tqdm(enumerate(Gn), desc='computing distances', file=sys.stdout): | |||||
# dtemp = dis_gstar(ig, idx_gi, alpha, Kmatrix) | |||||
## dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||||
## k_g2_list[ig]) + (alpha * alpha * k_list[0] + alpha * | |||||
## (1 - alpha) * k_g2_list[0] + (1 - alpha) * alpha * | |||||
## k_g1_list[6] + (1 - alpha) * (1 - alpha) * k_list[6]) | |||||
# dis_list.append(dtemp) | |||||
# | |||||
# # sort | |||||
# sort_idx = np.argsort(dis_list) | |||||
# dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] # the k shortest distances | |||||
# nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist()) | |||||
# g0hat_list = [Gn[idx] for idx in sort_idx[0:nb_best]] # the nearest neighbors of phi in DN | |||||
# if dis_gs[0] == 0: # the exact pre-image. | |||||
# print('The exact pre-image is found from the input dataset.') | |||||
# return 0, g0hat_list | |||||
# dhat = dis_gs[0] # the nearest distance | |||||
# ghat_list = [g.copy() for g in g0hat_list] | |||||
# for g in ghat_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# Gk = [Gn[ig].copy() for ig in sort_idx[0:k]] # the k nearest neighbors | |||||
# for gi in Gk: | |||||
# nx.draw_networkx(gi) | |||||
# plt.show() | |||||
# print(gi.nodes(data=True)) | |||||
# print(gi.edges(data=True)) | |||||
# Gs_nearest = Gk.copy() | |||||
## gihat_list = [] | |||||
# | |||||
## i = 1 | |||||
# r = 1 | |||||
# while r < r_max: | |||||
# print('r =', r) | |||||
## found = False | |||||
## Gs_nearest = Gk + gihat_list | |||||
## g_tmp = iam(Gs_nearest) | |||||
# g_tmp_list = test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||||
# Gn_median, Gs_nearest, c_ei=1, c_er=1, c_es=1) | |||||
# for g in g_tmp_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# | |||||
# # compute distance between phi and the new generated graphs. | |||||
# gi_list = [Gn[i] for i in idx_gi] | |||||
# knew = compute_kernel(g_tmp_list + gi_list, 'marginalizedkernel', False) | |||||
# dnew_list = [] | |||||
# for idx, g_tmp in enumerate(g_tmp_list): | |||||
# dnew_list.append(dis_gstar(idx, range(len(g_tmp_list), | |||||
# len(g_tmp_list) + len(gi_list) + 1), alpha, knew)) | |||||
# | |||||
## dnew = knew[0, 0] - 2 * (alpha[0] * knew[0, 1] + alpha[1] * | |||||
## knew[0, 2]) + (alpha[0] * alpha[0] * k_list[0] + alpha[0] * | |||||
## alpha[1] * k_g2_list[0] + alpha[1] * alpha[0] * | |||||
## k_g1_list[1] + alpha[1] * alpha[1] * k_list[1]) | |||||
# | |||||
# # find the new k nearest graphs. | |||||
# dis_gs = dnew_list + dis_gs # add the new nearest distances. | |||||
# Gs_nearest = [g.copy() for g in g_tmp_list] + Gs_nearest # add the corresponding graphs. | |||||
# sort_idx = np.argsort(dis_gs) | |||||
# if len([i for i in sort_idx[0:k] if i < len(dnew_list)]) > 0: | |||||
# print('We got better k nearest neighbors! Hurray!') | |||||
# dis_gs = [dis_gs[idx] for idx in sort_idx[0:k]] # the new k nearest distances. | |||||
# print(dis_gs[-1]) | |||||
# Gs_nearest = [Gs_nearest[idx] for idx in sort_idx[0:k]] | |||||
# nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist()) | |||||
# if len([i for i in sort_idx[0:nb_best] if i < len(dnew_list)]) > 0: | |||||
# print('I have smaller or equal distance!') | |||||
# dhat = dis_gs[0] | |||||
# print(str(dhat) + '->' + str(dhat)) | |||||
# idx_best_list = np.argwhere(dnew_list == dhat).flatten().tolist() | |||||
# ghat_list = [g_tmp_list[idx].copy() for idx in idx_best_list] | |||||
# for g in ghat_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# r = 0 | |||||
# else: | |||||
# r += 1 | |||||
# | |||||
# return dhat, ghat_list | |||||
def gk_iam_nearest_multi(Gn_init, Gn_median, alpha, idx_gi, Kmatrix, k, r_max, gkernel): | |||||
"""This function constructs graph pre-image by the iterative pre-image | |||||
framework in reference [1], algorithm 1, where the step of generating new | |||||
graphs randomly is replaced by the IAM algorithm in reference [2]. | |||||
notes | |||||
----- | |||||
Every time a set of n better graphs is acquired, their distances in kernel space are | |||||
compared with the k nearest ones, and the k nearest distances from the k+n | |||||
distances will be used as the new ones. | |||||
""" | |||||
# compute k nearest neighbors of phi in DN. | |||||
dis_list = [] # distance between g_star and each graph. | |||||
term3 = 0 | |||||
for i1, a1 in enumerate(alpha): | |||||
for i2, a2 in enumerate(alpha): | |||||
term3 += a1 * a2 * Kmatrix[idx_gi[i1], idx_gi[i2]] | |||||
for ig, g in tqdm(enumerate(Gn_init), desc='computing distances', file=sys.stdout): | |||||
dtemp = dis_gstar(ig, idx_gi, alpha, Kmatrix, term3=term3) | |||||
# dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||||
# k_g2_list[ig]) + (alpha * alpha * k_list[0] + alpha * | |||||
# (1 - alpha) * k_g2_list[0] + (1 - alpha) * alpha * | |||||
# k_g1_list[6] + (1 - alpha) * (1 - alpha) * k_list[6]) | |||||
dis_list.append(dtemp) | |||||
# sort | |||||
sort_idx = np.argsort(dis_list) | |||||
dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] # the k shortest distances | |||||
nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist()) | |||||
g0hat_list = [Gn_init[idx] for idx in sort_idx[0:nb_best]] # the nearest neighbors of phi in DN | |||||
if dis_gs[0] == 0: # the exact pre-image. | |||||
print('The exact pre-image is found from the input dataset.') | |||||
return 0, g0hat_list | |||||
dhat = dis_gs[0] # the nearest distance | |||||
ghat_list = [g.copy() for g in g0hat_list] | |||||
for g in ghat_list: | |||||
draw_Letter_graph(g) | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
print(g.nodes(data=True)) | |||||
print(g.edges(data=True)) | |||||
Gk = [Gn_init[ig].copy() for ig in sort_idx[0:k]] # the k nearest neighbors | |||||
for gi in Gk: | |||||
# nx.draw_networkx(gi) | |||||
# plt.show() | |||||
draw_Letter_graph(g) | |||||
print(gi.nodes(data=True)) | |||||
print(gi.edges(data=True)) | |||||
Gs_nearest = Gk.copy() | |||||
# gihat_list = [] | |||||
# i = 1 | |||||
r = 1 | |||||
while r < r_max: | |||||
print('r =', r) | |||||
# found = False | |||||
# Gs_nearest = Gk + gihat_list | |||||
# g_tmp = iam(Gs_nearest) | |||||
g_tmp_list = test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||||
Gn_median, Gs_nearest, c_ei=1, c_er=1, c_es=1) | |||||
for g in g_tmp_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
draw_Letter_graph(g) | |||||
print(g.nodes(data=True)) | |||||
print(g.edges(data=True)) | |||||
# compute distance between phi and the new generated graphs. | |||||
knew = compute_kernel(g_tmp_list + Gn_median, gkernel, False) | |||||
dnew_list = [] | |||||
for idx, g_tmp in enumerate(g_tmp_list): | |||||
dnew_list.append(dis_gstar(idx, range(len(g_tmp_list), | |||||
len(g_tmp_list) + len(Gn_median) + 1), alpha, knew, | |||||
withterm3=False)) | |||||
# dnew = knew[0, 0] - 2 * (alpha[0] * knew[0, 1] + alpha[1] * | |||||
# knew[0, 2]) + (alpha[0] * alpha[0] * k_list[0] + alpha[0] * | |||||
# alpha[1] * k_g2_list[0] + alpha[1] * alpha[0] * | |||||
# k_g1_list[1] + alpha[1] * alpha[1] * k_list[1]) | |||||
# find the new k nearest graphs. | |||||
dis_gs = dnew_list + dis_gs # add the new nearest distances. | |||||
