From c0ee0e9c6f7ebd589ead016f36044aa2ebedbfcb Mon Sep 17 00:00:00 2001 From: linlin Date: Tue, 6 Oct 2020 17:27:43 +0200 Subject: [PATCH] New translations svm.m4 (French) --- .../gedlib/lib/libsvm.3.22/java/libsvm/svm.m4 | 2860 ++++++++++++++++++++ 1 file changed, 2860 insertions(+) create mode 100644 lang/fr/gklearn/gedlib/lib/libsvm.3.22/java/libsvm/svm.m4 diff --git a/lang/fr/gklearn/gedlib/lib/libsvm.3.22/java/libsvm/svm.m4 b/lang/fr/gklearn/gedlib/lib/libsvm.3.22/java/libsvm/svm.m4 new file mode 100644 index 0000000..ca2621d --- /dev/null +++ b/lang/fr/gklearn/gedlib/lib/libsvm.3.22/java/libsvm/svm.m4 @@ -0,0 +1,2860 @@ +define(`swap',`do {$1 tmp=$2; $2=$3; $3=tmp;} while(false)') +define(`Qfloat',`float') +define(`SIZE_OF_QFLOAT',4) +define(`TAU',1e-12) +changecom(`//',`') +package libsvm; +import java.io.*; +import java.util.*; + +// +// Kernel Cache +// +// l is the number of total data items +// size is the cache size limit in bytes +// +class Cache { + private final int l; + private long size; + private final class head_t + { + head_t prev, next; // a cicular list + Qfloat[] data; + int len; // data[0,len) is cached in this entry + } + private final head_t[] head; + private head_t lru_head; + + Cache(int l_, long size_) + { + l = l_; + size = size_; + head = new head_t[l]; + for(int i=0;i= len if nothing needs to be filled) + // java: simulate pointer using single-element array + int get_data(int index, Qfloat[][] data, int len) + { + head_t h = head[index]; + if(h.len > 0) lru_delete(h); + int more = len - h.len; + + if(more > 0) + { + // free old space + while(size < more) + { + head_t old = lru_head.next; + lru_delete(old); + size += old.len; + old.data = null; + old.len = 0; + } + + // allocate new space + Qfloat[] new_data = new Qfloat[len]; + if(h.data != null) System.arraycopy(h.data,0,new_data,0,h.len); + h.data = new_data; + size -= more; + swap(int,h.len,len); + } + + lru_insert(h); + data[0] = h.data; + return len; + } + + void swap_index(int i, int j) + { + if(i==j) return; + + if(head[i].len > 0) lru_delete(head[i]); + if(head[j].len > 0) lru_delete(head[j]); + swap(Qfloat[],head[i].data,head[j].data); + swap(int,head[i].len,head[j].len); + if(head[i].len > 0) lru_insert(head[i]); + if(head[j].len > 0) lru_insert(head[j]); + + if(i>j) swap(int,i,j); + for(head_t h = lru_head.next; h!=lru_head; h=h.next) + { + if(h.len > i) + { + if(h.len > j) + swap(Qfloat,h.data[i],h.data[j]); + else + { + // give up + lru_delete(h); + size += h.len; + h.data = null; + h.len = 0; + } + } + } + } +} + +// +// Kernel evaluation +// +// the static method k_function is for doing single kernel evaluation +// the constructor of Kernel prepares to calculate the l*l kernel matrix +// the member function get_Q is for getting one column from the Q Matrix +// +abstract class QMatrix { + abstract Qfloat[] get_Q(int column, int len); + abstract double[] get_QD(); + abstract void swap_index(int i, int j); +}; + +abstract class Kernel extends QMatrix { + private svm_node[][] x; + private final double[] x_square; + + // svm_parameter + private final int kernel_type; + private final int degree; + private final double gamma; + private final double coef0; + + abstract Qfloat[] get_Q(int column, int len); + abstract double[] get_QD(); + + void swap_index(int i, int j) + { + swap(svm_node[],x[i],x[j]); + if(x_square != null) swap(double,x_square[i],x_square[j]); + } + + private