2. modify the treelet kernel, use tuples to store canonkeys instead of strings in case that some labels strings contain more than 1 character.v0.1
@@ -9,6 +9,10 @@ datasets/* | |||
!datasets/MUTAG/ | |||
!datasets/Letter-med/ | |||
!datasets/ENZYMES_txt/ | |||
!datasets/DD/ | |||
!datasets/NCI1/ | |||
!datasets/NCI109/ | |||
!datasets/AIDS/ | |||
notebooks/results/* | |||
notebooks/check_gm/* | |||
notebooks/test_parallel/* | |||
@@ -12,22 +12,25 @@ import multiprocessing | |||
from pygraph.kernels.commonWalkKernel import commonwalkkernel | |||
dslist = [ | |||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
'task': 'regression'}, # node symb | |||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# contains single node graph, node symb | |||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# node nsymb | |||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# node symb/nsymb | |||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
# 'task': 'regression'}, # node symb | |||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# # contains single node graph, node symb | |||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# # node nsymb | |||
# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# # node symb/nsymb | |||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||
{'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# | |||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | |||
# # node/edge symb | |||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | |||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | |||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | |||
@@ -41,11 +44,6 @@ dslist = [ | |||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | |||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | |||
@@ -56,10 +54,12 @@ dslist = [ | |||
# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | |||
] | |||
estimator = commonwalkkernel | |||
#param_grid_precomputed = [{'compute_method': ['geo'], | |||
# 'weight': np.linspace(0.01, 0.15, 15)}, | |||
## 'weight': np.logspace(-1, -10, num=10, base=10)}, | |||
# {'compute_method': ['exp'], 'weight': range(0, 15)}] | |||
param_grid_precomputed = [{'compute_method': ['geo'], | |||
'weight': np.linspace(0.01, 0.15, 15)}, | |||
# 'weight': np.logspace(-1, -10, num=10, base=10)}, | |||
{'compute_method': ['exp'], 'weight': range(0, 15)}] | |||
'weight': np.linspace(0.01, 0.15, 15)}] | |||
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | |||
{'alpha': np.logspace(-10, 10, num=41, base=10)}] | |||
@@ -12,22 +12,25 @@ import multiprocessing | |||
from pygraph.kernels.marginalizedKernel import marginalizedkernel | |||
dslist = [ | |||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
'task': 'regression'}, # node symb | |||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# contains single node graph, node symb | |||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# node nsymb | |||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# node symb/nsymb | |||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
# 'task': 'regression'}, # node symb | |||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# # contains single node graph, node symb | |||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# # node nsymb | |||
# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# # node symb/nsymb | |||
# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||
{'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# | |||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | |||
# # node/edge symb | |||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | |||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | |||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | |||
@@ -41,11 +44,6 @@ dslist = [ | |||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | |||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | |||
@@ -59,7 +57,7 @@ estimator = marginalizedkernel | |||
#param_grid_precomputed = {'p_quit': np.linspace(0.1, 0.3, 3), | |||
# 'n_iteration': np.linspace(1, 1, 1), | |||
param_grid_precomputed = {'p_quit': np.linspace(0.1, 0.9, 9), | |||
'n_iteration': np.linspace(1, 19, 7), | |||
'n_iteration': np.linspace(5, 20, 4), | |||
'remove_totters': [False]} | |||
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | |||
{'alpha': np.logspace(-10, 10, num=41, base=10)}] | |||
@@ -17,22 +17,25 @@ import numpy as np | |||
dslist = [ | |||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
'task': 'regression'}, # node symb | |||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# contains single node graph, node symb | |||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# node nsymb | |||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# node symb/nsymb | |||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
# 'task': 'regression'}, # node symb | |||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# # contains single node graph, node symb | |||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# # node symb/nsymb | |||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||
{'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# # node nsymb | |||
# | |||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | |||
# # node/edge symb | |||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | |||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | |||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | |||
@@ -40,22 +43,17 @@ dslist = [ | |||
# | |||
# # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb | |||
# {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb, missing values | |||
# {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb, missing values | |||
# # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb | |||
# # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb | |||
# # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb | |||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | |||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | |||
# # not working below | |||
# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, | |||
# # not working below | |||
# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, | |||
# {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',}, | |||
# {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',}, | |||
# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | |||
@@ -63,12 +61,25 @@ dslist = [ | |||
estimator = randomwalkkernel | |||
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | |||
{'alpha': np.logspace(-10, 10, num=41, base=10)}] | |||
gaussiankernel = functools.partial(gaussiankernel, gamma=0.5) | |||
## for non-symbolic labels. | |||
#gkernels = [functools.partial(gaussiankernel, gamma=1 / ga) | |||
# for ga in np.logspace(0, 10, num=11, base=10)] | |||
#mixkernels = [functools.partial(kernelproduct, deltakernel, gk) for gk in gkernels] | |||
#sub_kernels = [{'symb': deltakernel, 'nsymb': gkernels[i], 'mix': mixkernels[i]} | |||
# for i in range(len(gkernels))] | |||
# for symbolic labels only. | |||
#gaussiankernel = functools.partial(gaussiankernel, gamma=0.5) | |||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
sub_kernels = [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}] | |||
for ds in dslist: | |||
print() | |||
print(ds['name']) | |||
for compute_method in ['sylvester', 'conjugate', 'fp', 'spectral']: | |||
# for compute_method in ['sylvester', 'conjugate', 'fp', 'spectral']: | |||
for compute_method in ['conjugate', 'fp']: | |||
if compute_method == 'sylvester': | |||
param_grid_precomputed = {'compute_method': ['sylvester'], | |||
# 'weight': np.linspace(0.01, 0.10, 10)} | |||
@@ -76,18 +87,12 @@ for ds in dslist: | |||
elif compute_method == 'conjugate': | |||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
param_grid_precomputed = {'compute_method': ['conjugate'], | |||
'node_kernels': | |||
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||
'edge_kernels': | |||
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||
'node_kernels': sub_kernels, 'edge_kernels': sub_kernels, | |||
'weight': np.logspace(-1, -10, num=10, base=10)} | |||
elif compute_method == 'fp': | |||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
param_grid_precomputed = {'compute_method': ['fp'], | |||
'node_kernels': | |||
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||
'edge_kernels': | |||
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||
'node_kernels': sub_kernels, 'edge_kernels': sub_kernels, | |||
'weight': np.logspace(-3, -10, num=8, base=10)} | |||
elif compute_method == 'spectral': | |||
param_grid_precomputed = {'compute_method': ['spectral'], | |||
@@ -8,41 +8,40 @@ from pygraph.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
# datasets | |||
dslist = [ | |||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
'task': 'regression'}, # node symb | |||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# contains single node graph, node symb | |||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
# 'task': 'regression'}, # node symb | |||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# # contains single node graph, node symb | |||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# node nsymb | |||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# node symb/nsymb | |||
{'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# | |||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | |||
# # node/edge symb | |||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# | |||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | |||
# {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | |||
# {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | |||
# {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'}, | |||
# {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb | |||
# {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb | |||
# {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb | |||
# {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb | |||
# {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb | |||
# | |||
# {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | |||
# {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | |||
# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | |||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | |||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | |||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | |||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | |||