Gs_nearest = [g.copy() for g in g_tmp_list] + Gs_nearest # add the corresponding graphs. | |||||
sort_idx = np.argsort(dis_gs) | |||||
if len([i for i in sort_idx[0:k] if i < len(dnew_list)]) > 0: | |||||
print('We got better k nearest neighbors! Hurray!') | |||||
dis_gs = [dis_gs[idx] for idx in sort_idx[0:k]] # the new k nearest distances. | |||||
print(dis_gs[-1]) | |||||
Gs_nearest = [Gs_nearest[idx] for idx in sort_idx[0:k]] | |||||
nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist()) | |||||
if len([i for i in sort_idx[0:nb_best] if i < len(dnew_list)]) > 0: | |||||
print('I have smaller or equal distance!') | |||||
print(str(dhat) + '->' + str(dis_gs[0])) | |||||
dhat = dis_gs[0] | |||||
idx_best_list = np.argwhere(dnew_list == dhat).flatten().tolist() | |||||
ghat_list = [g_tmp_list[idx].copy() for idx in idx_best_list] | |||||
for g in ghat_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
draw_Letter_graph(g) | |||||
print(g.nodes(data=True)) | |||||
print(g.edges(data=True)) | |||||
r = 0 | |||||
else: | |||||
r += 1 | |||||
return dhat, ghat_list | |||||
def dis_gstar(idx_g, idx_gi, alpha, Kmatrix, term3=0, withterm3=True): | |||||
term1 = Kmatrix[idx_g, idx_g] | term1 = Kmatrix[idx_g, idx_g] | ||||
term2 = 0 | term2 = 0 | ||||
for i, a in enumerate(alpha): | for i, a in enumerate(alpha): | ||||
term2 += a * Kmatrix[idx_g, idx_gi[i]] | term2 += a * Kmatrix[idx_g, idx_gi[i]] | ||||
term2 *= 2 | term2 *= 2 | ||||
term3 = 0 | |||||
for i1, a1 in enumerate(alpha): | |||||
for i2, a2 in enumerate(alpha): | |||||
term3 += a1 * a2 * Kmatrix[idx_gi[i1], idx_gi[i2]] | |||||
if withterm3 == False: | |||||
for i1, a1 in enumerate(alpha): | |||||
for i2, a2 in enumerate(alpha): | |||||
term3 += a1 * a2 * Kmatrix[idx_gi[i1], idx_gi[i2]] | |||||
return np.sqrt(term1 - term2 + term3) | return np.sqrt(term1 - term2 + term3) | ||||
def compute_kernel(Gn, graph_kernel, verbose): | def compute_kernel(Gn, graph_kernel, verbose): | ||||
if graph_kernel == 'marginalizedkernel': | if graph_kernel == 'marginalizedkernel': | ||||
Kmatrix, _ = marginalizedkernel(Gn, node_label='atom', edge_label=None, | Kmatrix, _ = marginalizedkernel(Gn, node_label='atom', edge_label=None, | ||||
p_quit=0.3, n_iteration=19, remove_totters=False, | |||||
p_quit=0.03, n_iteration=20, remove_totters=False, | |||||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | n_jobs=multiprocessing.cpu_count(), verbose=verbose) | ||||
elif graph_kernel == 'untilhpathkernel': | elif graph_kernel == 'untilhpathkernel': | ||||
Kmatrix, _ = untilhpathkernel(Gn, node_label='atom', edge_label='bond_type', | Kmatrix, _ = untilhpathkernel(Gn, node_label='atom', edge_label='bond_type', | ||||
depth=2, k_func='MinMax', compute_method='trie', | |||||
depth=10, k_func='MinMax', compute_method='trie', | |||||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | n_jobs=multiprocessing.cpu_count(), verbose=verbose) | ||||
elif graph_kernel == 'spkernel': | |||||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
Kmatrix, _, _ = spkernel(Gn, node_label='atom', node_kernels= | |||||
{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}, | |||||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||||
elif graph_kernel == 'structuralspkernel': | |||||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
Kmatrix, _ = structuralspkernel(Gn, node_label='atom', node_kernels= | |||||
{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}, | |||||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||||
# normalization | # normalization | ||||
Kmatrix_diag = Kmatrix.diagonal().copy() | Kmatrix_diag = Kmatrix.diagonal().copy() | ||||
@@ -204,170 +434,4 @@ def gram2distances(Kmatrix): | |||||
for i2 in range(len(Kmatrix)): | for i2 in range(len(Kmatrix)): | ||||
dmatrix[i1, i2] = Kmatrix[i1, i1] + Kmatrix[i2, i2] - 2 * Kmatrix[i1, i2] | dmatrix[i1, i2] = Kmatrix[i1, i1] + Kmatrix[i2, i2] - 2 * Kmatrix[i1, i2] | ||||
dmatrix = np.sqrt(dmatrix) | dmatrix = np.sqrt(dmatrix) | ||||
return dmatrix | |||||
# --------------------------- These are tests --------------------------------# | |||||
def test_who_is_the_closest_in_kernel_space(Gn): | |||||
idx_gi = [0, 6] | |||||
g1 = Gn[idx_gi[0]] | |||||
g2 = Gn[idx_gi[1]] | |||||
# create the "median" graph. | |||||
gnew = g2.copy() | |||||
gnew.remove_node(0) | |||||
nx.draw_networkx(gnew) | |||||
plt.show() | |||||
print(gnew.nodes(data=True)) | |||||
Gn = [gnew] + Gn | |||||
# compute gram matrix | |||||
Kmatrix = compute_kernel(Gn, 'untilhpathkernel', True) | |||||
# the distance matrix | |||||
dmatrix = gram2distances(Kmatrix) | |||||
print(np.sort(dmatrix[idx_gi[0] + 1])) | |||||
print(np.argsort(dmatrix[idx_gi[0] + 1])) | |||||
print(np.sort(dmatrix[idx_gi[1] + 1])) | |||||
print(np.argsort(dmatrix[idx_gi[1] + 1])) | |||||
# for all g in Gn, compute (d(g1, g) + d(g2, g)) / 2 | |||||
dis_median = [(dmatrix[i, idx_gi[0] + 1] + dmatrix[i, idx_gi[1] + 1]) / 2 for i in range(len(Gn))] | |||||
print(np.sort(dis_median)) | |||||
print(np.argsort(dis_median)) | |||||
return | |||||
def test_who_is_the_closest_in_GED_space(Gn): | |||||
from iam import GED | |||||
idx_gi = [0, 6] | |||||
g1 = Gn[idx_gi[0]] | |||||
g2 = Gn[idx_gi[1]] | |||||
# create the "median" graph. | |||||
gnew = g2.copy() | |||||
gnew.remove_node(0) | |||||
nx.draw_networkx(gnew) | |||||
plt.show() | |||||
print(gnew.nodes(data=True)) | |||||
Gn = [gnew] + Gn | |||||
# compute GEDs | |||||
ged_matrix = np.zeros((len(Gn), len(Gn))) | |||||
for i1 in tqdm(range(len(Gn)), desc='computing GEDs', file=sys.stdout): | |||||
for i2 in range(len(Gn)): | |||||
dis, _, _ = GED(Gn[i1], Gn[i2], lib='gedlib') | |||||
ged_matrix[i1, i2] = dis | |||||
print(np.sort(ged_matrix[idx_gi[0] + 1])) | |||||
print(np.argsort(ged_matrix[idx_gi[0] + 1])) | |||||
print(np.sort(ged_matrix[idx_gi[1] + 1])) | |||||
print(np.argsort(ged_matrix[idx_gi[1] + 1])) | |||||
# for all g in Gn, compute (GED(g1, g) + GED(g2, g)) / 2 | |||||
dis_median = [(ged_matrix[i, idx_gi[0] + 1] + ged_matrix[i, idx_gi[1] + 1]) / 2 for i in range(len(Gn))] | |||||
print(np.sort(dis_median)) | |||||
print(np.argsort(dis_median)) | |||||
return | |||||
def test_will_IAM_give_the_median_graph_we_wanted(Gn): | |||||
idx_gi = [0, 6] | |||||
g1 = Gn[idx_gi[0]].copy() | |||||
g2 = Gn[idx_gi[1]].copy() | |||||
# del Gn[idx_gi[0]] | |||||
# del Gn[idx_gi[1] - 1] | |||||
g_median = test_iam_with_more_graphs_as_init([g1, g2], [g1, g2], c_ei=1, c_er=1, c_es=1) | |||||
# g_median = test_iam_with_more_graphs_as_init(Gn, Gn, c_ei=1, c_er=1, c_es=1) | |||||
nx.draw_networkx(g_median) | |||||
plt.show() | |||||
print(g_median.nodes(data=True)) | |||||
print(g_median.edges(data=True)) | |||||
def test_new_IAM_allGraph_deleteNodes(Gn): | |||||
idx_gi = [0, 6] | |||||
# g1 = Gn[idx_gi[0]].copy() | |||||
# g2 = Gn[idx_gi[1]].copy() | |||||
g1 = nx.Graph(name='haha') | |||||