static double powi(double base, int times) + { + double tmp = base, ret = 1.0; + + for(int t=times; t>0; t/=2) + { + if(t%2==1) ret*=tmp; + tmp = tmp * tmp; + } + return ret; + } + + double kernel_function(int i, int j) + { + switch(kernel_type) + { + case svm_parameter.LINEAR: + return dot(x[i],x[j]); + case svm_parameter.POLY: + return powi(gamma*dot(x[i],x[j])+coef0,degree); + case svm_parameter.RBF: + return Math.exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j]))); + case svm_parameter.SIGMOID: + return Math.tanh(gamma*dot(x[i],x[j])+coef0); + case svm_parameter.PRECOMPUTED: + return x[i][(int)(x[j][0].value)].value; + default: + return 0; // java + } + } + + Kernel(int l, svm_node[][] x_, svm_parameter param) + { + this.kernel_type = param.kernel_type; + this.degree = param.degree; + this.gamma = param.gamma; + this.coef0 = param.coef0; + + x = (svm_node[][])x_.clone(); + + if(kernel_type == svm_parameter.RBF) + { + x_square = new double[l]; + for(int i=0;i y[j].index) + ++j; + else + ++i; + } + } + return sum; + } + + static double k_function(svm_node[] x, svm_node[] y, + svm_parameter param) + { + switch(param.kernel_type) + { + case svm_parameter.LINEAR: + return dot(x,y); + case svm_parameter.POLY: + return powi(param.gamma*dot(x,y)+param.coef0,param.degree); + case svm_parameter.RBF: + { + double sum = 0; + int xlen = x.length; + int ylen = y.length; + int i = 0; + int j = 0; + while(i < xlen && j < ylen) + { + if(x[i].index == y[j].index) + { + double d = x[i++].value - y[j++].value; + sum += d*d; + } + else if(x[i].index > y[j].index) + { + sum += y[j].value * y[j].value; + ++j; + } + else + { + sum += x[i].value * x[i].value; + ++i; + } + } + + while(i < xlen) + { + sum += x[i].value * x[i].value; + ++i; + } + + while(j < ylen) + { + sum += y[j].value * y[j].value; + ++j; + } + + return Math.exp(-param.gamma*sum); + } + case svm_parameter.SIGMOID: + return Math.tanh(param.gamma*dot(x,y)+param.coef0); + case svm_parameter.PRECOMPUTED: + return x[(int)(y[0].value)].value; + default: + return 0; // java + } + } +} + +// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918 +// Solves: +// +// min 0.5(\alpha^T Q \alpha) + p^T \alpha +// +// y^T \alpha = \delta +// y_i = +1 or -1 +// 0 <= alpha_i <= Cp for y_i = 1 +// 0 <= alpha_i <= Cn for y_i = -1 +// +// Given: +// +// Q, p, y, Cp, Cn, and an initial feasible point \alpha +// l is the size of vectors and matrices +// eps is the stopping tolerance +// +// solution will be put in \alpha, objective value will be put in obj +// +class Solver { + int active_size; + byte[] y; + double[] G; // gradient of objective function + static final byte LOWER_BOUND = 0; + static final byte UPPER_BOUND = 1; + static final byte FREE = 2; + byte[] alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE + double[] alpha; + QMatrix Q; + double[] QD; + double eps; + double Cp,Cn; + double[] p; + int[] active_set; + double[] G_bar; // gradient, if we treat free variables as 0 + int l; + boolean unshrink; // XXX + + static final double INF = java.lang.Double.POSITIVE_INFINITY; + + double get_C(int i) + { + return (y[i] > 0)? Cp : Cn; + } + void update_alpha_status(int i) + { + if(alpha[i] >= get_C(i)) + alpha_status[i] = UPPER_BOUND; + else if(alpha[i] <= 0) + alpha_status[i] = LOWER_BOUND; + else alpha_status[i] = FREE; + } + boolean is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; } + boolean