# {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'}, | |||
# | |||
# # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb | |||
# # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb | |||
# # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb | |||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | |||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | |||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | |||
# # not working below | |||
# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, | |||
@@ -52,6 +51,7 @@ dslist = [ | |||
] | |||
estimator = spkernel | |||
# hyper-parameters | |||
#gaussiankernel = functools.partial(gaussiankernel, gamma=0.5) | |||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
param_grid_precomputed = {'node_kernels': [ | |||
{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}]} | |||
@@ -14,22 +14,25 @@ from pygraph.kernels.structuralspKernel import structuralspkernel | |||
from pygraph.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
dslist = [ | |||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
'task': 'regression'}, # node symb | |||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# contains single node graph, node symb | |||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# node nsymb | |||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# node symb/nsymb | |||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
# 'task': 'regression'}, # node symb | |||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# # contains single node graph, node symb | |||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# # node nsymb | |||
# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||
# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# # node symb/nsymb | |||
{'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# | |||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | |||
# # node/edge symb | |||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | |||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | |||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | |||
@@ -37,33 +40,37 @@ dslist = [ | |||
# | |||
# # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb | |||
# {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb, missing values | |||
# {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb, missing values | |||
# # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb | |||
# # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb | |||
# # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb | |||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | |||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | |||
# # not working below | |||
# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, | |||
# # not working below | |||
# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, | |||
# {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',}, | |||
# {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',}, | |||
# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | |||
] | |||
estimator = structuralspkernel | |||
## for non-symbolic labels. | |||
#gkernels = [functools.partial(gaussiankernel, gamma=1 / ga) | |||
# for ga in np.logspace(0, 10, num=11, base=10)] | |||
#mixkernels = [functools.partial(kernelproduct, deltakernel, gk) for gk in gkernels] | |||
#sub_kernels = [{'symb': deltakernel, 'nsymb': gkernels[i], 'mix': mixkernels[i]} | |||
# for i in range(len(gkernels))] | |||
# for symbolic labels only. | |||
#gaussiankernel = functools.partial(gaussiankernel, gamma=0.5) | |||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
param_grid_precomputed = {'node_kernels': | |||
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||
'edge_kernels': | |||
[{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}], | |||
'compute_method': ['naive']} | |||
sub_kernels = [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}] | |||
param_grid_precomputed = {'node_kernels': sub_kernels, 'edge_kernels': sub_kernels, | |||
'compute_method': ['naive']} | |||
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | |||
{'alpha': np.logspace(-10, 10, num=41, base=10)}] | |||
@@ -8,27 +8,31 @@ Created on Mon Mar 21 11:19:33 2019 | |||
from libs import * | |||
import multiprocessing | |||
import functools | |||
from pygraph.kernels.treeletKernel import treeletkernel | |||
from pygraph.utils.kernels import gaussiankernel, linearkernel, polynomialkernel | |||
from pygraph.utils.kernels import gaussiankernel, polynomialkernel | |||
dslist = [ | |||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
'task': 'regression'}, # node symb | |||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
# 'task': 'regression'}, # node symb | |||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# contains single node graph, node symb | |||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# # node nsymb | |||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# node symb/nsymb | |||
{'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||
{'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||
{'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# node nsymb | |||
{'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# | |||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | |||
# # node/edge symb | |||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | |||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | |||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | |||
@@ -42,11 +46,6 @@ dslist = [ | |||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | |||
{'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | |||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | |||
@@ -57,7 +56,12 @@ dslist = [ | |||
# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | |||
] | |||
estimator = treeletkernel | |||
param_grid_precomputed = {'sub_kernel': [gaussiankernel, linearkernel, polynomialkernel]} | |||
gkernels = [functools.partial(gaussiankernel, gamma=1 / ga) | |||
# for ga in np.linspace(1, 10, 10)] | |||
for ga in np.logspace(0, 10, num=11, base=10)] | |||
pkernels = [functools.partial(polynomialkernel, d=d, c=c) for d in range(1, 11) | |||
for c in np.logspace(0, 10, num=11, base=10)] | |||
param_grid_precomputed = {'sub_kernel': pkernels + gkernels} | |||
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | |||
{'alpha': np.logspace(-10, 10, num=41, base=10)}] | |||
@@ -12,22 +12,25 @@ import multiprocessing | |||
from pygraph.kernels.untilHPathKernel import untilhpathkernel | |||
dslist = [ | |||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
'task': 'regression'}, # node symb | |||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# contains single node graph, node symb | |||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# node nsymb | |||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# node symb/nsymb | |||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
# 'task': 'regression'}, # node symb | |||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# # contains single node graph, node symb | |||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# # node nsymb | |||
# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# # node symb/nsymb | |||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||
# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
{'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# | |||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | |||
# # node/edge symb | |||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | |||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | |||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | |||
@@ -41,11 +44,6 @@ dslist = [ | |||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | |||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | |||
@@ -57,7 +55,7 @@ dslist = [ | |||
] | |||
estimator = untilhpathkernel | |||
param_grid_precomputed = {'depth': np.linspace(1, 10, 10), # [2], | |||
'k_func': ['MinMax', 'tanimoto'], | |||
'k_func': ['MinMax'], # ['MinMax', 'tanimoto'], | |||
'compute_method': ['trie']} # ['MinMax']} | |||
param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | |||
{'alpha': np.logspace(-10, 10, num=41, base=10)}] | |||
@@ -10,26 +10,29 @@ from libs import * | |||
import multiprocessing | |||
from pygraph.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel | |||
from pygraph.utils.kernels import gaussiankernel, polynomialkernel | |||
dslist = [ | |||
{'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
'task': 'regression'}, # node symb | |||
{'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# contains single node graph, node symb | |||
{'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
{'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
{'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
{'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# node nsymb | |||
{'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# node symb/nsymb | |||
# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
# 'task': 'regression'}, # node symb | |||
# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
# # contains single node graph, node symb | |||
# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
# # node nsymb | |||
# {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
# # node symb/nsymb | |||
# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||
# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||
# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
{'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
# | |||
# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | |||
# # node/edge symb | |||
{'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
# | |||
# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | |||
# # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | |||
# # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | |||
@@ -43,9 +46,6 @@ dslist = [ | |||
# # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | |||
# # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | |||
# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
{'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||
{'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||
# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | |||
# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | |||
@@ -13,7 +13,7 @@ | |||
"text": [ | |||
"\n", | |||
"Acyclic:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
@@ -38,7 +38,7 @@ | |||
"\n", | |||
"\n", | |||
"Alkane:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : False\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
@@ -63,7 +63,7 @@ | |||
"\n", | |||
"\n", | |||
"MAO:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : True\n", | |||
"is_directed : False\n", | |||
@@ -88,7 +88,7 @@ | |||
"\n", | |||
"\n", | |||
"PAH:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : False\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
@@ -113,7 +113,7 @@ | |||
"\n", | |||
"\n", | |||
"MUTAG:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : True\n", | |||
"is_directed : False\n", | |||
@@ -131,14 +131,14 @@ | |||
"min_fill_factor : 0.039540816326530615\n", | |||
"max_fill_factor : 0.1\n", | |||
"node_label_num : 7\n", | |||
"edge_label_num : 11\n", | |||
"edge_label_num : 4\n", | |||
"node_attr_dim : 0\n", | |||
"edge_attr_dim : 0\n", | |||
"class_number : 2\n", | |||
"\n", | |||
"\n", | |||
"Letter-med:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : False\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
@@ -163,7 +163,7 @@ | |||
"\n", | |||
"\n", | |||
"ENZYMES:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
@@ -187,33 +187,8 @@ | |||
"class_number : 6\n", | |||
"\n", | |||
"\n", | |||
"Mutagenicity:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : True\n", | |||
"is_directed : False\n", | |||
"dataset_size : 4337\n", | |||
"ave_node_num : 30.317731150564907\n", | |||
"min_node_num : 4\n", | |||
"max_node_num : 417\n", | |||
"ave_edge_num : 30.76942587041734\n", | |||
"min_edge_num : 3\n", | |||
"max_edge_num : 112\n", | |||
"ave_node_degree : 2.0379886162441148\n", | |||
"min_node_degree : 0.47961630695443647\n", | |||
"max_node_degree : 2.3703703703703702\n", | |||
"ave_fill_factor : 0.0431047931997047\n", | |||
"min_fill_factor : 0.0005750795047415305\n", | |||
"max_fill_factor : 0.1875\n", | |||
"node_label_num : 14\n", | |||
"edge_label_num : 3\n", | |||
"node_attr_dim : 0\n", | |||
"edge_attr_dim : 0\n", | |||
"class_number : 2\n", | |||
"\n", | |||
"\n", | |||
"D&D:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
@@ -237,8 +212,58 @@ | |||
"class_number : 2\n", | |||
"\n", | |||
"\n", | |||
"NCI1:\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
"dataset_size : 4110\n", | |||
"ave_node_num : 29.8654501216545\n", | |||
"min_node_num : 3\n", | |||
"max_node_num : 111\n", | |||
"ave_edge_num : 32.3\n", | |||
"min_edge_num : 2\n", | |||
"max_edge_num : 119\n", | |||
"ave_node_degree : 2.155013792267071\n", | |||
"min_node_degree : 0.8\n", | |||
"max_node_degree : 2.769230769230769\n", | |||
"ave_fill_factor : 0.04239828192835043\n", | |||
"min_fill_factor : 0.009522961908152367\n", | |||
"max_fill_factor : 0.2222222222222222\n", | |||
"node_label_num : 37\n", | |||
"edge_label_num : 0\n", | |||
"node_attr_dim : 0\n", | |||
"edge_attr_dim : 0\n", | |||
"class_number : 2\n", | |||
"\n", | |||
"\n", | |||
"NCI109:\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
"dataset_size : 4127\n", | |||
"ave_node_num : 29.681124303368065\n", | |||
"min_node_num : 4\n", | |||
"max_node_num : 111\n", | |||
"ave_edge_num : 32.13084565059365\n", | |||
"min_edge_num : 3\n", | |||
"max_edge_num : 119\n", | |||
"ave_node_degree : 2.156446168619097\n", | |||
"min_node_degree : 1.0909090909090908\n", | |||
"max_node_degree : 2.769230769230769\n", | |||
"ave_fill_factor : 0.04263668408405519\n", | |||
"min_fill_factor : 0.009522961908152367\n", | |||
"max_fill_factor : 0.1875\n", | |||
"node_label_num : 38\n", | |||
"edge_label_num : 0\n", | |||
"node_attr_dim : 0\n", | |||
"edge_attr_dim : 0\n", | |||
"class_number : 2\n", | |||
"\n", | |||
"\n", | |||
"AIDS:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : True\n", | |||
"is_directed : False\n", | |||
@@ -262,6 +287,31 @@ | |||
"class_number : 2\n", | |||
"\n", | |||
"\n", | |||
"Mutagenicity:\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : True\n", | |||
"is_directed : False\n", | |||
"dataset_size : 4337\n", | |||
"ave_node_num : 30.317731150564907\n", | |||
"min_node_num : 4\n", | |||
"max_node_num : 417\n", | |||
"ave_edge_num : 30.76942587041734\n", | |||
"min_edge_num : 3\n", | |||
"max_edge_num : 112\n", | |||
"ave_node_degree : 2.0379886162441148\n", | |||
"min_node_degree : 0.47961630695443647\n", | |||
"max_node_degree : 2.3703703703703702\n", | |||
"ave_fill_factor : 0.0431047931997047\n", | |||
"min_fill_factor : 0.0005750795047415305\n", | |||
"max_fill_factor : 0.1875\n", | |||
"node_label_num : 14\n", | |||
"edge_label_num : 3\n", | |||
"node_attr_dim : 0\n", | |||
"edge_attr_dim : 0\n", | |||
"class_number : 2\n", | |||
"\n", | |||
"\n", | |||
"FIRSTMM_DB:\n", | |||
"substructures : {'non linear'}\n", | |||
"node_labeled : True\n", | |||
@@ -288,7 +338,7 @@ | |||
"\n", | |||
"\n", | |||
"MSRC9:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
@@ -313,7 +363,7 @@ | |||
"\n", | |||
"\n", | |||
"MSRC21:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
@@ -335,10 +385,16 @@ | |||
"node_attr_dim : 0\n", | |||
"edge_attr_dim : 0\n", | |||
"class_number : 20\n", | |||
"\n", | |||
"\n" | |||
] | |||
}, | |||
{ | |||
"name": "stdout", | |||
"output_type": "stream", | |||
"text": [ | |||
"\n", | |||
"SYNTHETIC:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
@@ -363,7 +419,7 @@ | |||
"\n", | |||
"\n", | |||
"BZR:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
@@ -385,16 +441,10 @@ | |||
"node_attr_dim : 3\n", | |||
"edge_attr_dim : 0\n", | |||
"class_number : 2\n", | |||
"\n" | |||
] | |||
}, | |||
{ | |||
"name": "stdout", | |||
"output_type": "stream", | |||
"text": [ | |||
"\n", | |||
"\n", | |||
"COX2:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
@@ -419,7 +469,7 @@ | |||
"\n", | |||
"\n", | |||
"DHFR:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
@@ -444,7 +494,7 @@ | |||
"\n", | |||
"\n", | |||
"PROTEINS:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
@@ -469,7 +519,7 @@ | |||
"\n", | |||
"\n", | |||
"PROTEINS_full:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
@@ -492,61 +542,11 @@ | |||
"edge_attr_dim : 0\n", | |||
"class_number : 2\n", | |||
"\n", | |||
"\n", | |||
"NCI1:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
"dataset_size : 4110\n", | |||
"ave_node_num : 29.8654501216545\n", | |||
"min_node_num : 3\n", | |||
"max_node_num : 111\n", | |||
"ave_edge_num : 32.3\n", | |||
"min_edge_num : 2\n", | |||
"max_edge_num : 119\n", | |||
"ave_node_degree : 2.155013792267071\n", | |||
"min_node_degree : 0.8\n", | |||
"max_node_degree : 2.769230769230769\n", | |||
"ave_fill_factor : 0.04239828192835043\n", | |||
"min_fill_factor : 0.009522961908152367\n", | |||
"max_fill_factor : 0.2222222222222222\n", | |||
"node_label_num : 37\n", | |||
"edge_label_num : 0\n", | |||
"node_attr_dim : 0\n", | |||
"edge_attr_dim : 0\n", | |||
"class_number : 2\n", | |||
"\n", | |||
"\n", | |||
"NCI109:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : False\n", | |||
"is_directed : False\n", | |||
"dataset_size : 4127\n", | |||
"ave_node_num : 29.681124303368065\n", | |||
"min_node_num : 4\n", | |||
"max_node_num : 111\n", | |||
"ave_edge_num : 32.13084565059365\n", | |||
"min_edge_num : 3\n", | |||
"max_edge_num : 119\n", | |||
"ave_node_degree : 2.156446168619097\n", | |||
"min_node_degree : 1.0909090909090908\n", | |||
"max_node_degree : 2.769230769230769\n", | |||
"ave_fill_factor : 0.04263668408405519\n", | |||
"min_fill_factor : 0.009522961908152367\n", | |||
"max_fill_factor : 0.1875\n", | |||
"node_label_num : 38\n", | |||
"edge_label_num : 0\n", | |||
"node_attr_dim : 0\n", | |||
"edge_attr_dim : 0\n", | |||
"class_number : 2\n", | |||
"\n", | |||
"load SDF: 100%|██████████| 4457424/4457424 [00:08<00:00, 497346.72it/s]\n", | |||
"ajust data: 100%|██████████| 42687/42687 [00:09<00:00, 4689.76it/s] \n", | |||
"load SDF: 100%|██████████| 4457424/4457424 [00:09<00:00, 489414.03it/s]\n", | |||
"ajust data: 100%|██████████| 42687/42687 [00:09<00:00, 4562.13it/s] \n", | |||
"\n", | |||
"NCI-HIV:\n", | |||
"substructures : {'non linear', 'linear'}\n", | |||
"substructures : {'linear', 'non linear'}\n", | |||
"node_labeled : True\n", | |||
"edge_labeled : True\n", | |||
"is_directed : False\n", | |||
@@ -584,14 +584,15 @@ | |||
" 'dataset_y': '../../datasets/Alkane/dataset_boiling_point_names.txt',},\n", | |||
" {'name': 'MAO', 'dataset': '../../datasets/MAO/dataset.ds',},\n", | |||
" {'name': 'PAH', 'dataset': '../../datasets/PAH/dataset.ds',},\n", | |||
" {'name': 'MUTAG', 'dataset': '../../datasets/MUTAG/MUTAG.mat',\n", | |||
" 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}},\n", | |||
" {'name': 'MUTAG', 'dataset': '../../datasets/MUTAG/MUTAG_A.txt'},\n", | |||
" {'name': 'Letter-med', 'dataset': '../../datasets/Letter-med/Letter-med_A.txt'},\n", | |||
" {'name': 'ENZYMES', 'dataset': '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},\n", | |||
" {'name': 'Mutagenicity', 'dataset': '../../datasets/Mutagenicity/Mutagenicity_A.txt'},\n", | |||
" {'name': 'D&D', 'dataset': '../../datasets/D&D/DD.mat',\n", | |||
" 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}},\n", | |||
" {'name': 'D&D', 'dataset': '../../datasets/DD/DD_A.txt'},\n", | |||
" {'name': 'NCI1', 'dataset': '../../datasets/NCI1/NCI1_A.txt'},\n", | |||
" {'name': 'NCI109', 'dataset': '../../datasets/NCI109/NCI109_A.txt'},\n", | |||
" {'name': 'AIDS', 'dataset': '../../datasets/AIDS/AIDS_A.txt'},\n", | |||
" \n", | |||
" {'name': 'Mutagenicity', 'dataset': '../../datasets/Mutagenicity/Mutagenicity_A.txt'},\n", | |||
" {'name': 'FIRSTMM_DB', 'dataset': '../../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'},\n", | |||
" {'name': 'MSRC9', 'dataset': '../../datasets/MSRC_9_txt/MSRC_9_A.txt'},\n", | |||
" {'name': 'MSRC21', 'dataset': '../../datasets/MSRC_21_txt/MSRC_21_A.txt'},\n", | |||
@@ -601,10 +602,6 @@ | |||
" {'name': 'DHFR', 'dataset': '../../datasets/DHFR_txt/DHFR_A_sparse.txt'}, \n", | |||
" {'name': 'PROTEINS', 'dataset': '../../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'},\n", | |||
" {'name': 'PROTEINS_full', 'dataset': '../../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, \n", | |||