g1.add_nodes_from([(2, {'atom': 'C'}), (3, {'atom': 'O'}), (4, {'atom': 'C'})]) | |||||
g1.add_edges_from([(2, 3, {'bond_type': '1'}), (3, 4, {'bond_type': '1'})]) | |||||
g2 = nx.Graph(name='hahaha') | |||||
g2.add_nodes_from([(0, {'atom': 'C'}), (1, {'atom': 'O'}), (2, {'atom': 'C'}), | |||||
(3, {'atom': 'O'}), (4, {'atom': 'C'})]) | |||||
g2.add_edges_from([(0, 1, {'bond_type': '1'}), (1, 2, {'bond_type': '1'}), | |||||
(2, 3, {'bond_type': '1'}), (3, 4, {'bond_type': '1'})]) | |||||
# g2 = g1.copy() | |||||
# g2.add_nodes_from([(3, {'atom': 'O'})]) | |||||
# g2.add_nodes_from([(4, {'atom': 'C'})]) | |||||
# g2.add_edges_from([(1, 3, {'bond_type': '1'})]) | |||||
# g2.add_edges_from([(3, 4, {'bond_type': '1'})]) | |||||
# del Gn[idx_gi[0]] | |||||
# del Gn[idx_gi[1] - 1] | |||||
g_median = test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations([g1, g2], [g1, g2], c_ei=1, c_er=1, c_es=1) | |||||
# g_median = test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations(Gn, Gn, c_ei=1, c_er=1, c_es=1) | |||||
nx.draw_networkx(g_median) | |||||
plt.show() | |||||
print(g_median.nodes(data=True)) | |||||
print(g_median.edges(data=True)) | |||||
if __name__ == '__main__': | |||||
from pygraph.utils.graphfiles import loadDataset | |||||
# ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat', | |||||
# 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb | |||||
# ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', | |||||
# 'extra_params': {}} # node nsymb | |||||
# ds = {'name': 'Acyclic', 'dataset': '../datasets/monoterpenoides/trainset_9.ds', | |||||
# 'extra_params': {}} | |||||
ds = {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
'extra_params': {}} # node symb | |||||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
# Gn = Gn[0:20] | |||||
test_new_IAM_allGraph_deleteNodes(Gn) | |||||
test_will_IAM_give_the_median_graph_we_wanted(Gn) | |||||
test_who_is_the_closest_in_GED_space(Gn) | |||||
test_who_is_the_closest_in_kernel_space(Gn) | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 10 # recursions | |||||
l = 500 | |||||
alpha_range = np.linspace(0.5, 0.5, 1) | |||||
k = 20 # k nearest neighbors | |||||
# randomly select two molecules | |||||
np.random.seed(1) | |||||
idx_gi = [0, 6] # np.random.randint(0, len(Gn), 2) | |||||
g1 = Gn[idx_gi[0]] | |||||
g2 = Gn[idx_gi[1]] | |||||
# g_tmp = iam([g1, g2]) | |||||
# nx.draw_networkx(g_tmp) | |||||
# plt.show() | |||||
# compute | |||||
# k_list = [] # kernel between each graph and itself. | |||||
# k_g1_list = [] # kernel between each graph and g1 | |||||
# k_g2_list = [] # kernel between each graph and g2 | |||||
# for ig, g in tqdm(enumerate(Gn), desc='computing self kernels', file=sys.stdout): | |||||
# ktemp = compute_kernel([g, g1, g2], 'marginalizedkernel', False) | |||||
# k_list.append(ktemp[0][0, 0]) | |||||
# k_g1_list.append(ktemp[0][0, 1]) | |||||
# k_g2_list.append(ktemp[0][0, 2]) | |||||
km = compute_kernel(Gn, 'untilhpathkernel', True) | |||||
# k_list = np.diag(km) # kernel between each graph and itself. | |||||
# k_g1_list = km[idx_gi[0]] # kernel between each graph and g1 | |||||
# k_g2_list = km[idx_gi[1]] # kernel between each graph and g2 | |||||
g_best = [] | |||||
dis_best = [] | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('alpha =', alpha) | |||||
dhat, ghat = gk_iam_nearest(Gn, [alpha, 1 - alpha], idx_gi, km, k, r_max) | |||||
dis_best.append(dhat) | |||||
g_best.append(ghat) | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', dis_best[idx]) | |||||
print('the corresponding pre-image is') | |||||
nx.draw_networkx(g_best[idx]) | |||||
plt.show() | |||||
return dmatrix |
@@ -158,7 +158,7 @@ def GED(g1, g2, lib='gedlib'): | |||||
script.PyRestartEnv() | script.PyRestartEnv() | ||||
script.PyLoadGXLGraph('ged_tmp/', 'ged_tmp/tmp.xml') | script.PyLoadGXLGraph('ged_tmp/', 'ged_tmp/tmp.xml') | ||||
listID = script.PyGetGraphIds() | listID = script.PyGetGraphIds() | ||||
script.PySetEditCost("CHEM_1") | |||||
script.PySetEditCost("LETTER") #("CHEM_1") | |||||
script.PyInitEnv() | script.PyInitEnv() | ||||
script.PySetMethod("IPFP", "") | script.PySetMethod("IPFP", "") | ||||
script.PyInitMethod() | script.PyInitMethod() | ||||
@@ -168,7 +168,15 @@ def GED(g1, g2, lib='gedlib'): | |||||
pi_forward, pi_backward = script.PyGetAllMap(g, h) | pi_forward, pi_backward = script.PyGetAllMap(g, h) | ||||
upper = script.PyGetUpperBound(g, h) | upper = script.PyGetUpperBound(g, h) | ||||
lower = script.PyGetLowerBound(g, h) | lower = script.PyGetLowerBound(g, h) | ||||
dis = (upper + lower) / 2 | |||||
dis = upper | |||||
# make the map label correct (label remove map as np.inf) | |||||
nodes1 = [n for n in g1.nodes()] | |||||
nodes2 = [n for n in g2.nodes()] | |||||
nb1 = nx.number_of_nodes(g1) | |||||
nb2 = nx.number_of_nodes(g2) | |||||
pi_forward = [nodes2[pi] if pi < nb2 else np.inf for pi in pi_forward] | |||||
pi_backward = [nodes1[pi] if pi < nb1 else np.inf for pi in pi_backward] | |||||
return dis, pi_forward, pi_backward | return dis, pi_forward, pi_backward | ||||
@@ -319,7 +327,7 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||||
from tqdm import tqdm | from tqdm import tqdm | ||||
# Gn_median = Gn_median[0:10] | # Gn_median = Gn_median[0:10] | ||||
# Gn_median = [nx.convert_node_labels_to_integers(g) for g in Gn_median] | # Gn_median = [nx.convert_node_labels_to_integers(g) for g in Gn_median] | ||||
node_ir = sys.maxsize * 2 # Max number for c++, corresponding to the node remove and insertion. | |||||
node_ir = np.inf # corresponding to the node remove and insertion. | |||||
label_r = 'thanksdanny' # the label for node remove. # @todo: make this label unrepeatable. | label_r = 'thanksdanny' # the label for node remove. # @todo: make this label unrepeatable. | ||||
ds_attrs = get_dataset_attributes(Gn_median + Gn_candidate, | ds_attrs = get_dataset_attributes(Gn_median + Gn_candidate, | ||||
attr_names=['edge_labeled', 'node_attr_dim'], | attr_names=['edge_labeled', 'node_attr_dim'], | ||||
@@ -347,7 +355,7 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||||
h_i0 = 0 | h_i0 = 0 | ||||
for idx, g in enumerate(Gn_median): | for idx, g in enumerate(Gn_median): | ||||
pi_i = pi_p_forward[idx][ndi] | pi_i = pi_p_forward[idx][ndi] | ||||
if g.has_node(pi_i) and g.nodes[pi_i][node_label] == label: | |||||
if pi_i != node_ir and g.nodes[pi_i][node_label] == label: | |||||
h_i0 += 1 | h_i0 += 1 | ||||
h_i0_list.append(h_i0) | h_i0_list.append(h_i0) | ||||
label_list.append(label) | label_list.append(label) | ||||
@@ -364,7 +372,7 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||||
nlabel_best = [label_list[idx] for idx in idx_max] | nlabel_best = [label_list[idx] for idx in idx_max] | ||||
# generate "best" graphs with regard to "best" node labels. | # generate "best" graphs with regard to "best" node labels. | ||||
G_new_list_nd = [] | G_new_list_nd = [] | ||||
for g in G_new_list: | |||||