is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; } + boolean is_free(int i) { return alpha_status[i] == FREE; } + + // java: information about solution except alpha, + // because we cannot return multiple values otherwise... + static class SolutionInfo { + double obj; + double rho; + double upper_bound_p; + double upper_bound_n; + double r; // for Solver_NU + } + + void swap_index(int i, int j) + { + Q.swap_index(i,j); + swap(byte, y[i],y[j]); + swap(double, G[i],G[j]); + swap(byte, alpha_status[i],alpha_status[j]); + swap(double, alpha[i],alpha[j]); + swap(double, p[i],p[j]); + swap(int, active_set[i],active_set[j]); + swap(double, G_bar[i],G_bar[j]); + } + + void reconstruct_gradient() + { + // reconstruct inactive elements of G from G_bar and free variables + + if(active_size == l) return; + + int i,j; + int nr_free = 0; + + for(j=active_size;j 2*active_size*(l-active_size)) + { + for(i=active_size;iInteger.MAX_VALUE/100 ? Integer.MAX_VALUE : 100*l); + int counter = Math.min(l,1000)+1; + int[] working_set = new int[2]; + + while(iter < max_iter) + { + // show progress and do shrinking + + if(--counter == 0) + { + counter = Math.min(l,1000); + if(shrinking!=0) do_shrinking(); + svm.info("."); + } + + if(select_working_set(working_set)!=0) + { + // reconstruct the whole gradient + reconstruct_gradient(); + // reset active set size and check + active_size = l; + svm.info("*"); + if(select_working_set(working_set)!=0) + break; + else + counter = 1; // do shrinking next iteration + } + + int i = working_set[0]; + int j = working_set[1]; + + ++iter; + + // update alpha[i] and alpha[j], handle bounds carefully + + Qfloat[] Q_i = Q.get_Q(i,active_size); + Qfloat[] Q_j = Q.get_Q(j,active_size); + + double C_i = get_C(i); + double C_j = get_C(j); + + double old_alpha_i = alpha[i]; + double old_alpha_j = alpha[j]; + + if(y[i]!=y[j]) + { + double quad_coef = QD[i]+QD[j]+2*Q_i[j]; + if (quad_coef <= 0) + quad_coef = TAU; + double delta = (-G[i]-G[j])/quad_coef; + double diff = alpha[i] - alpha[j]; + alpha[i] += delta; + alpha[j] += delta; + + if(diff > 0) + { + if(alpha[j] < 0) + { + alpha[j] = 0; + alpha[i] = diff; + } + } + else + { + if(alpha[i] < 0) + { + alpha[i] = 0; + alpha[j] = -diff; + } + } + if(diff > C_i - C_j) + { + if(alpha[i] > C_i) + { + alpha[i] = C_i; + alpha[j] = C_i - diff; + } + } + else + { + if(alpha[j] > C_j) + { + alpha[j] = C_j; + alpha[i] = C_j + diff; + } + } + } + else + { + double quad_coef = QD[i]+QD[j]-2*Q_i[j]; + if (quad_coef <= 0) + quad_coef = TAU; + double delta = (G[i]-G[j])/quad_coef; + double sum = alpha[i] + alpha[j]; + alpha[i] -= delta; + alpha[j] += delta; + + if(sum > C_i) + { + if(alpha[i] > C_i) + { + alpha[i] = C_i; + alpha[j] = sum - C_i; + } + } + else + { + if(alpha[j] < 0) + { + alpha[j] = 0; + alpha[i] = sum; + } + } + if(sum > C_j) + { + if(alpha[j] > C_j) + { + alpha[j] = C_j; + alpha[i] = sum - C_j; + } + } + else + { + if(alpha[i] < 0) + { + alpha[i] = 0; + alpha[j] = sum; + } + } + } + + // update G + + double delta_alpha_i = alpha[i] - old_alpha_i; + double delta_alpha_j = alpha[j] - old_alpha_j; + + for(int k=0;k= max_iter) + { + if(active_size < l) + { + // reconstruct the whole gradient to calculate objective value + reconstruct_gradient(); + active_size = l; + svm.info("*"); + } + System.err.print("\nWARNING: reaching max number of iterations\n"); + } + + // calculate rho + + si.rho = calculate_rho(); + + // calculate objective value + { + double v = 0; + int i; + for(i=0;i= Gmax) + { + Gmax = -G[t]; + Gmax_idx = t; + } + } + else + { + if(!is_lower_bound(t)) + if(G[t] >= Gmax) + { + Gmax = G[t]; + Gmax_idx = t; + } + } + + int i = Gmax_idx; + Qfloat[] Q_i = null; + if(i != -1) // null Q_i not accessed: Gmax=-INF if i=-1 + Q_i = Q.get_Q(i,active_size); + + for(int j=0;j= Gmax2) + Gmax2 = G[j]; + if (grad_diff > 0) + { + double obj_diff; + double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j]; + if (quad_coef > 0) + obj_diff = -(grad_diff*grad_diff)/quad_coef; + else + obj_diff = -(grad_diff*grad_diff)/TAU; + + if (obj_diff <= obj_diff_min) + { + Gmin_idx=j; + obj_diff_min = obj_diff; + } + } + } + } + else + { + if (!is_upper_bound(j)) + { + double grad_diff= Gmax-G[j]; + if (-G[j] >= Gmax2) + Gmax2 = -G[j]; + if (grad_diff > 0) + { + double obj_diff; + double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j]; + if (quad_coef > 0) + obj_diff = -(grad_diff*grad_diff)/quad_coef; + else + obj_diff = -(grad_diff*grad_diff)/TAU; + + if (obj_diff <= obj_diff_min) + { + Gmin_idx=j; + obj_diff_min = obj_diff; + } + } + } + } + } + + if(Gmax+Gmax2 < eps || Gmin_idx == -1) + return 1; + + working_set[0] = Gmax_idx; + working_set[1] = Gmin_idx; + return 0; + } + + private boolean be_shrunk(int i, double Gmax1, double Gmax2) + { + if(is_upper_bound(i)) + { + if(y[i]==+1) + return(-G[i] > Gmax1); + else + return(-G[i] > Gmax2); + } + else if(is_lower_bound(i)) + { + if(y[i]==+1) + return(G[i] > Gmax2); + else + return(G[i] > Gmax1); + } + else + return(false); + } + + void do_shrinking() + { + int i; + double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) } + double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) } + + // find maximal violating pair first + for(i=0;i= Gmax1) + Gmax1 = -G[i]; + } + if(!is_lower_bound(i)) + { + if(G[i] >= Gmax2) + Gmax2 = G[i]; + } + } + else + { + if(!is_upper_bound(i)) + { + if(-G[i] >= Gmax2) + Gmax2 = -G[i]; + } + if(!is_lower_bound(i)) + { + if(G[i] >= Gmax1) + Gmax1 = G[i]; + } + } + } + + if(unshrink == false && Gmax1 + Gmax2 <= eps*10) + { + unshrink = true; + reconstruct_gradient(); + active_size = l; + } + + for(i=0;i i) + { + if (!be_shrunk(active_size, Gmax1, Gmax2)) + { + swap_index(i,active_size); + break; + } + active_size--; + } + } + } + + double calculate_rho() + { + double r; + int nr_free = 0; + double ub = INF, lb = -INF, sum_free = 0; + for(int i=0;i 0) + ub = Math.min(ub,yG); + else + lb = Math.max(lb,yG); + } + else if(is_upper_bound(i)) + { + if(y[i] < 0) + ub = Math.min(ub,yG); + else + lb = Math.max(lb,yG); + } + else + { + ++nr_free; + sum_free += yG; + } + } + + if(nr_free>0) + r = sum_free/nr_free; + else + r = (ub+lb)/2; + + return r; + } + +} + +// +// Solver for nu-svm classification and regression +// +// additional constraint: e^T \alpha = constant +// +final class Solver_NU extends Solver +{ + private SolutionInfo si; + + void Solve(int l, QMatrix Q, double[] p, byte[] y, + double[] alpha, double Cp, double Cn, double eps, + SolutionInfo si, int shrinking) + { + this.si = si; + super.Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking); + } + + // return 1 if already optimal, return 0 otherwise + int select_working_set(int[] working_set) + { + // return i,j such that y_i = y_j and + // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) + // j: minimizes the decrease of obj value + // (if quadratic coefficeint <= 0, replace it with tau) + // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) + + double Gmaxp = -INF; + double Gmaxp2 = -INF; + int Gmaxp_idx = -1; + + double Gmaxn = -INF; + double Gmaxn2 = -INF; + int Gmaxn_idx = -1; + + int Gmin_idx = -1; + double obj_diff_min = INF; + + for(int t=0;t= Gmaxp) + { + Gmaxp = -G[t]; + Gmaxp_idx = t; + } + } + else + { + if(!is_lower_bound(t)) + if(G[t] >= Gmaxn) + { + Gmaxn = G[t]; + Gmaxn_idx = t; + } + } + + int ip = Gmaxp_idx; + int in = Gmaxn_idx; + Qfloat[] Q_ip = null; + Qfloat[] Q_in = null; + if(ip != -1) // null Q_ip not accessed: Gmaxp=-INF if ip=-1 + Q_ip = Q.get_Q(ip,active_size); + if(in != -1) + Q_in = Q.get_Q(in,active_size); + + for(int j=0;j= Gmaxp2) + Gmaxp2 = G[j]; + if (grad_diff > 0) + { + double obj_diff; + double quad_coef = QD[ip]+QD[j]-2*Q_ip[j]; + if (quad_coef > 0) + obj_diff = -(grad_diff*grad_diff)/quad_coef; + else + obj_diff = -(grad_diff*grad_diff)/TAU; + + if (obj_diff <= obj_diff_min) + { + Gmin_idx=j; + obj_diff_min = obj_diff; + } + } + } + } + else + { + if (!is_upper_bound(j)) + { + double grad_diff=Gmaxn-G[j]; + if (-G[j] >= Gmaxn2) + Gmaxn2 = -G[j]; + if (grad_diff > 0) + { + double obj_diff; + double quad_coef = QD[in]+QD[j]-2*Q_in[j]; + if (quad_coef > 0) + obj_diff = -(grad_diff*grad_diff)/quad_coef; + else + obj_diff = -(grad_diff*grad_diff)/TAU; + + if (obj_diff <= obj_diff_min) + { + Gmin_idx=j; + obj_diff_min = obj_diff; + } + } + } + } + } + + if(Math.max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps || Gmin_idx == -1) + return 1; + + if(y[Gmin_idx] == +1) + working_set[0] = Gmaxp_idx; + else + working_set[0] = Gmaxn_idx; + working_set[1] = Gmin_idx; + + return 0; + } + + private boolean be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) + { + if(is_upper_bound(i)) + { + if(y[i]==+1) + return(-G[i] > Gmax1); + else + return(-G[i] > Gmax4); + } + else if(is_lower_bound(i)) + { + if(y[i]==+1) + return(G[i] > Gmax2); + else + return(G[i] > Gmax3); + } + else + return(false); + } + + void do_shrinking() + { + double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) } + double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) } + double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) } + double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) } + + // find maximal violating pair first + int i; + for(i=0;i Gmax1) Gmax1 = -G[i]; + } + else if(-G[i] > Gmax4) Gmax4 = -G[i]; + } + if(!is_lower_bound(i)) + { + if(y[i]==+1) + { + if(G[i] > Gmax2) Gmax2 = G[i]; + } + else if(G[i] > Gmax3) Gmax3 = G[i]; + } + } + + if(unshrink == false && Math.max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) + { + unshrink = true; + reconstruct_gradient(); + active_size = l; + } + + for(i=0;i i) + { + if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) + { + swap_index(i,active_size); + break; + } + active_size--; + } + } + } + + double calculate_rho() + { + int nr_free1 = 0,nr_free2 = 0; + double ub1 = INF, ub2 = INF; + double lb1 = -INF, lb2 = -INF; + double sum_free1 = 0, sum_free2 = 0; + + for(int i=0;i 0) + r1 = sum_free1/nr_free1; + else + r1 = (ub1+lb1)/2; + + if(nr_free2 > 0) + r2 = sum_free2/nr_free2; + else + r2 = (ub2+lb2)/2; + + si.r = (r1+r2)/2; + return (r1-r2)/2; + } +} + +// +// Q matrices for various formulations +// +class SVC_Q extends Kernel +{ + private final byte[] y; + private final Cache cache; + private final double[] QD; + + SVC_Q(svm_problem prob, svm_parameter param, byte[] y_) + { + super(prob.l, prob.x, param); + y = (byte[])y_.clone(); + cache = new Cache(prob.l,(long)(param.cache_size*(1<<20))); + QD = new double[prob.l]; + for(int i=0;i 0) y[i] = +1; else y[i] = -1; + } + + Solver s = new Solver(); + s.Solve(l, new SVC_Q(prob,param,y), minus_ones, y, + alpha, Cp, Cn, param.eps, si, param.shrinking); + + double sum_alpha=0; + for(i=0;i0) + y[i] = +1; + else + y[i] = -1; + + double sum_pos = nu*l/2; + double sum_neg = nu*l/2; + + for(i=0;i 0) + { + ++nSV; + if(prob.y[i] > 0) + { + if(Math.abs(alpha[i]) >= si.upper_bound_p) + ++nBSV; + } + else + { + if(Math.abs(alpha[i]) >= si.upper_bound_n) + ++nBSV; + } + } + } + + svm.info("nSV = "+nSV+", nBSV = "+nBSV+"\n"); + + decision_function f = new decision_function(); + f.alpha = alpha; + f.rho = si.rho; + return f; + } + + // Platt's binary SVM Probablistic Output: an improvement from Lin et al. + private static void sigmoid_train(int l, double[] dec_values, double[] labels, + double[] probAB) + { + double A, B; + double prior1=0, prior0 = 0; + int i; + + for (i=0;i 0) prior1+=1; + else prior0+=1; + + int max_iter=100; // Maximal number of iterations + double min_step=1e-10; // Minimal step taken in line search + double sigma=1e-12; // For numerically strict PD of Hessian + double eps=1e-5; + double hiTarget=(prior1+1.0)/(prior1+2.0); + double loTarget=1/(prior0+2.0); + double[] t= new double[l]; + double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; + double newA,newB,newf,d1,d2; + int iter; + + // Initial Point and Initial Fun Value + A=0.0; B=Math.log((prior0+1.0)/(prior1+1.0)); + double fval = 0.0; + + for (i=0;i0) t[i]=hiTarget; + else t[i]=loTarget; + fApB = dec_values[i]*A+B; + if (fApB>=0) + fval += t[i]*fApB + Math.log(1+Math.exp(-fApB)); + else + fval += (t[i] - 1)*fApB +Math.log(1+Math.exp(fApB)); + } + for (iter=0;iter= 0) + { + p=Math.exp(-fApB)/(1.0+Math.exp(-fApB)); + q=1.0/(1.0+Math.exp(-fApB)); + } + else + { + p=1.0/(1.0+Math.exp(fApB)); + q=Math.exp(fApB)/(1.0+Math.exp(fApB)); + } + d2=p*q; + h11+=dec_values[i]*dec_values[i]*d2; + h22+=d2; + h21+=dec_values[i]*d2; + d1=t[i]-p; + g1+=dec_values[i]*d1; + g2+=d1; + } + + // Stopping Criteria + if (Math.abs(g1)= min_step) + { + newA = A + stepsize * dA; + newB = B + stepsize * dB; + + // New function value + newf = 0.0; + for (i=0;i= 0) + newf += t[i]*fApB + Math.log(1+Math.exp(-fApB)); + else + newf += (t[i] - 1)*fApB +Math.log(1+Math.exp(fApB)); + } + // Check sufficient decrease + if (newf=max_iter) + svm.info("Reaching maximal iterations in two-class probability estimates\n"); + probAB[0]=A;probAB[1]=B; + } + + private static double sigmoid_predict(double decision_value, double A, double B) + { + double fApB = decision_value*A+B; + if (fApB >= 0) + return Math.exp(-fApB)/(1.0+Math.exp(-fApB)); + else + return 1.0/(1+Math.exp(fApB)) ; + } + + // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng + private static void multiclass_probability(int k, double[][] r, double[] p) + { + int t,j; + int iter = 0, max_iter=Math.max(100,k); + double[][] Q=new double[k][k]; + double[] Qp=new double[k]; + double pQp, eps=0.005/k; + + for (t=0;tmax_error) + max_error=error; + } + if (max_error=max_iter) + svm.info("Exceeds max_iter in multiclass_prob\n"); + } + + // Cross-validation