" {'name': 'NCI1', 'dataset': '../../datasets/NCI1/NCI1.mat',\n", | |||
" 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}},\n", | |||
" {'name': 'NCI109', 'dataset': '../../datasets/NCI109/NCI109.mat',\n", | |||
" 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}},\n", | |||
" {'name': 'NCI-HIV', 'dataset': '../../datasets/NCI-HIV/AIDO99SD.sdf',\n", | |||
" 'dataset_y': '../../datasets/NCI-HIV/aids_conc_may04.txt',},\n", | |||
"\n", | |||
@@ -646,7 +643,7 @@ | |||
"name": "python", | |||
"nbconvert_exporter": "python", | |||
"pygments_lexer": "ipython3", | |||
"version": "3.6.7" | |||
"version": "3.6.8" | |||
} | |||
}, | |||
"nbformat": 4, | |||
@@ -22,6 +22,11 @@ from iam import iam, test_iam_with_more_graphs_as_init, test_iam_moreGraphsAsIni | |||
sys.path.insert(0, "../") | |||
from pygraph.kernels.marginalizedKernel import marginalizedkernel | |||
from pygraph.kernels.untilHPathKernel import untilhpathkernel | |||
from pygraph.kernels.spKernel import spkernel | |||
import functools | |||
from pygraph.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
from pygraph.kernels.structuralspKernel import structuralspkernel | |||
from median import draw_Letter_graph | |||
def gk_iam(Gn, alpha): | |||
@@ -119,6 +124,8 @@ def gk_iam_nearest(Gn, alpha, idx_gi, Kmatrix, k, r_max): | |||
for gi in Gk: | |||
nx.draw_networkx(gi) | |||
plt.show() | |||
print(gi.nodes(data=True)) | |||
print(gi.edges(data=True)) | |||
Gs_nearest = Gk.copy() | |||
# gihat_list = [] | |||
@@ -132,6 +139,8 @@ def gk_iam_nearest(Gn, alpha, idx_gi, Kmatrix, k, r_max): | |||
g_tmp = test_iam_with_more_graphs_as_init(Gs_nearest, Gs_nearest, c_ei=1, c_er=1, c_es=1) | |||
nx.draw_networkx(g_tmp) | |||
plt.show() | |||
print(g_tmp.nodes(data=True)) | |||
print(g_tmp.edges(data=True)) | |||
# compute distance between phi and the new generated graph. | |||
gi_list = [Gn[i] for i in idx_gi] | |||
@@ -166,28 +175,249 @@ def gk_iam_nearest(Gn, alpha, idx_gi, Kmatrix, k, r_max): | |||
return dhat, ghat | |||
def dis_gstar(idx_g, idx_gi, alpha, Kmatrix): | |||
#def gk_iam_nearest_multi(Gn, alpha, idx_gi, Kmatrix, k, r_max): | |||
# """This function constructs graph pre-image by the iterative pre-image | |||
# framework in reference [1], algorithm 1, where the step of generating new | |||
# graphs randomly is replaced by the IAM algorithm in reference [2]. | |||
# | |||
# notes | |||
# ----- | |||
# Every time a set of n better graphs is acquired, their distances in kernel space are | |||
# compared with the k nearest ones, and the k nearest distances from the k+n | |||
# distances will be used as the new ones. | |||
# """ | |||
# Gn_median = [Gn[idx].copy() for idx in idx_gi] | |||
# # compute k nearest neighbors of phi in DN. | |||
# dis_list = [] # distance between g_star and each graph. | |||
# for ig, g in tqdm(enumerate(Gn), desc='computing distances', file=sys.stdout): | |||
# dtemp = dis_gstar(ig, idx_gi, alpha, Kmatrix) | |||
## dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||
## k_g2_list[ig]) + (alpha * alpha * k_list[0] + alpha * | |||
## (1 - alpha) * k_g2_list[0] + (1 - alpha) * alpha * | |||
## k_g1_list[6] + (1 - alpha) * (1 - alpha) * k_list[6]) | |||
# dis_list.append(dtemp) | |||
# | |||
# # sort | |||
# sort_idx = np.argsort(dis_list) | |||
# dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] # the k shortest distances | |||
# nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist()) | |||
# g0hat_list = [Gn[idx] for idx in sort_idx[0:nb_best]] # the nearest neighbors of phi in DN | |||
# if dis_gs[0] == 0: # the exact pre-image. | |||
# print('The exact pre-image is found from the input dataset.') | |||
# return 0, g0hat_list | |||
# dhat = dis_gs[0] # the nearest distance | |||
# ghat_list = [g.copy() for g in g0hat_list] | |||
# for g in ghat_list: | |||
# nx.draw_networkx(g) | |||
# plt.show() | |||
# print(g.nodes(data=True)) | |||
# print(g.edges(data=True)) | |||
# Gk = [Gn[ig].copy() for ig in sort_idx[0:k]] # the k nearest neighbors | |||
# for gi in Gk: | |||
# nx.draw_networkx(gi) | |||
# plt.show() | |||
# print(gi.nodes(data=True)) | |||
# print(gi.edges(data=True)) | |||
# Gs_nearest = Gk.copy() | |||
## gihat_list = [] | |||
# | |||
## i = 1 | |||
# r = 1 | |||
# while r < r_max: | |||
# print('r =', r) | |||
## found = False | |||
## Gs_nearest = Gk + gihat_list | |||
## g_tmp = iam(Gs_nearest) | |||
# g_tmp_list = test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||
# Gn_median, Gs_nearest, c_ei=1, c_er=1, c_es=1) | |||
# for g in g_tmp_list: | |||
# nx.draw_networkx(g) | |||
# plt.show() | |||
# print(g.nodes(data=True)) | |||
# print(g.edges(data=True)) | |||
# | |||
# # compute distance between phi and the new generated graphs. | |||
# gi_list = [Gn[i] for i in idx_gi] | |||
# knew = compute_kernel(g_tmp_list + gi_list, 'marginalizedkernel', False) | |||
# dnew_list = [] | |||
# for idx, g_tmp in enumerate(g_tmp_list): | |||
# dnew_list.append(dis_gstar(idx, range(len(g_tmp_list), | |||
# len(g_tmp_list) + len(gi_list) + 1), alpha, knew)) | |||
# | |||
## dnew = knew[0, 0] - 2 * (alpha[0] * knew[0, 1] + alpha[1] * | |||
## knew[0, 2]) + (alpha[0] * alpha[0] * k_list[0] + alpha[0] * | |||
## alpha[1] * k_g2_list[0] + alpha[1] * alpha[0] * | |||
## k_g1_list[1] + alpha[1] * alpha[1] * k_list[1]) | |||
# | |||
# # find the new k nearest graphs. | |||
# dis_gs = dnew_list + dis_gs # add the new nearest distances. | |||
# Gs_nearest = [g.copy() for g in g_tmp_list] + Gs_nearest # add the corresponding graphs. | |||
# sort_idx = np.argsort(dis_gs) | |||
# if len([i for i in sort_idx[0:k] if i < len(dnew_list)]) > 0: | |||
# print('We got better k nearest neighbors! Hurray!') | |||
# dis_gs = [dis_gs[idx] for idx in sort_idx[0:k]] # the new k nearest distances. | |||
# print(dis_gs[-1]) | |||
# Gs_nearest = [Gs_nearest[idx] for idx in sort_idx[0:k]] | |||
# nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist()) | |||
# if len([i for i in sort_idx[0:nb_best] if i < len(dnew_list)]) > 0: | |||
# print('I have smaller or equal distance!') | |||
# dhat = dis_gs[0] | |||
# print(str(dhat) + '->' + str(dhat)) | |||
# idx_best_list = np.argwhere(dnew_list == dhat).flatten().tolist() | |||
# ghat_list = [g_tmp_list[idx].copy() for idx in idx_best_list] | |||
# for g in ghat_list: | |||
# nx.draw_networkx(g) | |||
# plt.show() | |||
# print(g.nodes(data=True)) | |||
# print(g.edges(data=True)) | |||
# r = 0 | |||
# else: | |||
# r += 1 | |||
# | |||
# return dhat, ghat_list | |||
def gk_iam_nearest_multi(Gn_init, Gn_median, alpha, idx_gi, Kmatrix, k, r_max, gkernel): | |||
"""This function constructs graph pre-image by the iterative pre-image | |||
framework in reference [1], algorithm 1, where the step of generating new | |||
graphs randomly is replaced by the IAM algorithm in reference [2]. | |||
notes | |||
----- | |||
Every time a set of n better graphs is acquired, their distances in kernel space are | |||
compared with the k nearest ones, and the k nearest distances from the k+n | |||
distances will be used as the new ones. | |||
""" | |||
# compute k nearest neighbors of phi in DN. | |||
dis_list = [] # distance between g_star and each graph. | |||
term3 = 0 | |||
for i1, a1 in enumerate(alpha): | |||
for i2, a2 in enumerate(alpha): | |||
term3 += a1 * a2 * Kmatrix[idx_gi[i1], idx_gi[i2]] | |||
for ig, g in tqdm(enumerate(Gn_init), desc='computing distances', file=sys.stdout): | |||
dtemp = dis_gstar(ig, idx_gi, alpha, Kmatrix, term3=term3) | |||
# dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||
# k_g2_list[ig]) + (alpha * alpha * k_list[0] + alpha * | |||
# (1 - alpha) * k_g2_list[0] + (1 - alpha) * alpha * | |||
# k_g1_list[6] + (1 - alpha) * (1 - alpha) * k_list[6]) | |||
dis_list.append(dtemp) | |||
# sort | |||
sort_idx = np.argsort(dis_list) | |||
dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] # the k shortest distances | |||
nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist()) | |||
g0hat_list = [Gn_init[idx] for idx in sort_idx[0:nb_best]] # the nearest neighbors of phi in DN | |||
if dis_gs[0] == 0: # the exact pre-image. | |||
print('The exact pre-image is found from the input dataset.') | |||
return 0, g0hat_list | |||
dhat = dis_gs[0] # the nearest distance | |||
ghat_list = [g.copy() for g in g0hat_list] | |||
for g in ghat_list: | |||
draw_Letter_graph(g) | |||
# nx.draw_networkx(g) | |||
# plt.show() | |||
print(g.nodes(data=True)) | |||
print(g.edges(data=True)) | |||
Gk = [Gn_init[ig].copy() for ig in sort_idx[0:k]] # the k nearest neighbors | |||
for gi in Gk: | |||
# nx.draw_networkx(gi) | |||
# plt.show() | |||
draw_Letter_graph(g) | |||
print(gi.nodes(data=True)) | |||
print(gi.edges(data=True)) | |||
Gs_nearest = Gk.copy() | |||
# gihat_list = [] | |||
# i = 1 | |||
r = 1 | |||
while r < r_max: | |||
print('r =', r) | |||
# found = False | |||
# Gs_nearest = Gk + gihat_list | |||
# g_tmp = iam(Gs_nearest) | |||
g_tmp_list = test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||
Gn_median, Gs_nearest, c_ei=1, c_er=1, c_es=1) | |||
for g in g_tmp_list: | |||
# nx.draw_networkx(g) | |||
# plt.show() | |||
draw_Letter_graph(g) | |||
print(g.nodes(data=True)) | |||
print(g.edges(data=True)) | |||
# compute distance between phi and the new generated graphs. | |||
knew = compute_kernel(g_tmp_list + Gn_median, gkernel, False) | |||
dnew_list = [] | |||
for idx, g_tmp in enumerate(g_tmp_list): | |||
dnew_list.append(dis_gstar(idx, range(len(g_tmp_list), | |||
len(g_tmp_list) + len(Gn_median) + 1), alpha, knew, | |||
withterm3=False)) | |||
# dnew = knew[0, 0] - 2 * (alpha[0] * knew[0, 1] + alpha[1] * | |||
# knew[0, 2]) + (alpha[0] * alpha[0] * k_list[0] + alpha[0] * | |||
# alpha[1] * k_g2_list[0] + alpha[1] * alpha[0] * | |||
# k_g1_list[1] + alpha[1] * alpha[1] * k_list[1]) | |||
# find the new k nearest graphs. | |||
dis_gs = dnew_list + dis_gs # add the new nearest distances. | |||
Gs_nearest = [g.copy() for g in g_tmp_list] + Gs_nearest # add the corresponding graphs. | |||
sort_idx = np.argsort(dis_gs) | |||
if len([i for i in sort_idx[0:k] if i < len(dnew_list)]) > 0: | |||
print('We got better k nearest neighbors! Hurray!') | |||
dis_gs = [dis_gs[idx] for idx in sort_idx[0:k]] # the new k nearest distances. | |||
print(dis_gs[-1]) | |||
Gs_nearest = [Gs_nearest[idx] for idx in sort_idx[0:k]] | |||
nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist()) | |||
if len([i for i in sort_idx[0:nb_best] if i < len(dnew_list)]) > 0: | |||
print('I have smaller or equal distance!') | |||
print(str(dhat) + '->' + str(dis_gs[0])) | |||
dhat = dis_gs[0] | |||
idx_best_list = np.argwhere(dnew_list == dhat).flatten().tolist() | |||
ghat_list = [g_tmp_list[idx].copy() for idx in idx_best_list] | |||
for g in ghat_list: | |||
# nx.draw_networkx(g) | |||
# plt.show() | |||
draw_Letter_graph(g) | |||
print(g.nodes(data=True)) | |||
print(g.edges(data=True)) | |||
r = 0 | |||
else: | |||
r += 1 | |||
return dhat, ghat_list | |||
def dis_gstar(idx_g, idx_gi, alpha, Kmatrix, term3=0, withterm3=True): | |||
term1 = Kmatrix[idx_g, idx_g] | |||
term2 = 0 | |||
for i, a in enumerate(alpha): | |||
term2 += a * Kmatrix[idx_g, idx_gi[i]] | |||
term2 *= 2 | |||
term3 = 0 | |||
for i1, a1 in enumerate(alpha): | |||
for i2, a2 in enumerate(alpha): | |||
term3 += a1 * a2 * Kmatrix[idx_gi[i1], idx_gi[i2]] | |||
if withterm3 == False: | |||
for i1, a1 in enumerate(alpha): | |||
for i2, a2 in enumerate(alpha): | |||
term3 += a1 * a2 * Kmatrix[idx_gi[i1], idx_gi[i2]] | |||
return np.sqrt(term1 - term2 + term3) | |||
def compute_kernel(Gn, graph_kernel, verbose): | |||
if graph_kernel == 'marginalizedkernel': | |||
Kmatrix, _ = marginalizedkernel(Gn, node_label='atom', edge_label=None, | |||
p_quit=0.3, n_iteration=19, remove_totters=False, | |||
p_quit=0.03, n_iteration=20, remove_totters=False, | |||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||
elif graph_kernel == 'untilhpathkernel': | |||
Kmatrix, _ = untilhpathkernel(Gn, node_label='atom', edge_label='bond_type', | |||
depth=2, k_func='MinMax', compute_method='trie', | |||
depth=10, k_func='MinMax', compute_method='trie', | |||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||
elif graph_kernel == 'spkernel': | |||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
Kmatrix, _, _ = spkernel(Gn, node_label='atom', node_kernels= | |||
{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}, | |||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||
elif graph_kernel == 'structuralspkernel': | |||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
Kmatrix, _ = structuralspkernel(Gn, node_label='atom', node_kernels= | |||
{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}, | |||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||
# normalization | |||
Kmatrix_diag = Kmatrix.diagonal().copy() | |||
@@ -204,170 +434,4 @@ def gram2distances(Kmatrix): | |||
for i2 in range(len(Kmatrix)): | |||
dmatrix[i1, i2] = Kmatrix[i1, i1] + Kmatrix[i2, i2] - 2 * Kmatrix[i1, i2] | |||
dmatrix = np.sqrt(dmatrix) | |||
return dmatrix | |||
# --------------------------- These are tests --------------------------------# | |||
def test_who_is_the_closest_in_kernel_space(Gn): | |||
idx_gi = [0, 6] | |||
g1 = Gn[idx_gi[0]] | |||
g2 = Gn[idx_gi[1]] | |||
# create the "median" graph. | |||
gnew = g2.copy() | |||
gnew.remove_node(0) | |||
nx.draw_networkx(gnew) | |||
plt.show() | |||
print(gnew.nodes(data=True)) | |||
Gn = [gnew] + Gn | |||
# compute gram matrix | |||
Kmatrix = compute_kernel(Gn, 'untilhpathkernel', True) | |||
# the distance matrix | |||
dmatrix = gram2distances(Kmatrix) | |||
print(np.sort(dmatrix[idx_gi[0] + 1])) | |||
print(np.argsort(dmatrix[idx_gi[0] + 1])) | |||
print(np.sort(dmatrix[idx_gi[1] + 1])) | |||
print(np.argsort(dmatrix[idx_gi[1] + 1])) | |||
# for all g in Gn, compute (d(g1, g) + d(g2, g)) / 2 | |||
dis_median = [(dmatrix[i, idx_gi[0] + 1] + dmatrix[i, idx_gi[1] + 1]) / 2 for i in range(len(Gn))] | |||
print(np.sort(dis_median)) | |||
print(np.argsort(dis_median)) | |||
return | |||
def test_who_is_the_closest_in_GED_space(Gn): | |||
from iam import GED | |||
idx_gi = [0, 6] | |||
g1 = Gn[idx_gi[0]] | |||
g2 = Gn[idx_gi[1]] | |||
# create the "median" graph. | |||
gnew = g2.copy() | |||
gnew.remove_node(0) | |||
nx.draw_networkx(gnew) | |||
plt.show() | |||
print(gnew.nodes(data=True)) | |||
Gn = [gnew] + Gn | |||
# compute GEDs | |||
ged_matrix = np.zeros((len(Gn), len(Gn))) | |||
for i1 in tqdm(range(len(Gn)), desc='computing GEDs', file=sys.stdout): | |||
for i2 in range(len(Gn)): | |||
dis, _, _ = GED(Gn[i1], Gn[i2], lib='gedlib') | |||
ged_matrix[i1, i2] = dis | |||
print(np.sort(ged_matrix[idx_gi[0] + 1])) | |||
print(np.argsort(ged_matrix[idx_gi[0] + 1])) | |||
print(np.sort(ged_matrix[idx_gi[1] + 1])) | |||
print(np.argsort(ged_matrix[idx_gi[1] + 1])) | |||
# for all g in Gn, compute (GED(g1, g) + GED(g2, g)) / 2 | |||
dis_median = [(ged_matrix[i, idx_gi[0] + 1] + ged_matrix[i, idx_gi[1] + 1]) / 2 for i in range(len(Gn))] | |||
print(np.sort(dis_median)) | |||
print(np.argsort(dis_median)) | |||
return | |||
def test_will_IAM_give_the_median_graph_we_wanted(Gn): | |||
idx_gi = [0, 6] | |||
g1 = Gn[idx_gi[0]].copy() | |||
g2 = Gn[idx_gi[1]].copy() | |||
# del Gn[idx_gi[0]] | |||
# del Gn[idx_gi[1] - 1] | |||
g_median = test_iam_with_more_graphs_as_init([g1, g2], [g1, g2], c_ei=1, c_er=1, c_es=1) | |||
# g_median = test_iam_with_more_graphs_as_init(Gn, Gn, c_ei=1, c_er=1, c_es=1) | |||
nx.draw_networkx(g_median) | |||
plt.show() | |||
print(g_median.nodes(data=True)) | |||
print(g_median.edges(data=True)) | |||
def test_new_IAM_allGraph_deleteNodes(Gn): | |||
idx_gi = [0, 6] | |||
# g1 = Gn[idx_gi[0]].copy() | |||
# g2 = Gn[idx_gi[1]].copy() | |||
g1 = nx.Graph(name='haha') | |||
g1.add_nodes_from([(2, {'atom': 'C'}), (3, {'atom': 'O'}), (4, {'atom': 'C'})]) | |||
g1.add_edges_from([(2, 3, {'bond_type': '1'}), (3, 4, {'bond_type': '1'})]) | |||
g2 = nx.Graph(name='hahaha') | |||
g2.add_nodes_from([(0, {'atom': 'C'}), (1, {'atom': 'O'}), (2, {'atom': 'C'}), | |||
(3, {'atom': 'O'}), (4, {'atom': 'C'})]) | |||
g2.add_edges_from([(0, 1, {'bond_type': '1'}), (1, 2, {'bond_type': '1'}), | |||
(2, 3, {'bond_type': '1'}), (3, 4, {'bond_type': '1'})]) | |||
# g2 = g1.copy() | |||
# g2.add_nodes_from([(3, {'atom': 'O'})]) | |||
# g2.add_nodes_from([(4, {'atom': 'C'})]) | |||
# g2.add_edges_from([(1, 3, {'bond_type': '1'})]) | |||
# g2.add_edges_from([(3, 4, {'bond_type': '1'})]) | |||
# del Gn[idx_gi[0]] | |||
# del Gn[idx_gi[1] - 1] | |||
g_median = test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations([g1, g2], [g1, g2], c_ei=1, c_er=1, c_es=1) | |||
# g_median = test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations(Gn, Gn, c_ei=1, c_er=1, c_es=1) | |||
nx.draw_networkx(g_median) | |||
plt.show() | |||
print(g_median.nodes(data=True)) | |||
print(g_median.edges(data=True)) | |||
if __name__ == '__main__': | |||
from pygraph.utils.graphfiles import loadDataset | |||
# ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat', | |||
# 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb | |||
# ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', | |||
# 'extra_params': {}} # node nsymb | |||
# ds = {'name': 'Acyclic', 'dataset': '../datasets/monoterpenoides/trainset_9.ds', | |||
# 'extra_params': {}} | |||
ds = {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
'extra_params': {}} # node symb | |||
Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||
# Gn = Gn[0:20] | |||
test_new_IAM_allGraph_deleteNodes(Gn) | |||
test_will_IAM_give_the_median_graph_we_wanted(Gn) | |||
test_who_is_the_closest_in_GED_space(Gn) | |||
test_who_is_the_closest_in_kernel_space(Gn) | |||
lmbda = 0.03 # termination probalility | |||
r_max = 10 # recursions | |||
l = 500 | |||
alpha_range = np.linspace(0.5, 0.5, 1) | |||
k = 20 # k nearest neighbors | |||
# randomly select two molecules | |||
np.random.seed(1) | |||
idx_gi = [0, 6] # np.random.randint(0, len(Gn), 2) | |||
g1 = Gn[idx_gi[0]] | |||
g2 = Gn[idx_gi[1]] | |||
# g_tmp = iam([g1, g2]) | |||
# nx.draw_networkx(g_tmp) | |||
# plt.show() | |||
# compute | |||
# k_list = [] # kernel between each graph and itself. | |||
# k_g1_list = [] # kernel between each graph and g1 | |||
# k_g2_list = [] # kernel between each graph and g2 | |||
# for ig, g in tqdm(enumerate(Gn), desc='computing self kernels', file=sys.stdout): | |||
# ktemp = compute_kernel([g, g1, g2], 'marginalizedkernel', False) | |||
# k_list.append(ktemp[0][0, 0]) | |||
# k_g1_list.append(ktemp[0][0, 1]) | |||
# k_g2_list.append(ktemp[0][0, 2]) | |||
km = compute_kernel(Gn, 'untilhpathkernel', True) | |||
# k_list = np.diag(km) # kernel between each graph and itself. | |||
# k_g1_list = km[idx_gi[0]] # kernel between each graph and g1 | |||
# k_g2_list = km[idx_gi[1]] # kernel between each graph and g2 | |||
g_best = [] | |||
dis_best = [] | |||
# for each alpha | |||
for alpha in alpha_range: | |||
print('alpha =', alpha) | |||
dhat, ghat = gk_iam_nearest(Gn, [alpha, 1 - alpha], idx_gi, km, k, r_max) | |||
dis_best.append(dhat) | |||
g_best.append(ghat) | |||
for idx, item in enumerate(alpha_range): | |||
print('when alpha is', item, 'the shortest distance is', dis_best[idx]) | |||
print('the corresponding pre-image is') | |||
nx.draw_networkx(g_best[idx]) | |||
plt.show() | |||
return dmatrix |
@@ -158,7 +158,7 @@ def GED(g1, g2, lib='gedlib'): | |||
script.PyRestartEnv() | |||
script.PyLoadGXLGraph('ged_tmp/', 'ged_tmp/tmp.xml') | |||
listID = script.PyGetGraphIds() | |||
script.PySetEditCost("CHEM_1") | |||
script.PySetEditCost("LETTER") #("CHEM_1") | |||
script.PyInitEnv() | |||
script.PySetMethod("IPFP", "") | |||
script.PyInitMethod() | |||
@@ -168,7 +168,15 @@ def GED(g1, g2, lib='gedlib'): | |||
pi_forward, pi_backward = script.PyGetAllMap(g, h) | |||
upper = script.PyGetUpperBound(g, h) | |||
lower = script.PyGetLowerBound(g, h) | |||
dis = (upper + lower) / 2 | |||
dis = upper | |||
# make the map label correct (label remove map as np.inf) | |||
nodes1 = [n for n in g1.nodes()] | |||
nodes2 = [n for n in g2.nodes()] | |||
nb1 = nx.number_of_nodes(g1) | |||
nb2 = nx.number_of_nodes(g2) | |||
pi_forward = [nodes2[pi] if pi < nb2 else np.inf for pi in pi_forward] | |||
pi_backward = [nodes1[pi] if pi < nb1 else np.inf for pi in pi_backward] | |||
return dis, pi_forward, pi_backward | |||
@@ -319,7 +327,7 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||
from tqdm import tqdm | |||
# Gn_median = Gn_median[0:10] | |||
# Gn_median = [nx.convert_node_labels_to_integers(g) for g in Gn_median] | |||
node_ir = sys.maxsize * 2 # Max number for c++, corresponding to the node remove and insertion. | |||
node_ir = np.inf # corresponding to the node remove and insertion. | |||
