diff --git a/lang/zh/gklearn/ged/methods/lsape_based_method.py b/lang/zh/gklearn/ged/methods/lsape_based_method.py new file mode 100644 index 0000000..79f7b9c --- /dev/null +++ b/lang/zh/gklearn/ged/methods/lsape_based_method.py @@ -0,0 +1,254 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Jun 18 16:01:24 2020 + +@author: ljia +""" +import numpy as np +import networkx as nx +from gklearn.ged.methods import GEDMethod +from gklearn.ged.util import LSAPESolver, misc +from gklearn.ged.env import NodeMap + + +class LSAPEBasedMethod(GEDMethod): + + + def __init__(self, ged_data): + super().__init__(ged_data) + self._lsape_model = None # @todo: LSAPESolver::ECBP + self._greedy_method = None # @todo: LSAPESolver::BASIC + self._compute_lower_bound = True + self._solve_optimally = True + self._num_threads = 1 + self._centrality_method = 'NODE' # @todo + self._centrality_weight = 0.7 + self._centralities = {} + self._max_num_solutions = 1 + + + def populate_instance_and_run_as_util(self, g, h): #, lsape_instance): + """ + /*! + * @brief Runs the method with options specified by set_options() and provides access to constructed LSAPE instance. + * @param[in] g Input graph. + * @param[in] h Input graph. + * @param[out] result Result variable. + * @param[out] lsape_instance LSAPE instance. + */ + """ + result = {'node_maps': [], 'lower_bound': 0, 'upper_bound': np.inf} + + # Populate the LSAPE instance and set up the solver. + nb1, nb2 = nx.number_of_nodes(g), nx.number_of_nodes(h) + lsape_instance = np.ones((nb1 + nb2, nb1 + nb2)) * np.inf +# lsape_instance = np.empty((nx.number_of_nodes(g) + 1, nx.number_of_nodes(h) + 1)) + self.populate_instance(g, h, lsape_instance) + +# nb1, nb2 = nx.number_of_nodes(g), nx.number_of_nodes(h) +# lsape_instance_new = np.empty((nb1 + nb2, nb1 + nb2)) * np.inf +# lsape_instance_new[nb1:, nb2:] = 0 +# lsape_instance_new[0:nb1, 0:nb2] = lsape_instance[0:nb1, 0:nb2] +# for i in range(nb1): # all u's neighbor +# lsape_instance_new[i, nb2 + i] = lsape_instance[i, nb2] +# for i in range(nb2): # all u's neighbor +# lsape_instance_new[nb1 + i, i] = lsape_instance[nb2, i] +# lsape_solver = LSAPESolver(lsape_instance_new) + + lsape_solver = LSAPESolver(lsape_instance) + + # Solve the LSAPE instance. + if self._solve_optimally: + lsape_solver.set_model(self._lsape_model) + else: + lsape_solver.set_greedy_method(self._greedy_method) + lsape_solver.solve(self._max_num_solutions) + + # Compute and store lower and upper bound. + if self._compute_lower_bound and self._solve_optimally: + result['lower_bound'] = lsape_solver.minimal_cost() * self._lsape_lower_bound_scaling_factor(g, h) # @todo: test + + for solution_id in range(0, lsape_solver.num_solutions()): + result['node_maps'].append(NodeMap(nx.number_of_nodes(g), nx.number_of_nodes(h))) + misc.construct_node_map_from_solver(lsape_solver, result['node_maps'][-1], solution_id) + self._ged_data.compute_induced_cost(g, h, result['node_maps'][-1]) + + # Add centralities and reoptimize. + if self._centrality_weight > 0 and self._centrality_method != 'NODE': + print('This is not implemented.') + pass # @todo + + # Sort the node maps and set the upper bound. + if len(result['node_maps']) > 1 or len(result['node_maps']) > self._max_num_solutions: + print('This is not implemented.') # @todo: + pass + if len(result['node_maps']) == 0: + result['upper_bound'] = np.inf + else: + result['upper_bound'] = result['node_maps'][0].induced_cost() + + return result + + + + def populate_instance(self, g, h, lsape_instance): + """ + /*! + * @brief Populates the LSAPE instance. + * @param[in] g Input graph. + * @param[in] h Input graph. + * @param[out] lsape_instance LSAPE instance. + */ + """ + if not self._initialized: + pass + # @todo: if (not this->initialized_) { + self._lsape_populate_instance(g, h, lsape_instance) + lsape_instance[nx.number_of_nodes(g):, nx.number_of_nodes(h):] = 0 +# lsape_instance[nx.number_of_nodes(g), nx.number_of_nodes(h)] = 0 + + + ########################################################################### + # Member functions inherited from GEDMethod. + ########################################################################### + + + def _ged_init(self): + self._lsape_pre_graph_init(False) + for graph in self._ged_data._graphs: + self._init_graph(graph) + self._lsape_init() + + + def _ged_run(self, g, h): +# lsape_instance = np.empty((0, 0)) + result = self.populate_instance_and_run_as_util(g, h) # , lsape_instance) + return