for g in G_new_list: # @todo: seems it can be simplified. The G_new_list will only contain 1 graph for now. | |||||
for nl in nlabel_best: | for nl in nlabel_best: | ||||
g_tmp = g.copy() | g_tmp = g.copy() | ||||
if nl == label_r: | if nl == label_r: | ||||
@@ -380,16 +388,16 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||||
G_new_list = G_new_list_nd[:] | G_new_list = G_new_list_nd[:] | ||||
else: # labels are non-symbolic | else: # labels are non-symbolic | ||||
for nd in G.nodes(): | |||||
for ndi, (nd, _) in enumerate(G.nodes(data=True)): | |||||
Si_norm = 0 | Si_norm = 0 | ||||
phi_i_bar = np.array([0.0 for _ in range(ds_attrs['node_attr_dim'])]) | phi_i_bar = np.array([0.0 for _ in range(ds_attrs['node_attr_dim'])]) | ||||
for idx, g in enumerate(Gn_median): | for idx, g in enumerate(Gn_median): | ||||
pi_i = pi_p_forward[idx][nd] | |||||
pi_i = pi_p_forward[idx][ndi] | |||||
if g.has_node(pi_i): #@todo: what if no g has node? phi_i_bar = 0? | if g.has_node(pi_i): #@todo: what if no g has node? phi_i_bar = 0? | ||||
Si_norm += 1 | Si_norm += 1 | ||||
phi_i_bar += np.array([float(itm) for itm in g.nodes[pi_i]['attributes']]) | phi_i_bar += np.array([float(itm) for itm in g.nodes[pi_i]['attributes']]) | ||||
phi_i_bar /= Si_norm | phi_i_bar /= Si_norm | ||||
G_new.nodes[nd]['attributes'] = phi_i_bar | |||||
G_new_list[0].nodes[nd]['attributes'] = phi_i_bar | |||||
# update edge labels and adjacency matrix. | # update edge labels and adjacency matrix. | ||||
if ds_attrs['edge_labeled']: | if ds_attrs['edge_labeled']: | ||||
@@ -467,12 +475,12 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||||
# pi_forward_list = [pi_forward_list[idx] for idx in idx_min_list] | # pi_forward_list = [pi_forward_list[idx] for idx in idx_min_list] | ||||
# G_new_list = [G_new_list[idx] for idx in idx_min_list] | # G_new_list = [G_new_list[idx] for idx in idx_min_list] | ||||
for g in G_new_list: | |||||
import matplotlib.pyplot as plt | |||||
nx.draw_networkx(g) | |||||
plt.show() | |||||
print(g.nodes(data=True)) | |||||
print(g.edges(data=True)) | |||||
# for g in G_new_list: | |||||
# import matplotlib.pyplot as plt | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
return G_new_list, pi_forward_list | return G_new_list, pi_forward_list | ||||
@@ -504,7 +512,7 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||||
G_list = [G] | G_list = [G] | ||||
pi_forward_list = [pi_p_forward] | pi_forward_list = [pi_p_forward] | ||||
# iterations. | # iterations. | ||||
for itr in range(0, 10): # @todo: the convergence condition? | |||||
for itr in range(0, 5): # @todo: the convergence condition? | |||||
# print('itr is', itr) | # print('itr is', itr) | ||||
G_new_list = [] | G_new_list = [] | ||||
pi_forward_new_list = [] | pi_forward_new_list = [] | ||||
@@ -562,7 +570,7 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||||
# phase 1: initilize. | # phase 1: initilize. | ||||
# compute set-median. | # compute set-median. | ||||
dis_min = np.inf | dis_min = np.inf | ||||
dis_all, pi_all_forward = median_distance(Gn_candidate[::-1], Gn_median) | |||||
dis_all, pi_all_forward = median_distance(Gn_candidate, Gn_median) | |||||
# find all smallest distances. | # find all smallest distances. | ||||
idx_min_list = np.argwhere(dis_all == np.min(dis_all)).flatten().tolist() | idx_min_list = np.argwhere(dis_all == np.min(dis_all)).flatten().tolist() | ||||
dis_min = dis_all[idx_min_list[0]] | dis_min = dis_all[idx_min_list[0]] | ||||
@@ -580,24 +588,27 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||||
G_list, _ = remove_duplicates(G_list) | G_list, _ = remove_duplicates(G_list) | ||||
if connected == True: | if connected == True: | ||||
G_list, _ = remove_disconnected(G_list) | |||||
G_list_con, _ = remove_disconnected(G_list) | |||||
# if there is no connected graphs at all, then remain the disconnected ones. | |||||
if len(G_list_con) > 0: # @todo: ?????????????????????????? | |||||
G_list = G_list_con | |||||
import matplotlib.pyplot as plt | |||||
for g in G_list: | |||||
nx.draw_networkx(g) | |||||
plt.show() | |||||
print(g.nodes(data=True)) | |||||
print(g.edges(data=True)) | |||||
# import matplotlib.pyplot as plt | |||||
# for g in G_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
# get the best median graphs | # get the best median graphs | ||||
dis_all, pi_all_forward = median_distance(G_list, Gn_median) | dis_all, pi_all_forward = median_distance(G_list, Gn_median) | ||||
G_min_list, pi_forward_min_list, dis_min = best_median_graphs( | G_min_list, pi_forward_min_list, dis_min = best_median_graphs( | ||||
G_list, dis_all, pi_all_forward) | G_list, dis_all, pi_all_forward) | ||||
for g in G_min_list: | |||||
nx.draw_networkx(g) | |||||
plt.show() | |||||
print(g.nodes(data=True)) | |||||
print(g.edges(data=True)) | |||||
# for g in G_min_list: | |||||
# nx.draw_networkx(g) | |||||
# plt.show() | |||||
# print(g.nodes(data=True)) | |||||
# print(g.edges(data=True)) | |||||
return G_min_list | return G_min_list | ||||
@@ -9,6 +9,7 @@ pre-image | |||||
import sys | import sys | ||||
import numpy as np | import numpy as np | ||||
import random | |||||
import multiprocessing | import multiprocessing | ||||
from tqdm import tqdm | from tqdm import tqdm | ||||
import networkx as nx | import networkx as nx | ||||
@@ -16,127 +17,190 @@ import matplotlib.pyplot as plt | |||||
sys.path.insert(0, "../") | sys.path.insert(0, "../") | ||||
from pygraph.kernels.marginalizedKernel import marginalizedkernel | |||||
from pygraph.utils.graphfiles import loadDataset | from pygraph.utils.graphfiles import loadDataset | ||||
from pygraph.kernels.marginalizedKernel import marginalizedkernel | |||||
from pygraph.kernels.untilHPathKernel import untilhpathkernel | |||||
from pygraph.kernels.spKernel import spkernel | |||||
import functools | |||||
from pygraph.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||||
from pygraph.kernels.structuralspKernel import structuralspkernel | |||||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat', | |||||
'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb | |||||
DN, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
DN = DN[0:10] | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 10 # recursions | |||||
l = 500 | |||||
alpha_range = np.linspace(0.1, 0.9, 9) | |||||
k = 5 # k nearest neighbors | |||||
# randomly select two molecules | |||||
np.random.seed(1) | |||||
idx1, idx2 = np.random.randint(0, len(DN), 2) | |||||
g1 = DN[idx1] | |||||
g2 = DN[idx2] | |||||
def compute_kernel(Gn, graph_kernel, verbose): | |||||
if graph_kernel == 'marginalizedkernel': | |||||
Kmatrix, _ = marginalizedkernel(Gn, node_label='atom', edge_label=None, | |||||
p_quit=0.03, n_iteration=20, remove_totters=False, | |||||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||||
elif graph_kernel == 'untilhpathkernel': | |||||
Kmatrix, _ = untilhpathkernel(Gn, node_label='atom', edge_label='bond_type', | |||||
depth=10, k_func='MinMax', compute_method='trie', | |||||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||||