decision values for probability estimates + private static void svm_binary_svc_probability(svm_problem prob, svm_parameter param, double Cp, double Cn, double[] probAB) + { + int i; + int nr_fold = 5; + int[] perm = new int[prob.l]; + double[] dec_values = new double[prob.l]; + + // random shuffle + for(i=0;i0) + p_count++; + else + n_count++; + + if(p_count==0 && n_count==0) + for(j=begin;j 0 && n_count == 0) + for(j=begin;j 0) + for(j=begin;j 5*std) + count=count+1; + else + mae+=Math.abs(ymv[i]); + mae /= (prob.l-count); + svm.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma="+mae+"\n"); + return mae; + } + + // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data + // perm, length l, must be allocated before calling this subroutine + private static void svm_group_classes(svm_problem prob, int[] nr_class_ret, int[][] label_ret, int[][] start_ret, int[][] count_ret, int[] perm) + { + int l = prob.l; + int max_nr_class = 16; + int nr_class = 0; + int[] label = new int[max_nr_class]; + int[] count = new int[max_nr_class]; + int[] data_label = new int[l]; + int i; + + for(i=0;i 0) ++nSV; + model.l = nSV; + model.SV = new svm_node[nSV][]; + model.sv_coef[0] = new double[nSV]; + model.sv_indices = new int[nSV]; + int j = 0; + for(i=0;i 0) + { + model.SV[j] = prob.x[i]; + model.sv_coef[0][j] = f.alpha[i]; + model.sv_indices[j] = i+1; + ++j; + } + } + else + { + // classification + int l = prob.l; + int[] tmp_nr_class = new int[1]; + int[][] tmp_label = new int[1][]; + int[][] tmp_start = new int[1][]; + int[][] tmp_count = new int[1][]; + int[] perm = new int[l]; + + // group training data of the same class + svm_group_classes(prob,tmp_nr_class,tmp_label,tmp_start,tmp_count,perm); + int nr_class = tmp_nr_class[0]; + int[] label = tmp_label[0]; + int[] start = tmp_start[0]; + int[] count = tmp_count[0]; + + if(nr_class == 1) + svm.info("WARNING: training data in only one class. See README for details.\n"); + + svm_node[][] x = new svm_node[l][]; + int i; + for(i=0;i 0) + nonzero[si+k] = true; + for(k=0;k 0) + nonzero[sj+k] = true; + ++p; + } + + // build output + + model.nr_class = nr_class; + + model.label = new int[nr_class]; + for(i=0;i some folds may have zero elements + if((param.svm_type == svm_parameter.C_SVC || + param.svm_type == svm_parameter.NU_SVC) && nr_fold < l) + { + int[] tmp_nr_class = new int[1]; + int[][] tmp_label = new int[1][]; + int[][] tmp_start = new int[1][]; + int[][] tmp_count = new int[1][]; + + svm_group_classes(prob,tmp_nr_class,tmp_label,tmp_start,tmp_count,perm); + + int nr_class = tmp_nr_class[0]; + int[] start = tmp_start[0]; + int[] count = tmp_count[0]; + + // random shuffle and then data grouped by fold using the array perm + int[] fold_count = new int[nr_fold]; + int c; + int[] index = new int[l]; + for(i=0;i0)?1:-1; + else + return sum; + } + else + { + int nr_class = model.nr_class; + int l = model.l; + + double[] kvalue = new double[l]; + for(i=0;i 0) + ++vote[i]; + else + ++vote[j]; + p++; + } + + int vote_max_idx = 0; + for(i=1;i vote[vote_max_idx]) + vote_max_idx = i; + + return model.label[vote_max_idx]; + } + } + + public static double svm_predict(svm_model model, svm_node[] x) + { + int nr_class = model.nr_class; + double[] dec_values; + if(model.param.svm_type == svm_parameter.ONE_CLASS || + model.param.svm_type == svm_parameter.EPSILON_SVR || + model.param.svm_type == svm_parameter.NU_SVR) + dec_values = new double[1]; + else + dec_values = new double[nr_class*(nr_class-1)/2]; + double pred_result = svm_predict_values(model, x, dec_values); + return pred_result; + } + + public static double svm_predict_probability(svm_model model, svm_node[] x, double[] prob_estimates) + { + if ((model.param.svm_type == svm_parameter.C_SVC || model.param.svm_type == svm_parameter.NU_SVC) && + model.probA!