result + + + def _ged_parse_option(self, option, arg): + is_valid_option = False + + if option == 'threads': # @todo: try.. catch... + self._num_threads = arg + is_valid_option = True + elif option == 'lsape_model': + self._lsape_model = arg # @todo + is_valid_option = True + elif option == 'greedy_method': + self._greedy_method = arg # @todo + is_valid_option = True + elif option == 'optimal': + self._solve_optimally = arg # @todo + is_valid_option = True + elif option == 'centrality_method': + self._centrality_method = arg # @todo + is_valid_option = True + elif option == 'centrality_weight': + self._centrality_weight = arg # @todo + is_valid_option = True + elif option == 'max_num_solutions': + if arg == 'ALL': + self._max_num_solutions = -1 + else: + self._max_num_solutions = arg # @todo + is_valid_option = True + + is_valid_option = is_valid_option or self._lsape_parse_option(option, arg) + is_valid_option = True # @todo: this is not in the C++ code. + return is_valid_option + + + def _ged_set_default_options(self): + self._lsape_model = None # @todo: LSAPESolver::ECBP + self._greedy_method = None # @todo: LSAPESolver::BASIC + self._solve_optimally = True + self._num_threads = 1 + self._centrality_method = 'NODE' # @todo + self._centrality_weight = 0.7 + self._max_num_solutions = 1 + + + ########################################################################### + # Private helper member functions. + ########################################################################### + + + def _init_graph(self, graph): + if self._centrality_method != 'NODE': + self._init_centralities(graph) # @todo + self._lsape_init_graph(graph) + + + ########################################################################### + # Virtual member functions to be overridden by derived classes. + ########################################################################### + + + def _lsape_init(self): + """ + /*! + * @brief Initializes the method after initializing the global variables for the graphs. + * @note Must be overridden by derived classes of ged::LSAPEBasedMethod that require custom initialization. + */ + """ + pass + + + def _lsape_parse_option(self, option, arg): + """ + /*! + * @brief Parses one option that is not among the ones shared by all derived classes of ged::LSAPEBasedMethod. + * @param[in] option The name of the option. + * @param[in] arg The argument of the option. + * @return Returns true if @p option is a valid option name for the method and false otherwise. + * @note Must be overridden by derived classes of ged::LSAPEBasedMethod that have options that are not among the ones shared by all derived classes of ged::LSAPEBasedMethod. + */ + """ + return False + + + def _lsape_set_default_options(self): + """ + /*! + * @brief Sets all options that are not among the ones shared by all derived classes of ged::LSAPEBasedMethod to default values. + * @note Must be overridden by derived classes of ged::LSAPEBasedMethod that have options that are not among the ones shared by all derived classes of ged::LSAPEBasedMethod. + */ + """ + pass + + + def _lsape_populate_instance(self, g, h, lsape_instance): + """ + /*! + * @brief Populates the LSAPE instance. + * @param[in] g Input graph. + * @param[in] h Input graph. + * @param[out] lsape_instance LSAPE instance of size (n + 1) x (m + 1), where n and m are the number of nodes in @p g and @p h. The last row and the last column represent insertion and deletion. + * @note Must be overridden by derived classes of ged::LSAPEBasedMethod. + */ + """ + pass + + + def _lsape_init_graph(self, graph): + """ + /*! + * @brief Initializes global variables for one graph. + * @param[in] graph Graph for which the global variables have to be initialized. + * @note Must be overridden by derived classes of ged::LSAPEBasedMethod that require to initialize custom global variables. + */ + """ + pass + + + def _lsape_pre_graph_init(self, called_at_runtime): + """ + /*! + * @brief Initializes the method at runtime or during initialization before initializing the global variables for the graphs. + * @param[in] called_at_runtime Equals @p true if called at runtime and @p false if called during initialization. + * @brief Must be overridden by derived classes of ged::LSAPEBasedMethod that require default initialization at runtime before initializing the global variables for the graphs. + */ + """ + pass \ No newline at end of file