elif graph_kernel == 'spkernel': | |||||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
Kmatrix, _, _ = spkernel(Gn, node_label='atom', node_kernels= | |||||
{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}, | |||||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||||
elif graph_kernel == 'structuralspkernel': | |||||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
Kmatrix, _ = structuralspkernel(Gn, node_label='atom', node_kernels= | |||||
{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}, | |||||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||||
# normalization | |||||
# Kmatrix_diag = Kmatrix.diagonal().copy() | |||||
# for i in range(len(Kmatrix)): | |||||
# for j in range(i, len(Kmatrix)): | |||||
# Kmatrix[i][j] /= np.sqrt(Kmatrix_diag[i] * Kmatrix_diag[j]) | |||||
# Kmatrix[j][i] = Kmatrix[i][j] | |||||
return Kmatrix | |||||
# compute | |||||
k_list = [] # kernel between each graph and itself. | |||||
k_g1_list = [] # kernel between each graph and g1 | |||||
k_g2_list = [] # kernel between each graph and g2 | |||||
for ig, g in tqdm(enumerate(DN), desc='computing self kernels', file=sys.stdout): | |||||
ktemp = marginalizedkernel([g, g1, g2], node_label='atom', edge_label=None, | |||||
p_quit=lmbda, n_iteration=20, remove_totters=False, | |||||
n_jobs=multiprocessing.cpu_count(), verbose=False) | |||||
k_list.append(ktemp[0][0, 0]) | |||||
k_g1_list.append(ktemp[0][0, 1]) | |||||
k_g2_list.append(ktemp[0][0, 2]) | |||||
g_best = [] | |||||
dis_best = [] | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('alpha =', alpha) | |||||
# compute k nearest neighbors of phi in DN. | |||||
dis_list = [] # distance between g_star and each graph. | |||||
for ig, g in tqdm(enumerate(DN), desc='computing distances', file=sys.stdout): | |||||
dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||||
k_g2_list[ig]) + (alpha * alpha * k_list[idx1] + alpha * | |||||
(1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||||
k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||||
dis_list.append(dtemp) | |||||
if __name__ == '__main__': | |||||
# sort | |||||
sort_idx = np.argsort(dis_list) | |||||
dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] | |||||
g0hat = DN[sort_idx[0]] # the nearest neighbor of phi in DN | |||||
if dis_gs[0] == 0: # the exact pre-image. | |||||
print('The exact pre-image is found from the input dataset.') | |||||
g_pimg = g0hat | |||||
break | |||||
dhat = dis_gs[0] # the nearest distance | |||||
Dk = [DN[ig] for ig in sort_idx[0:k]] # the k nearest neighbors | |||||
gihat_list = [] | |||||
# ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||||
# 'extra_params': {}} # node/edge symb | |||||
# ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', | |||||
# 'extra_params': {}} # node nsymb | |||||
# ds = {'name': 'Acyclic', 'dataset': '../datasets/monoterpenoides/trainset_9.ds', | |||||
# 'extra_params': {}} | |||||
ds = {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
'extra_params': {}} # node symb | |||||
i = 1 | |||||
r = 1 | |||||
while r < r_max: | |||||
print('r =', r) | |||||
found = False | |||||
for ig, gs in enumerate(Dk + gihat_list): | |||||
# nx.draw_networkx(gs) | |||||
# plt.show() | |||||
fdgs = int(np.abs(np.ceil(np.log(alpha * dis_gs[ig])))) # @todo ??? | |||||
for trail in tqdm(range(0, l), desc='l loop', file=sys.stdout): | |||||
# add and delete edges. | |||||
gtemp = gs.copy() | |||||
np.random.seed() | |||||
# which edges to change. | |||||
idx_change = np.random.randint(0, nx.number_of_nodes(gs) * | |||||
(nx.number_of_nodes(gs) - 1), fdgs) | |||||
for item in idx_change: | |||||
node1 = int(item / (nx.number_of_nodes(gs) - 1)) | |||||
node2 = (item - node1 * (nx.number_of_nodes(gs) - 1)) | |||||
if node2 >= node1: | |||||
node2 += 1 | |||||
# @todo: is the randomness correct? | |||||
if not gtemp.has_edge(node1, node2): | |||||
gtemp.add_edges_from([(node1, node2, {'bond_type': 0})]) | |||||
# nx.draw_networkx(gs) | |||||
# plt.show() | |||||
# nx.draw_networkx(gtemp) | |||||
# plt.show() | |||||
else: | |||||
gtemp.remove_edge(node1, node2) | |||||
# nx.draw_networkx(gs) | |||||
# plt.show() | |||||
# nx.draw_networkx(gtemp) | |||||
# plt.show() | |||||
# nx.draw_networkx(gtemp) | |||||
# plt.show() | |||||
# compute distance between phi and the new generated graph. | |||||
knew = marginalizedkernel([gtemp, g1, g2], node_label='atom', edge_label=None, | |||||
p_quit=lmbda, n_iteration=20, remove_totters=False, | |||||
n_jobs=multiprocessing.cpu_count(), verbose=False) | |||||
dnew = knew[0][0, 0] - 2 * (alpha * knew[0][0, 1] + (1 - alpha) * | |||||
knew[0][0, 2]) + (alpha * alpha * k_list[idx1] + alpha * | |||||
(1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||||
k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||||
if dnew <= dhat: # the new distance is smaller | |||||
print('I am smaller!') | |||||
dhat = dnew | |||||
gnew = gtemp.copy() | |||||
found = True # found better graph. | |||||
r = 0 | |||||
if found: | |||||
gihat_list = [gnew] | |||||
dis_gs.append(dhat) | |||||
else: | |||||
r += 1 | |||||
dis_best.append(dhat) | |||||
g_best += ([g0hat] if len(gihat_list) == 0 else gihat_list) | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', dis_best[idx]) | |||||
print('the corresponding pre-image is') | |||||
nx.draw_networkx(g_best[idx]) | |||||
plt.show() | |||||
DN, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||||
#DN = DN[0:10] | |||||
lmbda = 0.03 # termination probalility | |||||
r_max = 10 # recursions | |||||
l = 500 | |||||
alpha_range = np.linspace(0.5, 0.5, 1) | |||||
#alpha_range = np.linspace(0.1, 0.9, 9) | |||||
k = 5 # k nearest neighbors | |||||
# randomly select two molecules | |||||
#np.random.seed(1) | |||||
#idx1, idx2 = np.random.randint(0, len(DN), 2) | |||||
#g1 = DN[idx1] | |||||
#g2 = DN[idx2] | |||||
idx1 = 0 | |||||
idx2 = 6 | |||||
g1 = DN[idx1] | |||||
g2 = DN[idx2] | |||||
# compute | |||||
k_list = [] # kernel between each graph and itself. | |||||
k_g1_list = [] # kernel between each graph and g1 | |||||
k_g2_list = [] # kernel between each graph and g2 | |||||
for ig, g in tqdm(enumerate(DN), desc='computing self kernels', file=sys.stdout): | |||||
# ktemp = marginalizedkernel([g, g1, g2], node_label='atom', edge_label=None, | |||||
# p_quit=lmbda, n_iteration=20, remove_totters=False, | |||||
# n_jobs=multiprocessing.cpu_count(), verbose=False) | |||||
ktemp = compute_kernel([g, g1, g2], 'untilhpathkernel', verbose=False) | |||||
k_list.append(ktemp[0, 0]) | |||||
k_g1_list.append(ktemp[0, 1]) | |||||
k_g2_list.append(ktemp[0, 2]) | |||||
g_best = [] | |||||
dis_best = [] | |||||
# for each alpha | |||||
for alpha in alpha_range: | |||||
print('alpha =', alpha) | |||||
# compute k nearest neighbors of phi in DN. | |||||
dis_list = [] # distance between g_star and each graph. | |||||
for ig, g in tqdm(enumerate(DN), desc='computing distances', file=sys.stdout): | |||||
dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||||
k_g2_list[ig]) + (alpha * alpha * k_list[idx1] + alpha * | |||||
(1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||||
k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||||
dis_list.append(np.sqrt(dtemp)) | |||||
# sort | |||||
sort_idx = np.argsort(dis_list) | |||||
dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] | |||||
g0hat = DN[sort_idx[0]] # the nearest neighbor of phi in DN | |||||
if dis_gs[0] == 0: # the exact pre-image. | |||||
print('The exact pre-image is found from the input dataset.') | |||||
g_pimg = g0hat | |||||
break | |||||
dhat = dis_gs[0] # the nearest distance | |||||
Dk = [DN[ig] for ig in sort_idx[0:k]] # the k nearest neighbors | |||||
gihat_list = [] | |||||
i = 1 | |||||
r = 1 | |||||
while r < r_max: | |||||
print('r =', r) | |||||
found = False | |||||
for ig, gs in enumerate(Dk + gihat_list): | |||||
# nx.draw_networkx(gs) | |||||
# plt.show() | |||||
# @todo what if the log is negetive? | |||||
fdgs = int(np.abs(np.ceil(np.log(alpha * dis_gs[ig])))) | |||||
for trail in tqdm(range(0, l), desc='l loop', file=sys.stdout): | |||||
# add and delete edges. | |||||
gtemp = gs.copy() | |||||
np.random.seed() | |||||
# which edges to change. | |||||
# @todo: should we use just half of the adjacency matrix for undirected graphs? | |||||
nb_vpairs = nx.number_of_nodes(gs) * (nx.number_of_nodes(gs) - 1) | |||||
# @todo: what if fdgs is bigger than nb_vpairs? | |||||
idx_change = random.sample(range(nb_vpairs), fdgs if fdgs < nb_vpairs else nb_vpairs) | |||||
# idx_change = np.random.randint(0, nx.number_of_nodes(gs) * | |||||
# (nx.number_of_nodes(gs) - 1), fdgs) | |||||
for item in idx_change: | |||||
node1 = int(item / (nx.number_of_nodes(gs) - 1)) | |||||
node2 = (item - node1 * (nx.number_of_nodes(gs) - 1)) | |||||
if node2 >= node1: # skip the self pair. | |||||
node2 += 1 | |||||
# @todo: is the randomness correct? | |||||
if not gtemp.has_edge(node1, node2): | |||||
# @todo: how to update the bond_type? 0 or 1? | |||||
gtemp.add_edges_from([(node1, node2, {'bond_type': 1})]) | |||||
# nx.draw_networkx(gs) | |||||
# plt.show() | |||||
# nx.draw_networkx(gtemp) | |||||
# plt.show() | |||||
else: | |||||
gtemp.remove_edge(node1, node2) | |||||
# nx.draw_networkx(gs) | |||||
# plt.show() | |||||
# nx.draw_networkx(gtemp) | |||||
# plt.show() | |||||
# nx.draw_networkx(gtemp) | |||||
# plt.show() | |||||
# compute distance between phi and the new generated graph. | |||||
# knew = marginalizedkernel([gtemp, g1, g2], node_label='atom', edge_label=None, | |||||
# p_quit=lmbda, n_iteration=20, remove_totters=False, | |||||
# n_jobs=multiprocessing.cpu_count(), verbose=False) | |||||
knew = compute_kernel([gtemp, g1, g2], 'untilhpathkernel', verbose=False) | |||||
dnew = np.sqrt(knew[0, 0] - 2 * (alpha * knew[0, 1] + (1 - alpha) * | |||||
knew[0, 2]) + (alpha * alpha * k_list[idx1] + alpha * | |||||
(1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||||
k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2])) | |||||
if dnew < dhat: # @todo: the new distance is smaller or also equal? | |||||
print('I am smaller!') | |||||
print(dhat, '->', dnew) | |||||
nx.draw_networkx(gtemp) | |||||
plt.show() | |||||
print(gtemp.nodes(data=True)) | |||||
print(gtemp.edges(data=True)) | |||||
dhat = dnew | |||||
gnew = gtemp.copy() | |||||
found = True # found better graph. | |||||
r = 0 | |||||
elif dnew == dhat: | |||||
print('I am equal!') | |||||
if found: | |||||
gihat_list = [gnew] | |||||
dis_gs.append(dhat) | |||||
else: | |||||
r += 1 | |||||
dis_best.append(dhat) | |||||
g_best += ([g0hat] if len(gihat_list) == 0 else gihat_list) | |||||
for idx, item in enumerate(alpha_range): | |||||
print('when alpha is', item, 'the shortest distance is', dis_best[idx]) | |||||
print('the corresponding pre-image is') | |||||
nx.draw_networkx(g_best[idx]) | |||||
plt.show() |
@@ -24,6 +24,7 @@ def treeletkernel(*args, | |||||
sub_kernel, | sub_kernel, | ||||
node_label='atom', | node_label='atom', | ||||
edge_label='bond_type', | edge_label='bond_type', | ||||
parallel='imap_unordered', | |||||
n_jobs=None, | n_jobs=None, | ||||
verbose=True): | verbose=True): | ||||
"""Calculate treelet graph kernels between graphs. | """Calculate treelet graph kernels between graphs. | ||||
@@ -70,34 +71,55 @@ def treeletkernel(*args, | |||||
start_time = time.time() | start_time = time.time() | ||||
# ---- use pool.imap_unordered to parallel and track progress. ---- | # ---- use pool.imap_unordered to parallel and track progress. ---- | ||||
# get all canonical keys of all graphs before calculating kernels to save | |||||
# time, but this may cost a lot of memory for large dataset. | |||||
pool = Pool(n_jobs) | |||||
itr = zip(Gn, range(0, len(Gn))) | |||||
if len(Gn) < 100 * n_jobs: | |||||
chunksize = int(len(Gn) / n_jobs) + 1 | |||||
else: | |||||
chunksize = 100 | |||||
canonkeys = [[] for _ in range(len(Gn))] | |||||
get_partial = partial(wrapper_get_canonkeys, node_label, edge_label, | |||||
labeled, ds_attrs['is_directed']) | |||||
if verbose: | |||||
iterator = tqdm(pool.imap_unordered(get_partial, itr, chunksize), | |||||
desc='getting canonkeys', file=sys.stdout) | |||||
if parallel == 'imap_unordered': | |||||
# get all canonical keys of all graphs before calculating kernels to save | |||||
# time, but this may cost a lot of memory for large dataset. | |||||
pool = Pool(n_jobs) | |||||
itr = zip(Gn, range(0, len(Gn))) | |||||
if len(Gn) < 100 * n_jobs: | |||||
chunksize = int(len(Gn) / n_jobs) + 1 | |||||
else: | |||||
chunksize = 100 | |||||
canonkeys = [[] for _ in range(len(Gn))] | |||||
get_partial = partial(wrapper_get_canonkeys, node_label, edge_label, | |||||
labeled, ds_attrs['is_directed']) | |||||
if verbose: | |||||
iterator = tqdm(pool.imap_unordered(get_partial, itr, chunksize), | |||||
desc='getting canonkeys', file=sys.stdout) | |||||
else: | |||||
iterator = pool.imap_unordered(get_partial, itr, chunksize) | |||||
for i, ck in iterator: | |||||
canonkeys[i] = ck | |||||
pool.close() | |||||
pool.join() | |||||
# compute kernels. | |||||
def init_worker(canonkeys_toshare): | |||||
global G_canonkeys | |||||
G_canonkeys = canonkeys_toshare | |||||
do_partial = partial(wrapper_treeletkernel_do, sub_kernel) | |||||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||||
glbv=(canonkeys,), n_jobs=n_jobs, verbose=verbose) | |||||
# ---- do not use parallelization. ---- | |||||
elif parallel == None: | |||||
# get all canonical keys of all graphs before calculating kernels to save | |||||
# time, but this may cost a lot of memory for large dataset. | |||||
canonkeys = [] | |||||
for g in (tqdm(Gn, desc='getting canonkeys', file=sys.stdout) if verbose else Gn): | |||||
canonkeys.append(get_canonkeys(g, node_label, edge_label, labeled, | |||||
ds_attrs['is_directed'])) | |||||
# compute kernels. | |||||
from itertools import combinations_with_replacement | |||||
itr = combinations_with_replacement(range(0, len(Gn)), 2) | |||||