=null && model.probB!=null) + { + int i; + int nr_class = model.nr_class; + double[] dec_values = new double[nr_class*(nr_class-1)/2]; + svm_predict_values(model, x, dec_values); + + double min_prob=1e-7; + double[][] pairwise_prob=new double[nr_class][nr_class]; + + int k=0; + for(i=0;i prob_estimates[prob_max_idx]) + prob_max_idx = i; + return model.label[prob_max_idx]; + } + else + return svm_predict(model, x); + } + + static final String svm_type_table[] = + { + "c_svc","nu_svc","one_class","epsilon_svr","nu_svr", + }; + + static final String kernel_type_table[]= + { + "linear","polynomial","rbf","sigmoid","precomputed" + }; + + public static void svm_save_model(String model_file_name, svm_model model) throws IOException + { + DataOutputStream fp = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(model_file_name))); + + svm_parameter param = model.param; + + fp.writeBytes("svm_type "+svm_type_table[param.svm_type]+"\n"); + fp.writeBytes("kernel_type "+kernel_type_table[param.kernel_type]+"\n"); + + if(param.kernel_type == svm_parameter.POLY) + fp.writeBytes("degree "+param.degree+"\n"); + + if(param.kernel_type == svm_parameter.POLY || + param.kernel_type == svm_parameter.RBF || + param.kernel_type == svm_parameter.SIGMOID) + fp.writeBytes("gamma "+param.gamma+"\n"); + + if(param.kernel_type == svm_parameter.POLY || + param.kernel_type == svm_parameter.SIGMOID) + fp.writeBytes("coef0 "+param.coef0+"\n"); + + int nr_class = model.nr_class; + int l = model.l; + fp.writeBytes("nr_class "+nr_class+"\n"); + fp.writeBytes("total_sv "+l+"\n"); + + { + fp.writeBytes("rho"); + for(int i=0;i 1) + return "nu <= 0 or nu > 1"; + + if(svm_type == svm_parameter.EPSILON_SVR) + if(param.p < 0) + return "p < 0"; + + if(param.shrinking != 0 && + param.shrinking != 1) + return "shrinking != 0 and shrinking != 1"; + + if(param.probability != 0 && + param.probability != 1) + return "probability != 0 and probability != 1"; + + if(param.probability == 1 && + svm_type == svm_parameter.ONE_CLASS) + return "one-class SVM probability output not supported yet"; + + // check whether nu-svc is feasible + + if(svm_type == svm_parameter.NU_SVC) + { + int l = prob.l; + int max_nr_class = 16; + int nr_class = 0; + int[] label = new int[max_nr_class]; + int[] count = new int[max_nr_class]; + + int i; + for(i=0;i Math.min(n1,n2)) + return "specified nu is infeasible"; + } + } + } + + return null; + } + + public static int svm_check_probability_model(svm_model model) + { + if (((model.param.svm_type == svm_parameter.C_SVC || model.param.svm_type == svm_parameter.NU_SVC) && + model.probA!=null && model.probB!=null) || + ((model.param.svm_type == svm_parameter.EPSILON_SVR || model.param.svm_type == svm_parameter.NU_SVR) && + model.probA!=null)) + return 1; + else + return 0; + } + + public static void svm_set_print_string_function(svm_print_interface print_func) + { + if (print_func == null) + svm_print_string = svm_print_stdout; + else + svm_print_string = print_func; + } +}