label_r = 'thanksdanny' # the label for node remove. # @todo: make this label unrepeatable. | |||
ds_attrs = get_dataset_attributes(Gn_median + Gn_candidate, | |||
attr_names=['edge_labeled', 'node_attr_dim'], | |||
@@ -347,7 +355,7 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||
h_i0 = 0 | |||
for idx, g in enumerate(Gn_median): | |||
pi_i = pi_p_forward[idx][ndi] | |||
if g.has_node(pi_i) and g.nodes[pi_i][node_label] == label: | |||
if pi_i != node_ir and g.nodes[pi_i][node_label] == label: | |||
h_i0 += 1 | |||
h_i0_list.append(h_i0) | |||
label_list.append(label) | |||
@@ -364,7 +372,7 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||
nlabel_best = [label_list[idx] for idx in idx_max] | |||
# generate "best" graphs with regard to "best" node labels. | |||
G_new_list_nd = [] | |||
for g in G_new_list: | |||
for g in G_new_list: # @todo: seems it can be simplified. The G_new_list will only contain 1 graph for now. | |||
for nl in nlabel_best: | |||
g_tmp = g.copy() | |||
if nl == label_r: | |||
@@ -380,16 +388,16 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||
G_new_list = G_new_list_nd[:] | |||
else: # labels are non-symbolic | |||
for nd in G.nodes(): | |||
for ndi, (nd, _) in enumerate(G.nodes(data=True)): | |||
Si_norm = 0 | |||
phi_i_bar = np.array([0.0 for _ in range(ds_attrs['node_attr_dim'])]) | |||
for idx, g in enumerate(Gn_median): | |||
pi_i = pi_p_forward[idx][nd] | |||
pi_i = pi_p_forward[idx][ndi] | |||
if g.has_node(pi_i): #@todo: what if no g has node? phi_i_bar = 0? | |||
Si_norm += 1 | |||
phi_i_bar += np.array([float(itm) for itm in g.nodes[pi_i]['attributes']]) | |||
phi_i_bar /= Si_norm | |||
G_new.nodes[nd]['attributes'] = phi_i_bar | |||
G_new_list[0].nodes[nd]['attributes'] = phi_i_bar | |||
# update edge labels and adjacency matrix. | |||
if ds_attrs['edge_labeled']: | |||
@@ -467,12 +475,12 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||
# pi_forward_list = [pi_forward_list[idx] for idx in idx_min_list] | |||
# G_new_list = [G_new_list[idx] for idx in idx_min_list] | |||
for g in G_new_list: | |||
import matplotlib.pyplot as plt | |||
nx.draw_networkx(g) | |||
plt.show() | |||
print(g.nodes(data=True)) | |||
print(g.edges(data=True)) | |||
# for g in G_new_list: | |||
# import matplotlib.pyplot as plt | |||
# nx.draw_networkx(g) | |||
# plt.show() | |||
# print(g.nodes(data=True)) | |||
# print(g.edges(data=True)) | |||
return G_new_list, pi_forward_list | |||
@@ -504,7 +512,7 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||
G_list = [G] | |||
pi_forward_list = [pi_p_forward] | |||
# iterations. | |||
for itr in range(0, 10): # @todo: the convergence condition? | |||
for itr in range(0, 5): # @todo: the convergence condition? | |||
# print('itr is', itr) | |||
G_new_list = [] | |||
pi_forward_new_list = [] | |||
@@ -562,7 +570,7 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||
# phase 1: initilize. | |||
# compute set-median. | |||
dis_min = np.inf | |||
dis_all, pi_all_forward = median_distance(Gn_candidate[::-1], Gn_median) | |||
dis_all, pi_all_forward = median_distance(Gn_candidate, Gn_median) | |||
# find all smallest distances. | |||
idx_min_list = np.argwhere(dis_all == np.min(dis_all)).flatten().tolist() | |||
dis_min = dis_all[idx_min_list[0]] | |||
@@ -580,24 +588,27 @@ def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||
G_list, _ = remove_duplicates(G_list) | |||
if connected == True: | |||
G_list, _ = remove_disconnected(G_list) | |||
G_list_con, _ = remove_disconnected(G_list) | |||
# if there is no connected graphs at all, then remain the disconnected ones. | |||
if len(G_list_con) > 0: # @todo: ?????????????????????????? | |||
G_list = G_list_con | |||
import matplotlib.pyplot as plt | |||
for g in G_list: | |||
nx.draw_networkx(g) | |||
plt.show() | |||
print(g.nodes(data=True)) | |||
print(g.edges(data=True)) | |||
# import matplotlib.pyplot as plt | |||
# for g in G_list: | |||
# nx.draw_networkx(g) | |||
# plt.show() | |||
# print(g.nodes(data=True)) | |||
# print(g.edges(data=True)) | |||
# get the best median graphs | |||
dis_all, pi_all_forward = median_distance(G_list, Gn_median) | |||
G_min_list, pi_forward_min_list, dis_min = best_median_graphs( | |||
G_list, dis_all, pi_all_forward) | |||
for g in G_min_list: | |||
nx.draw_networkx(g) | |||
plt.show() | |||
print(g.nodes(data=True)) | |||
print(g.edges(data=True)) | |||
# for g in G_min_list: | |||
# nx.draw_networkx(g) | |||
# plt.show() | |||
# print(g.nodes(data=True)) | |||
# print(g.edges(data=True)) | |||
return G_min_list | |||
@@ -9,6 +9,7 @@ pre-image | |||
import sys | |||
import numpy as np | |||
import random | |||
import multiprocessing | |||
from tqdm import tqdm | |||
import networkx as nx | |||
@@ -16,127 +17,190 @@ import matplotlib.pyplot as plt | |||
sys.path.insert(0, "../") | |||
from pygraph.kernels.marginalizedKernel import marginalizedkernel | |||
from pygraph.utils.graphfiles import loadDataset | |||
from pygraph.kernels.marginalizedKernel import marginalizedkernel | |||
from pygraph.kernels.untilHPathKernel import untilhpathkernel | |||
from pygraph.kernels.spKernel import spkernel | |||
import functools | |||
from pygraph.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
from pygraph.kernels.structuralspKernel import structuralspkernel | |||
ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat', | |||
'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb | |||
DN, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||
DN = DN[0:10] | |||
lmbda = 0.03 # termination probalility | |||
r_max = 10 # recursions | |||
l = 500 | |||
alpha_range = np.linspace(0.1, 0.9, 9) | |||
k = 5 # k nearest neighbors | |||
# randomly select two molecules | |||
np.random.seed(1) | |||
idx1, idx2 = np.random.randint(0, len(DN), 2) | |||
g1 = DN[idx1] | |||
g2 = DN[idx2] | |||
def compute_kernel(Gn, graph_kernel, verbose): | |||
if graph_kernel == 'marginalizedkernel': | |||
Kmatrix, _ = marginalizedkernel(Gn, node_label='atom', edge_label=None, | |||
p_quit=0.03, n_iteration=20, remove_totters=False, | |||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||
elif graph_kernel == 'untilhpathkernel': | |||
Kmatrix, _ = untilhpathkernel(Gn, node_label='atom', edge_label='bond_type', | |||
depth=10, k_func='MinMax', compute_method='trie', | |||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||
elif graph_kernel == 'spkernel': | |||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
Kmatrix, _, _ = spkernel(Gn, node_label='atom', node_kernels= | |||
{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}, | |||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||
elif graph_kernel == 'structuralspkernel': | |||
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
Kmatrix, _ = structuralspkernel(Gn, node_label='atom', node_kernels= | |||
{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}, | |||
n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||
# normalization | |||
# Kmatrix_diag = Kmatrix.diagonal().copy() | |||
# for i in range(len(Kmatrix)): | |||
# for j in range(i, len(Kmatrix)): | |||
# Kmatrix[i][j] /= np.sqrt(Kmatrix_diag[i] * Kmatrix_diag[j]) | |||
# Kmatrix[j][i] = Kmatrix[i][j] | |||
return Kmatrix | |||
# compute | |||
k_list = [] # kernel between each graph and itself. | |||
k_g1_list = [] # kernel between each graph and g1 | |||
k_g2_list = [] # kernel between each graph and g2 | |||
for ig, g in tqdm(enumerate(DN), desc='computing self kernels', file=sys.stdout): | |||
ktemp = marginalizedkernel([g, g1, g2], node_label='atom', edge_label=None, | |||
p_quit=lmbda, n_iteration=20, remove_totters=False, | |||
n_jobs=multiprocessing.cpu_count(), verbose=False) | |||
k_list.append(ktemp[0][0, 0]) | |||
k_g1_list.append(ktemp[0][0, 1]) | |||
k_g2_list.append(ktemp[0][0, 2]) | |||
g_best = [] | |||
dis_best = [] | |||
# for each alpha | |||
for alpha in alpha_range: | |||
print('alpha =', alpha) | |||
# compute k nearest neighbors of phi in DN. | |||
dis_list = [] # distance between g_star and each graph. | |||
for ig, g in tqdm(enumerate(DN), desc='computing distances', file=sys.stdout): | |||
dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||
k_g2_list[ig]) + (alpha * alpha * k_list[idx1] + alpha * | |||
(1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||
k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||
dis_list.append(dtemp) | |||
if __name__ == '__main__': | |||
# sort | |||
sort_idx = np.argsort(dis_list) | |||
dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] | |||
g0hat = DN[sort_idx[0]] # the nearest neighbor of phi in DN | |||
if dis_gs[0] == 0: # the exact pre-image. | |||
print('The exact pre-image is found from the input dataset.') | |||
g_pimg = g0hat | |||
break | |||
dhat = dis_gs[0] # the nearest distance | |||
Dk = [DN[ig] for ig in sort_idx[0:k]] # the k nearest neighbors | |||
gihat_list = [] | |||
# ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt', | |||
# 'extra_params': {}} # node/edge symb | |||
# ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', | |||
# 'extra_params': {}} # node nsymb | |||
# ds = {'name': 'Acyclic', 'dataset': '../datasets/monoterpenoides/trainset_9.ds', | |||
# 'extra_params': {}} | |||
ds = {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
'extra_params': {}} # node symb | |||
i = 1 | |||
r = 1 | |||
while r < r_max: | |||
print('r =', r) | |||
found = False | |||
for ig, gs in enumerate(Dk + gihat_list): | |||
# nx.draw_networkx(gs) | |||
# plt.show() | |||
fdgs = int(np.abs(np.ceil(np.log(alpha * dis_gs[ig])))) # @todo ??? | |||
for trail in tqdm(range(0, l), desc='l loop', file=sys.stdout): | |||
# add and delete edges. | |||
gtemp = gs.copy() | |||
np.random.seed() | |||
# which edges to change. | |||
idx_change = np.random.randint(0, nx.number_of_nodes(gs) * | |||
(nx.number_of_nodes(gs) - 1), fdgs) | |||
for item in idx_change: | |||
node1 = int(item / (nx.number_of_nodes(gs) - 1)) | |||
node2 = (item - node1 * (nx.number_of_nodes(gs) - 1)) | |||
if node2 >= node1: | |||
node2 += 1 | |||
# @todo: is the randomness correct? | |||
if not gtemp.has_edge(node1, node2): | |||
gtemp.add_edges_from([(node1, node2, {'bond_type': 0})]) | |||
# nx.draw_networkx(gs) | |||
# plt.show() | |||
# nx.draw_networkx(gtemp) | |||
# plt.show() | |||
else: | |||
gtemp.remove_edge(node1, node2) | |||
