diff --git a/gklearn/ged/util/util.py b/gklearn/ged/util/util.py index 35e692f..7453b65 100644 --- a/gklearn/ged/util/util.py +++ b/gklearn/ged/util/util.py @@ -138,7 +138,7 @@ def compute_geds_cml(graphs, options={}, sort=True, parallel=False, verbose=True return ged_vec, ged_mat, n_edit_operations -def compute_geds(graphs, options={}, sort=True, trial=1, parallel=False, verbose=True): +def compute_geds(graphs, options={}, sort=True, repeats=1, parallel=False, verbose=True): from gklearn.gedlib import librariesImport, gedlibpy # initialize ged env. @@ -173,7 +173,7 @@ def compute_geds(graphs, options={}, sort=True, trial=1, parallel=False, verbose G_graphs = graphs_toshare G_ged_env = ged_env_toshare G_listID = listID_toshare - do_partial = partial(_wrapper_compute_ged_parallel, neo_options, sort, trial) + do_partial = partial(_wrapper_compute_ged_parallel, neo_options, sort, repeats) pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(graphs, ged_env, listID)) if verbose: iterator = tqdm(pool.imap_unordered(do_partial, itr, chunksize), @@ -203,9 +203,9 @@ def compute_geds(graphs, options={}, sort=True, trial=1, parallel=False, verbose # for i in range(len(graphs)): for j in range(i + 1, len(graphs)): if nx.number_of_nodes(graphs[i]) <= nx.number_of_nodes(graphs[j]) or not sort: - dis, pi_forward, pi_backward = _compute_ged(ged_env, listID[i], listID[j], graphs[i], graphs[j], trial) + dis, pi_forward, pi_backward = _compute_ged(ged_env, listID[i], listID[j], graphs[i], graphs[j], repeats) else: - dis, pi_backward, pi_forward = _compute_ged(ged_env, listID[j], listID[i], graphs[j], graphs[i], trial) + dis, pi_backward, pi_forward = _compute_ged(ged_env, listID[j], listID[i], graphs[j], graphs[i], repeats) ged_vec.append(dis) ged_mat[i][j] = dis ged_mat[j][i] = dis @@ -215,25 +215,25 @@ def compute_geds(graphs, options={}, sort=True, trial=1, parallel=False, verbose return ged_vec, ged_mat, n_edit_operations -def _wrapper_compute_ged_parallel(options, sort, trial, itr): +def _wrapper_compute_ged_parallel(options, sort, repeats, itr): i = itr[0] j = itr[1] - dis, n_eo_tmp = _compute_ged_parallel(G_ged_env, G_listID[i], G_listID[j], G_graphs[i], G_graphs[j], options, sort, trial) + dis, n_eo_tmp = _compute_ged_parallel(G_ged_env, G_listID[i], G_listID[j], G_graphs[i], G_graphs[j], options, sort, repeats) return i, j, dis, n_eo_tmp -def _compute_ged_parallel(env, gid1, gid2, g1, g2, options, sort, trial): +def _compute_ged_parallel(env, gid1, gid2, g1, g2, options, sort, repeats): if nx.number_of_nodes(g1) <= nx.number_of_nodes(g2) or not sort: - dis, pi_forward, pi_backward = _compute_ged(env, gid1, gid2, g1, g2, trial) + dis, pi_forward, pi_backward = _compute_ged(env, gid1, gid2, g1, g2, repeats) else: - dis, pi_backward, pi_forward = _compute_ged(env, gid2, gid1, g2, g1, trial) + dis, pi_backward, pi_forward = _compute_ged(env, gid2, gid1, g2, g1, repeats) n_eo_tmp = get_nb_edit_operations(g1, g2, pi_forward, pi_backward, **options) # [0,0,0,0,0,0] return dis, n_eo_tmp -def _compute_ged(env, gid1, gid2, g1, g2, trial): +def _compute_ged(env, gid1, gid2, g1, g2, repeats): dis_min = np.inf - for i in range(0, trial): + for i in range(0, repeats): env.run_method(gid1, gid2) pi_forward = env.get_forward_map(gid1, gid2) pi_backward = env.get_backward_map(gid1, gid2)