for i, j in (tqdm(itr, desc='getting canonkeys', file=sys.stdout) if verbose else itr): | |||||
Kmatrix[i][j] = _treeletkernel_do(canonkeys[i], canonkeys[j], sub_kernel) | |||||
Kmatrix[j][i] = Kmatrix[i][j] # @todo: no directed graph considered? | |||||
else: | else: | ||||
iterator = pool.imap_unordered(get_partial, itr, chunksize) | |||||
for i, ck in iterator: | |||||
canonkeys[i] = ck | |||||
pool.close() | |||||
pool.join() | |||||
# compute kernels. | |||||
def init_worker(canonkeys_toshare): | |||||
global G_canonkeys | |||||
G_canonkeys = canonkeys_toshare | |||||
do_partial = partial(wrapper_treeletkernel_do, sub_kernel) | |||||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||||
glbv=(canonkeys,), n_jobs=n_jobs, verbose=verbose) | |||||
raise Exception('No proper parallelization method designated.') | |||||
run_time = time.time() - start_time | run_time = time.time() - start_time | ||||
if verbose: | if verbose: | ||||
@@ -123,8 +145,7 @@ def _treeletkernel_do(canonkey1, canonkey2, sub_kernel): | |||||
keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs | keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs | ||||
vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys]) | vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys]) | ||||
vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys]) | vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys]) | ||||
kernel = np.sum(np.exp(-np.square(vector1 - vector2) / 2)) | |||||
# kernel = sub_kernel(vector1, vector2) | |||||
kernel = sub_kernel(vector1, vector2) | |||||
return kernel | return kernel | ||||
@@ -266,7 +287,7 @@ def get_canonkeys(G, node_label, edge_label, labeled, is_directed): | |||||
# linear patterns | # linear patterns | ||||
canonkey_t = Counter(list(nx.get_node_attributes(G, node_label).values())) | canonkey_t = Counter(list(nx.get_node_attributes(G, node_label).values())) | ||||
for key in canonkey_t: | for key in canonkey_t: | ||||
canonkey_l['0' + key] = canonkey_t[key] | |||||
canonkey_l[('0', key)] = canonkey_t[key] | |||||
for i in range(1, 6): # for i in range(1, 6): | for i in range(1, 6): # for i in range(1, 6): | ||||
treelet = [] | treelet = [] | ||||
@@ -274,93 +295,111 @@ def get_canonkeys(G, node_label, edge_label, labeled, is_directed): | |||||
canonlist = list(chain.from_iterable((G.node[node][node_label], \ | canonlist = list(chain.from_iterable((G.node[node][node_label], \ | ||||
G[node][pattern[idx+1]][edge_label]) for idx, node in enumerate(pattern[:-1]))) | G[node][pattern[idx+1]][edge_label]) for idx, node in enumerate(pattern[:-1]))) | ||||
canonlist.append(G.node[pattern[-1]][node_label]) | canonlist.append(G.node[pattern[-1]][node_label]) | ||||
canonkey_t = ''.join(canonlist) | |||||
canonkey_t = canonkey_t if canonkey_t < canonkey_t[::-1] else canonkey_t[::-1] | |||||
treelet.append(str(i) + canonkey_t) | |||||
canonkey_t = canonlist if canonlist < canonlist[::-1] else canonlist[::-1] | |||||
treelet.append(tuple([str(i)] + canonkey_t)) | |||||
canonkey_l.update(Counter(treelet)) | canonkey_l.update(Counter(treelet)) | ||||
# n-star patterns | # n-star patterns | ||||
for i in range(3, 6): | for i in range(3, 6): | ||||
treelet = [] | treelet = [] | ||||
for pattern in patterns[str(i) + 'star']: | for pattern in patterns[str(i) + 'star']: | ||||
canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:] ] | |||||
canonlist = [tuple((G.node[leaf][node_label], | |||||
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:]] | |||||
canonlist.sort() | canonlist.sort() | ||||
canonkey_t = ('d' if i == 5 else str(i * 2)) + G.node[pattern[0]][node_label] + ''.join(canonlist) | |||||
canonlist = list(chain.from_iterable(canonlist)) | |||||
canonkey_t = tuple(['d' if i == 5 else str(i * 2)] + | |||||
[G.node[pattern[0]][node_label]] + canonlist) | |||||
treelet.append(canonkey_t) | treelet.append(canonkey_t) | ||||
canonkey_l.update(Counter(treelet)) | canonkey_l.update(Counter(treelet)) | ||||
# pattern 7 | # pattern 7 | ||||
treelet = [] | treelet = [] | ||||
for pattern in patterns['7']: | for pattern in patterns['7']: | ||||
canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ] | |||||
canonlist = [tuple((G.node[leaf][node_label], | |||||
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]] | |||||
canonlist.sort() | canonlist.sort() | ||||
canonkey_t = '7' + G.node[pattern[0]][node_label] + ''.join(canonlist) \ | |||||
+ G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] \ | |||||
+ G.node[pattern[4]][node_label] + G[pattern[4]][pattern[3]][edge_label] | |||||
canonlist = list(chain.from_iterable(canonlist)) | |||||
canonkey_t = tuple(['7'] + [G.node[pattern[0]][node_label]] + canonlist | |||||
+ [G.node[pattern[3]][node_label]] | |||||
+ [G[pattern[3]][pattern[0]][edge_label]] | |||||
+ [G.node[pattern[4]][node_label]] | |||||
+ [G[pattern[4]][pattern[3]][edge_label]]) | |||||
treelet.append(canonkey_t) | treelet.append(canonkey_t) | ||||
canonkey_l.update(Counter(treelet)) | canonkey_l.update(Counter(treelet)) | ||||
# pattern 11 | # pattern 11 | ||||
treelet = [] | treelet = [] | ||||
for pattern in patterns['11']: | for pattern in patterns['11']: | ||||
canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:4] ] | |||||
canonlist = [tuple((G.node[leaf][node_label], | |||||
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:4]] | |||||
canonlist.sort() | canonlist.sort() | ||||
canonkey_t = 'b' + G.node[pattern[0]][node_label] + ''.join(canonlist) \ | |||||
+ G.node[pattern[4]][node_label] + G[pattern[4]][pattern[0]][edge_label] \ | |||||
+ G.node[pattern[5]][node_label] + G[pattern[5]][pattern[4]][edge_label] | |||||
canonlist = list(chain.from_iterable(canonlist)) | |||||
canonkey_t = tuple(['b'] + [G.node[pattern[0]][node_label]] + canonlist | |||||
+ [G.node[pattern[4]][node_label]] | |||||
+ [G[pattern[4]][pattern[0]][edge_label]] | |||||
+ [G.node[pattern[5]][node_label]] | |||||
+ [G[pattern[5]][pattern[4]][edge_label]]) | |||||
treelet.append(canonkey_t) | treelet.append(canonkey_t) | ||||
canonkey_l.update(Counter(treelet)) | canonkey_l.update(Counter(treelet)) | ||||
# pattern 10 | # pattern 10 | ||||
treelet = [] | treelet = [] | ||||
for pattern in patterns['10']: | for pattern in patterns['10']: | ||||
canonkey4 = G.node[pattern[5]][node_label] + G[pattern[5]][pattern[4]][edge_label] | |||||
canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ] | |||||
canonkey4 = [G.node[pattern[5]][node_label], G[pattern[5]][pattern[4]][edge_label]] | |||||
canonlist = [tuple((G.node[leaf][node_label], | |||||
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]] | |||||
canonlist.sort() | canonlist.sort() | ||||
canonkey0 = ''.join(canonlist) | |||||
canonkey_t = 'a' + G.node[pattern[3]][node_label] \ | |||||
+ G.node[pattern[4]][node_label] + G[pattern[4]][pattern[3]][edge_label] \ | |||||
+ G.node[pattern[0]][node_label] + G[pattern[0]][pattern[3]][edge_label] \ | |||||
+ canonkey4 + canonkey0 | |||||
canonkey0 = list(chain.from_iterable(canonlist)) | |||||