# nx.draw_networkx(gs) | |||
# plt.show() | |||
# nx.draw_networkx(gtemp) | |||
# plt.show() | |||
# nx.draw_networkx(gtemp) | |||
# plt.show() | |||
# compute distance between phi and the new generated graph. | |||
knew = marginalizedkernel([gtemp, g1, g2], node_label='atom', edge_label=None, | |||
p_quit=lmbda, n_iteration=20, remove_totters=False, | |||
n_jobs=multiprocessing.cpu_count(), verbose=False) | |||
dnew = knew[0][0, 0] - 2 * (alpha * knew[0][0, 1] + (1 - alpha) * | |||
knew[0][0, 2]) + (alpha * alpha * k_list[idx1] + alpha * | |||
(1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||
k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||
if dnew <= dhat: # the new distance is smaller | |||
print('I am smaller!') | |||
dhat = dnew | |||
gnew = gtemp.copy() | |||
found = True # found better graph. | |||
r = 0 | |||
if found: | |||
gihat_list = [gnew] | |||
dis_gs.append(dhat) | |||
else: | |||
r += 1 | |||
dis_best.append(dhat) | |||
g_best += ([g0hat] if len(gihat_list) == 0 else gihat_list) | |||
for idx, item in enumerate(alpha_range): | |||
print('when alpha is', item, 'the shortest distance is', dis_best[idx]) | |||
print('the corresponding pre-image is') | |||
nx.draw_networkx(g_best[idx]) | |||
plt.show() | |||
DN, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||
#DN = DN[0:10] | |||
lmbda = 0.03 # termination probalility | |||
r_max = 10 # recursions | |||
l = 500 | |||
alpha_range = np.linspace(0.5, 0.5, 1) | |||
#alpha_range = np.linspace(0.1, 0.9, 9) | |||
k = 5 # k nearest neighbors | |||
# randomly select two molecules | |||
#np.random.seed(1) | |||
#idx1, idx2 = np.random.randint(0, len(DN), 2) | |||
#g1 = DN[idx1] | |||
#g2 = DN[idx2] | |||
idx1 = 0 | |||
idx2 = 6 | |||
g1 = DN[idx1] | |||
g2 = DN[idx2] | |||
# compute | |||
k_list = [] # kernel between each graph and itself. | |||
k_g1_list = [] # kernel between each graph and g1 | |||
k_g2_list = [] # kernel between each graph and g2 | |||
for ig, g in tqdm(enumerate(DN), desc='computing self kernels', file=sys.stdout): | |||
# ktemp = marginalizedkernel([g, g1, g2], node_label='atom', edge_label=None, | |||
# p_quit=lmbda, n_iteration=20, remove_totters=False, | |||
# n_jobs=multiprocessing.cpu_count(), verbose=False) | |||
ktemp = compute_kernel([g, g1, g2], 'untilhpathkernel', verbose=False) | |||
k_list.append(ktemp[0, 0]) | |||
k_g1_list.append(ktemp[0, 1]) | |||
k_g2_list.append(ktemp[0, 2]) | |||
g_best = [] | |||
dis_best = [] | |||
# for each alpha | |||
for alpha in alpha_range: | |||
print('alpha =', alpha) | |||
# compute k nearest neighbors of phi in DN. | |||
dis_list = [] # distance between g_star and each graph. | |||
for ig, g in tqdm(enumerate(DN), desc='computing distances', file=sys.stdout): | |||
dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||
k_g2_list[ig]) + (alpha * alpha * k_list[idx1] + alpha * | |||
(1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||
k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||
dis_list.append(np.sqrt(dtemp)) | |||
# sort | |||
sort_idx = np.argsort(dis_list) | |||
dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] | |||
g0hat = DN[sort_idx[0]] # the nearest neighbor of phi in DN | |||
if dis_gs[0] == 0: # the exact pre-image. | |||
print('The exact pre-image is found from the input dataset.') | |||
g_pimg = g0hat | |||
break | |||
dhat = dis_gs[0] # the nearest distance | |||
Dk = [DN[ig] for ig in sort_idx[0:k]] # the k nearest neighbors | |||
gihat_list = [] | |||
i = 1 | |||
r = 1 | |||
while r < r_max: | |||
print('r =', r) | |||
found = False | |||
for ig, gs in enumerate(Dk + gihat_list): | |||
# nx.draw_networkx(gs) | |||
# plt.show() | |||
# @todo what if the log is negetive? | |||
fdgs = int(np.abs(np.ceil(np.log(alpha * dis_gs[ig])))) | |||
for trail in tqdm(range(0, l), desc='l loop', file=sys.stdout): | |||
# add and delete edges. | |||
gtemp = gs.copy() | |||
np.random.seed() | |||
# which edges to change. | |||
# @todo: should we use just half of the adjacency matrix for undirected graphs? | |||
nb_vpairs = nx.number_of_nodes(gs) * (nx.number_of_nodes(gs) - 1) | |||
# @todo: what if fdgs is bigger than nb_vpairs? | |||
idx_change = random.sample(range(nb_vpairs), fdgs if fdgs < nb_vpairs else nb_vpairs) | |||
# idx_change = np.random.randint(0, nx.number_of_nodes(gs) * | |||
# (nx.number_of_nodes(gs) - 1), fdgs) | |||
for item in idx_change: | |||
node1 = int(item / (nx.number_of_nodes(gs) - 1)) | |||
node2 = (item - node1 * (nx.number_of_nodes(gs) - 1)) | |||
if node2 >= node1: # skip the self pair. | |||
node2 += 1 | |||
# @todo: is the randomness correct? | |||
if not gtemp.has_edge(node1, node2): | |||
# @todo: how to update the bond_type? 0 or 1? | |||
gtemp.add_edges_from([(node1, node2, {'bond_type': 1})]) | |||
# nx.draw_networkx(gs) | |||
# plt.show() | |||
# nx.draw_networkx(gtemp) | |||
# plt.show() | |||
else: | |||
gtemp.remove_edge(node1, node2) | |||
# nx.draw_networkx(gs) | |||
# plt.show() | |||
# nx.draw_networkx(gtemp) | |||
# plt.show() | |||
# nx.draw_networkx(gtemp) | |||
# plt.show() | |||
# compute distance between phi and the new generated graph. | |||
# knew = marginalizedkernel([gtemp, g1, g2], node_label='atom', edge_label=None, | |||
# p_quit=lmbda, n_iteration=20, remove_totters=False, | |||
# n_jobs=multiprocessing.cpu_count(), verbose=False) | |||
knew = compute_kernel([gtemp, g1, g2], 'untilhpathkernel', verbose=False) | |||
dnew = np.sqrt(knew[0, 0] - 2 * (alpha * knew[0, 1] + (1 - alpha) * | |||
knew[0, 2]) + (alpha * alpha * k_list[idx1] + alpha * | |||
(1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||
k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2])) | |||
if dnew < dhat: # @todo: the new distance is smaller or also equal? | |||
print('I am smaller!') | |||
print(dhat, '->', dnew) | |||
nx.draw_networkx(gtemp) | |||
plt.show() | |||
print(gtemp.nodes(data=True)) | |||
print(gtemp.edges(data=True)) | |||
dhat = dnew | |||
gnew = gtemp.copy() | |||
found = True # found better graph. | |||
r = 0 | |||
elif dnew == dhat: | |||
print('I am equal!') | |||
if found: | |||
gihat_list = [gnew] | |||
dis_gs.append(dhat) | |||
else: | |||
r += 1 | |||
dis_best.append(dhat) | |||
g_best += ([g0hat] if len(gihat_list) == 0 else gihat_list) | |||
for idx, item in enumerate(alpha_range): | |||
print('when alpha is', item, 'the shortest distance is', dis_best[idx]) | |||
print('the corresponding pre-image is') | |||
nx.draw_networkx(g_best[idx]) | |||
plt.show() |
@@ -24,6 +24,7 @@ def treeletkernel(*args, | |||
sub_kernel, | |||
node_label='atom', | |||
edge_label='bond_type', | |||
parallel='imap_unordered', | |||
n_jobs=None, | |||
verbose=True): | |||
"""Calculate treelet graph kernels between graphs. | |||
@@ -70,34 +71,55 @@ def treeletkernel(*args, | |||
start_time = time.time() | |||
# ---- use pool.imap_unordered to parallel and track progress. ---- | |||
# get all canonical keys of all graphs before calculating kernels to save | |||
# time, but this may cost a lot of memory for large dataset. | |||
pool = Pool(n_jobs) | |||
itr = zip(Gn, range(0, len(Gn))) | |||
if len(Gn) < 100 * n_jobs: | |||
chunksize = int(len(Gn) / n_jobs) + 1 | |||
else: | |||
chunksize = 100 | |||
canonkeys = [[] for _ in range(len(Gn))] | |||
get_partial = partial(wrapper_get_canonkeys, node_label, edge_label, | |||
labeled, ds_attrs['is_directed']) | |||
if verbose: | |||
iterator = tqdm(pool.imap_unordered(get_partial, itr, chunksize), | |||
desc='getting canonkeys', file=sys.stdout) | |||
if parallel == 'imap_unordered': | |||
# get all canonical keys of all graphs before calculating kernels to save | |||
# time, but this may cost a lot of memory for large dataset. | |||
pool = Pool(n_jobs) | |||
itr = zip(Gn, range(0, len(Gn))) | |||
if len(Gn) < 100 * n_jobs: | |||
chunksize = int(len(Gn) / n_jobs) + 1 | |||
else: | |||
chunksize = 100 | |||
canonkeys = [[] for _ in range(len(Gn))] | |||
get_partial = partial(wrapper_get_canonkeys, node_label, edge_label, | |||
labeled, ds_attrs['is_directed']) | |||
if verbose: | |||
iterator = tqdm(pool.imap_unordered(get_partial, itr, chunksize), | |||
desc='getting canonkeys', file=sys.stdout) | |||
else: | |||
iterator = pool.imap_unordered(get_partial, itr, chunksize) | |||
for i, ck in iterator: | |||
canonkeys[i] = ck | |||
pool.close() | |||
pool.join() | |||
# compute kernels. | |||
def init_worker(canonkeys_toshare): | |||
global G_canonkeys | |||
G_canonkeys = canonkeys_toshare | |||
do_partial = partial(wrapper_treeletkernel_do, sub_kernel) | |||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
glbv=(canonkeys,), n_jobs=n_jobs, verbose=verbose) | |||
# ---- do not use parallelization. ---- | |||
elif parallel == None: | |||
# get all canonical keys of all graphs before calculating kernels to save | |||
# time, but this may cost a lot of memory for large dataset. | |||
canonkeys = [] | |||
for g in (tqdm(Gn, desc='getting canonkeys', file=sys.stdout) if verbose else Gn): | |||
canonkeys.append(get_canonkeys(g, node_label, edge_label, labeled, | |||
ds_attrs['is_directed'])) | |||
# compute kernels. | |||
from itertools import combinations_with_replacement | |||
itr = combinations_with_replacement(range(0, len(Gn)), 2) | |||
for i, j in (tqdm(itr, desc='getting canonkeys', file=sys.stdout) if verbose else itr): | |||
Kmatrix[i][j] = _treeletkernel_do(canonkeys[i], canonkeys[j], sub_kernel) | |||
Kmatrix[j][i] = Kmatrix[i][j] # @todo: no directed graph considered? | |||
else: | |||
iterator = pool.imap_unordered(get_partial, itr, chunksize) | |||
for i, ck in iterator: | |||
canonkeys[i] = ck | |||
pool.close() | |||
pool.join() | |||
# compute kernels. | |||
def init_worker(canonkeys_toshare): | |||
global G_canonkeys | |||
G_canonkeys = canonkeys_toshare | |||
do_partial = partial(wrapper_treeletkernel_do, sub_kernel) | |||
parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
glbv=(canonkeys,), n_jobs=n_jobs, verbose=verbose) | |||
raise Exception('No proper parallelization method designated.') | |||
run_time = time.time() - start_time | |||
if verbose: | |||
@@ -123,8 +145,7 @@ def _treeletkernel_do(canonkey1, canonkey2, sub_kernel): | |||
keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs | |||
vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys]) | |||
vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys]) | |||