canonkey_t = tuple(['a'] + [G.node[pattern[3]][node_label]] | |||||
+ [G.node[pattern[4]][node_label]] | |||||
+ [G[pattern[4]][pattern[3]][edge_label]] | |||||
+ [G.node[pattern[0]][node_label]] | |||||
+ [G[pattern[0]][pattern[3]][edge_label]] | |||||
+ canonkey4 + canonkey0) | |||||
treelet.append(canonkey_t) | treelet.append(canonkey_t) | ||||
canonkey_l.update(Counter(treelet)) | canonkey_l.update(Counter(treelet)) | ||||
# pattern 12 | # pattern 12 | ||||
treelet = [] | treelet = [] | ||||
for pattern in patterns['12']: | for pattern in patterns['12']: | ||||
canonlist0 = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ] | |||||
canonlist0 = [tuple((G.node[leaf][node_label], | |||||
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]] | |||||
canonlist0.sort() | canonlist0.sort() | ||||
canonlist3 = [ G.node[leaf][node_label] + G[leaf][pattern[3]][edge_label] for leaf in pattern[4:6] ] | |||||
canonlist0 = list(chain.from_iterable(canonlist0)) | |||||
canonlist3 = [tuple((G.node[leaf][node_label], | |||||
G[leaf][pattern[3]][edge_label])) for leaf in pattern[4:6]] | |||||
canonlist3.sort() | canonlist3.sort() | ||||
canonlist3 = list(chain.from_iterable(canonlist3)) | |||||
# 2 possible key can be generated from 2 nodes with extended label 3, select the one with lower lexicographic order. | |||||
canonkey_t1 = 'c' + G.node[pattern[0]][node_label] \ | |||||
+ ''.join(canonlist0) \ | |||||
+ G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] \ | |||||
+ ''.join(canonlist3) | |||||
canonkey_t2 = 'c' + G.node[pattern[3]][node_label] \ | |||||
+ ''.join(canonlist3) \ | |||||
+ G.node[pattern[0]][node_label] + G[pattern[0]][pattern[3]][edge_label] \ | |||||
+ ''.join(canonlist0) | |||||
# 2 possible key can be generated from 2 nodes with extended label 3, | |||||
# select the one with lower lexicographic order. | |||||
canonkey_t1 = tuple(['c'] + [G.node[pattern[0]][node_label]] + canonlist0 | |||||
+ [G.node[pattern[3]][node_label]] | |||||
+ [G[pattern[3]][pattern[0]][edge_label]] | |||||
+ canonlist3) | |||||
canonkey_t2 = tuple(['c'] + [G.node[pattern[3]][node_label]] + canonlist3 | |||||
+ [G.node[pattern[0]][node_label]] | |||||
+ [G[pattern[0]][pattern[3]][edge_label]] | |||||
+ canonlist0) | |||||
treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2) | treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2) | ||||
canonkey_l.update(Counter(treelet)) | canonkey_l.update(Counter(treelet)) | ||||
# pattern 9 | # pattern 9 | ||||
treelet = [] | treelet = [] | ||||
for pattern in patterns['9']: | for pattern in patterns['9']: | ||||
canonkey2 = G.node[pattern[4]][node_label] + G[pattern[4]][pattern[2]][edge_label] | |||||
canonkey3 = G.node[pattern[5]][node_label] + G[pattern[5]][pattern[3]][edge_label] | |||||
prekey2 = G.node[pattern[2]][node_label] + G[pattern[2]][pattern[0]][edge_label] | |||||
prekey3 = G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] | |||||
canonkey2 = [G.node[pattern[4]][node_label], G[pattern[4]][pattern[2]][edge_label]] | |||||
canonkey3 = [G.node[pattern[5]][node_label], G[pattern[5]][pattern[3]][edge_label]] | |||||
prekey2 = [G.node[pattern[2]][node_label], G[pattern[2]][pattern[0]][edge_label]] | |||||
prekey3 = [G.node[pattern[3]][node_label], G[pattern[3]][pattern[0]][edge_label]] | |||||
if prekey2 + canonkey2 < prekey3 + canonkey3: | if prekey2 + canonkey2 < prekey3 + canonkey3: | ||||
canonkey_t = G.node[pattern[1]][node_label] + G[pattern[1]][pattern[0]][edge_label] \ | |||||
+ prekey2 + prekey3 + canonkey2 + canonkey3 | |||||
canonkey_t = [G.node[pattern[1]][node_label]] \ | |||||
+ [G[pattern[1]][pattern[0]][edge_label]] \ | |||||
+ prekey2 + prekey3 + canonkey2 + canonkey3 | |||||
else: | else: | ||||
canonkey_t = G.node[pattern[1]][node_label] + G[pattern[1]][pattern[0]][edge_label] \ | |||||
+ prekey3 + prekey2 + canonkey3 + canonkey2 | |||||
treelet.append('9' + G.node[pattern[0]][node_label] + canonkey_t) | |||||
canonkey_t = [G.node[pattern[1]][node_label]] \ | |||||
+ [G[pattern[1]][pattern[0]][edge_label]] \ | |||||
+ prekey3 + prekey2 + canonkey3 + canonkey2 | |||||
treelet.append(tuple(['9'] + [G.node[pattern[0]][node_label]] + canonkey_t)) | |||||
canonkey_l.update(Counter(treelet)) | canonkey_l.update(Counter(treelet)) | ||||
return canonkey_l | return canonkey_l | ||||
@@ -84,7 +84,7 @@ def loadGXL(filename): | |||||
return g | return g | ||||
def saveGXL(graph, filename, method='gedlib'): | |||||
def saveGXL(graph, filename, method='gedlib-letter'): | |||||
if method == 'benoit': | if method == 'benoit': | ||||
import xml.etree.ElementTree as ET | import xml.etree.ElementTree as ET | ||||
root_node = ET.Element('gxl') | root_node = ET.Element('gxl') | ||||
@@ -142,6 +142,24 @@ def saveGXL(graph, filename, method='gedlib'): | |||||
gxl_file.write("</graph>\n") | gxl_file.write("</graph>\n") | ||||
gxl_file.write("</gxl>\n") | gxl_file.write("</gxl>\n") | ||||
gxl_file.close() | gxl_file.close() | ||||
elif method == 'gedlib-letter': | |||||
# reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22 | |||||
# and https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/Letter/HIGH/AP1_0000.gxl | |||||
gxl_file = open(filename, 'w') | |||||
gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n") | |||||
gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n") | |||||
gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n") | |||||
gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"false\" edgemode=\"undirected\">") | |||||
for v, attrs in graph.nodes(data=True): | |||||
gxl_file.write("<node id=\"_" + str(v) + "\">") | |||||
gxl_file.write("<attr name=\"x\"><float>" + str(attrs['attributes'][0]) + "</float></attr>") | |||||
gxl_file.write("<attr name=\"y\"><float>" + str(attrs['attributes'][1]) + "</float></attr>") | |||||
gxl_file.write("</node>") | |||||
for v1, v2, attrs in graph.edges(data=True): | |||||
gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\"/>") | |||||
gxl_file.write("</graph>") | |||||
gxl_file.write("</gxl>") | |||||
gxl_file.close() | |||||
def loadSDF(filename): | def loadSDF(filename): | ||||
@@ -227,9 +227,9 @@ def model_selection_for_precomputed_kernel(datafile, | |||||
str_fw += '\nall gram matrices are ignored, no results obtained.\n\n' | str_fw += '\nall gram matrices are ignored, no results obtained.\n\n' | ||||
else: | else: | ||||
# save gram matrices to file. | # save gram matrices to file. | ||||
np.savez(results_dir + '/' + ds_name + '.gm', | |||||
gms=gram_matrices, params=param_list_pre_revised, y=y, | |||||
gmtime=gram_matrix_time) | |||||
# np.savez(results_dir + '/' + ds_name + '.gm', | |||||
# gms=gram_matrices, params=param_list_pre_revised, y=y, | |||||
# gmtime=gram_matrix_time) | |||||
if verbose: | if verbose: | ||||
print( | print( | ||||
'3. Fitting and predicting using nested cross validation. This could really take a while...' | '3. Fitting and predicting using nested cross validation. This could really take a while...' | ||||