kernel = np.sum(np.exp(-np.square(vector1 - vector2) / 2)) | |||
# kernel = sub_kernel(vector1, vector2) | |||
kernel = sub_kernel(vector1, vector2) | |||
return kernel | |||
@@ -266,7 +287,7 @@ def get_canonkeys(G, node_label, edge_label, labeled, is_directed): | |||
# linear patterns | |||
canonkey_t = Counter(list(nx.get_node_attributes(G, node_label).values())) | |||
for key in canonkey_t: | |||
canonkey_l['0' + key] = canonkey_t[key] | |||
canonkey_l[('0', key)] = canonkey_t[key] | |||
for i in range(1, 6): # for i in range(1, 6): | |||
treelet = [] | |||
@@ -274,93 +295,111 @@ def get_canonkeys(G, node_label, edge_label, labeled, is_directed): | |||
canonlist = list(chain.from_iterable((G.node[node][node_label], \ | |||
G[node][pattern[idx+1]][edge_label]) for idx, node in enumerate(pattern[:-1]))) | |||
canonlist.append(G.node[pattern[-1]][node_label]) | |||
canonkey_t = ''.join(canonlist) | |||
canonkey_t = canonkey_t if canonkey_t < canonkey_t[::-1] else canonkey_t[::-1] | |||
treelet.append(str(i) + canonkey_t) | |||
canonkey_t = canonlist if canonlist < canonlist[::-1] else canonlist[::-1] | |||
treelet.append(tuple([str(i)] + canonkey_t)) | |||
canonkey_l.update(Counter(treelet)) | |||
# n-star patterns | |||
for i in range(3, 6): | |||
treelet = [] | |||
for pattern in patterns[str(i) + 'star']: | |||
canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:] ] | |||
canonlist = [tuple((G.node[leaf][node_label], | |||
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:]] | |||
canonlist.sort() | |||
canonkey_t = ('d' if i == 5 else str(i * 2)) + G.node[pattern[0]][node_label] + ''.join(canonlist) | |||
canonlist = list(chain.from_iterable(canonlist)) | |||
canonkey_t = tuple(['d' if i == 5 else str(i * 2)] + | |||
[G.node[pattern[0]][node_label]] + canonlist) | |||
treelet.append(canonkey_t) | |||
canonkey_l.update(Counter(treelet)) | |||
# pattern 7 | |||
treelet = [] | |||
for pattern in patterns['7']: | |||
canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ] | |||
canonlist = [tuple((G.node[leaf][node_label], | |||
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]] | |||
canonlist.sort() | |||
canonkey_t = '7' + G.node[pattern[0]][node_label] + ''.join(canonlist) \ | |||
+ G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] \ | |||
+ G.node[pattern[4]][node_label] + G[pattern[4]][pattern[3]][edge_label] | |||
canonlist = list(chain.from_iterable(canonlist)) | |||
canonkey_t = tuple(['7'] + [G.node[pattern[0]][node_label]] + canonlist | |||
+ [G.node[pattern[3]][node_label]] | |||
+ [G[pattern[3]][pattern[0]][edge_label]] | |||
+ [G.node[pattern[4]][node_label]] | |||
+ [G[pattern[4]][pattern[3]][edge_label]]) | |||
treelet.append(canonkey_t) | |||
canonkey_l.update(Counter(treelet)) | |||
# pattern 11 | |||
treelet = [] | |||
for pattern in patterns['11']: | |||
canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:4] ] | |||
canonlist = [tuple((G.node[leaf][node_label], | |||
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:4]] | |||
canonlist.sort() | |||
canonkey_t = 'b' + G.node[pattern[0]][node_label] + ''.join(canonlist) \ | |||
+ G.node[pattern[4]][node_label] + G[pattern[4]][pattern[0]][edge_label] \ | |||
+ G.node[pattern[5]][node_label] + G[pattern[5]][pattern[4]][edge_label] | |||
canonlist = list(chain.from_iterable(canonlist)) | |||
canonkey_t = tuple(['b'] + [G.node[pattern[0]][node_label]] + canonlist | |||
+ [G.node[pattern[4]][node_label]] | |||
+ [G[pattern[4]][pattern[0]][edge_label]] | |||
+ [G.node[pattern[5]][node_label]] | |||
+ [G[pattern[5]][pattern[4]][edge_label]]) | |||
treelet.append(canonkey_t) | |||
canonkey_l.update(Counter(treelet)) | |||
# pattern 10 | |||
treelet = [] | |||
for pattern in patterns['10']: | |||
canonkey4 = G.node[pattern[5]][node_label] + G[pattern[5]][pattern[4]][edge_label] | |||
canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ] | |||
canonkey4 = [G.node[pattern[5]][node_label], G[pattern[5]][pattern[4]][edge_label]] | |||
canonlist = [tuple((G.node[leaf][node_label], | |||
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]] | |||
canonlist.sort() | |||
canonkey0 = ''.join(canonlist) | |||
canonkey_t = 'a' + G.node[pattern[3]][node_label] \ | |||
+ G.node[pattern[4]][node_label] + G[pattern[4]][pattern[3]][edge_label] \ | |||
+ G.node[pattern[0]][node_label] + G[pattern[0]][pattern[3]][edge_label] \ | |||
+ canonkey4 + canonkey0 | |||
canonkey0 = list(chain.from_iterable(canonlist)) | |||
canonkey_t = tuple(['a'] + [G.node[pattern[3]][node_label]] | |||
+ [G.node[pattern[4]][node_label]] | |||
+ [G[pattern[4]][pattern[3]][edge_label]] | |||
+ [G.node[pattern[0]][node_label]] | |||
+ [G[pattern[0]][pattern[3]][edge_label]] | |||
+ canonkey4 + canonkey0) | |||
treelet.append(canonkey_t) | |||
canonkey_l.update(Counter(treelet)) | |||
# pattern 12 | |||
treelet = [] | |||
for pattern in patterns['12']: | |||
canonlist0 = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ] | |||
canonlist0 = [tuple((G.node[leaf][node_label], | |||
G[leaf][pattern[0]][edge_label])) for leaf in pattern[1:3]] | |||
canonlist0.sort() | |||
canonlist3 = [ G.node[leaf][node_label] + G[leaf][pattern[3]][edge_label] for leaf in pattern[4:6] ] | |||
canonlist0 = list(chain.from_iterable(canonlist0)) | |||
canonlist3 = [tuple((G.node[leaf][node_label], | |||
G[leaf][pattern[3]][edge_label])) for leaf in pattern[4:6]] | |||
canonlist3.sort() | |||
canonlist3 = list(chain.from_iterable(canonlist3)) | |||
# 2 possible key can be generated from 2 nodes with extended label 3, select the one with lower lexicographic order. | |||
canonkey_t1 = 'c' + G.node[pattern[0]][node_label] \ | |||
+ ''.join(canonlist0) \ | |||
+ G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] \ | |||
+ ''.join(canonlist3) | |||
canonkey_t2 = 'c' + G.node[pattern[3]][node_label] \ | |||
+ ''.join(canonlist3) \ | |||
+ G.node[pattern[0]][node_label] + G[pattern[0]][pattern[3]][edge_label] \ | |||
+ ''.join(canonlist0) | |||
# 2 possible key can be generated from 2 nodes with extended label 3, | |||
# select the one with lower lexicographic order. | |||
canonkey_t1 = tuple(['c'] + [G.node[pattern[0]][node_label]] + canonlist0 | |||
+ [G.node[pattern[3]][node_label]] | |||
+ [G[pattern[3]][pattern[0]][edge_label]] | |||
+ canonlist3) | |||
canonkey_t2 = tuple(['c'] + [G.node[pattern[3]][node_label]] + canonlist3 | |||
+ [G.node[pattern[0]][node_label]] | |||
+ [G[pattern[0]][pattern[3]][edge_label]] | |||
+ canonlist0) | |||
treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2) | |||
canonkey_l.update(Counter(treelet)) | |||
# pattern 9 | |||
treelet = [] | |||
for pattern in patterns['9']: | |||
canonkey2 = G.node[pattern[4]][node_label] + G[pattern[4]][pattern[2]][edge_label] | |||
canonkey3 = G.node[pattern[5]][node_label] + G[pattern[5]][pattern[3]][edge_label] | |||
prekey2 = G.node[pattern[2]][node_label] + G[pattern[2]][pattern[0]][edge_label] | |||
prekey3 = G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] | |||
canonkey2 = [G.node[pattern[4]][node_label], G[pattern[4]][pattern[2]][edge_label]] | |||
canonkey3 = [G.node[pattern[5]][node_label], G[pattern[5]][pattern[3]][edge_label]] | |||
prekey2 = [G.node[pattern[2]][node_label], G[pattern[2]][pattern[0]][edge_label]] | |||
prekey3 = [G.node[pattern[3]][node_label], G[pattern[3]][pattern[0]][edge_label]] | |||
if prekey2 + canonkey2 < prekey3 + canonkey3: | |||
canonkey_t = G.node[pattern[1]][node_label] + G[pattern[1]][pattern[0]][edge_label] \ | |||
+ prekey2 + prekey3 + canonkey2 + canonkey3 | |||
canonkey_t = [G.node[pattern[1]][node_label]] \ | |||
+ [G[pattern[1]][pattern[0]][edge_label]] \ | |||
+ prekey2 + prekey3 + canonkey2 + canonkey3 | |||
else: | |||
canonkey_t = G.node[pattern[1]][node_label] + G[pattern[1]][pattern[0]][edge_label] \ | |||
+ prekey3 + prekey2 + canonkey3 + canonkey2 | |||
treelet.append('9' + G.node[pattern[0]][node_label] + canonkey_t) | |||
canonkey_t = [G.node[pattern[1]][node_label]] \ | |||
+ [G[pattern[1]][pattern[0]][edge_label]] \ | |||
+ prekey3 + prekey2 + canonkey3 + canonkey2 | |||
treelet.append(tuple(['9'] + [G.node[pattern[0]][node_label]] + canonkey_t)) | |||
canonkey_l.update(Counter(treelet)) | |||
return canonkey_l | |||
@@ -84,7 +84,7 @@ def loadGXL(filename): | |||
return g | |||
def saveGXL(graph, filename, method='gedlib'): | |||
def saveGXL(graph, filename, method='gedlib-letter'): | |||
if method == 'benoit': | |||
import xml.etree.ElementTree as ET | |||
root_node = ET.Element('gxl') | |||
@@ -142,6 +142,24 @@ def saveGXL(graph, filename, method='gedlib'): | |||
gxl_file.write("</graph>\n") | |||
gxl_file.write("</gxl>\n") | |||
gxl_file.close() | |||
elif method == 'gedlib-letter': | |||
# reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22 | |||
# and https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/Letter/HIGH/AP1_0000.gxl | |||
gxl_file = open(filename, 'w') | |||
gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n") | |||
gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n") | |||
gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n") | |||
gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"false\" edgemode=\"undirected\">") | |||
for v, attrs in graph.nodes(data=True): | |||
gxl_file.write("<node id=\"_" + str(v) + "\">") | |||
gxl_file.write("<attr name=\"x\"><float>" + str(attrs['attributes'][0]) + "</float></attr>") | |||
gxl_file.write("<attr name=\"y\"><float>" + str(attrs['attributes'][1]) + "</float></attr>") | |||
gxl_file.write("</node>") | |||
for v1, v2, attrs in graph.edges(data=True): | |||
gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\"/>") | |||
gxl_file.write("</graph>") | |||
gxl_file.write("</gxl>") | |||
gxl_file.close() | |||
def loadSDF(filename): | |||
@@ -227,9 +227,9 @@ def model_selection_for_precomputed_kernel(datafile, | |||
str_fw += '\nall gram matrices are ignored, no results obtained.\n\n' | |||
else: | |||
# save gram matrices to file. | |||
np.savez(results_dir + '/' + ds_name + '.gm', | |||
gms=gram_matrices, params=param_list_pre_revised, y=y, | |||
gmtime=gram_matrix_time) | |||
# np.savez(results_dir + '/' + ds_name + '.gm', | |||
# gms=gram_matrices, params=param_list_pre_revised, y=y, | |||
# gmtime=gram_matrix_time) | |||
if verbose: | |||
print( | |||
'3. Fitting and predicting using nested cross validation. This could really take a while...' | |||