|
@@ -16,19 +16,19 @@ import numpy as np |
|
|
import networkx as nx |
|
|
import networkx as nx |
|
|
from scipy.sparse import kron |
|
|
from scipy.sparse import kron |
|
|
from gklearn.utils.parallel import parallel_gm, parallel_me |
|
|
from gklearn.utils.parallel import parallel_gm, parallel_me |
|
|
from gklearn.kernels import RandomWalk |
|
|
|
|
|
|
|
|
from gklearn.kernels import RandomWalkMeta |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SpectralDecomposition(RandomWalk): |
|
|
|
|
|
|
|
|
class SpectralDecomposition(RandomWalkMeta): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
def __init__(self, **kwargs): |
|
|
RandomWalk.__init__(self, **kwargs) |
|
|
|
|
|
|
|
|
super().__init__(**kwargs) |
|
|
self._sub_kernel = kwargs.get('sub_kernel', None) |
|
|
self._sub_kernel = kwargs.get('sub_kernel', None) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_gm_series(self): |
|
|
def _compute_gm_series(self): |
|
|
self._check_edge_weight(self._graphs) |
|
|
|
|
|
|
|
|
self._check_edge_weight(self._graphs, self._verbose) |
|
|
self._check_graphs(self._graphs) |
|
|
self._check_graphs(self._graphs) |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
import warnings |
|
|
import warnings |
|
@@ -37,7 +37,7 @@ class SpectralDecomposition(RandomWalk): |
|
|
# compute Gram matrix. |
|
|
# compute Gram matrix. |
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
|
|
|
|
|
if self._q is None: |
|
|
# precompute the spectral decomposition of each graph. |
|
|
# precompute the spectral decomposition of each graph. |
|
|
P_list = [] |
|
|
P_list = [] |
|
|
D_list = [] |
|
|
D_list = [] |
|
@@ -54,14 +54,14 @@ class SpectralDecomposition(RandomWalk): |
|
|
P_list.append(ev) |
|
|
P_list.append(ev) |
|
|
# P_inv_list = [p.T for p in P_list] # @todo: also works for directed graphs? |
|
|
# P_inv_list = [p.T for p in P_list] # @todo: also works for directed graphs? |
|
|
|
|
|
|
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
|
|
|
|
|
if self._p is None: # p is uniform distribution as default. |
|
|
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in self._graphs] |
|
|
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in self._graphs] |
|
|
# q_T_list = [q.T for q in q_list] |
|
|
# q_T_list = [q.T for q in q_list] |
|
|
|
|
|
|
|
|
from itertools import combinations_with_replacement |
|
|
from itertools import combinations_with_replacement |
|
|
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) |
|
|
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) |
|
|
|
|
|
|
|
|
iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) |
|
|
else: |
|
|
else: |
|
|
iterator = itr |
|
|
iterator = itr |
|
|
|
|
|
|
|
@@ -79,7 +79,7 @@ class SpectralDecomposition(RandomWalk): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_gm_imap_unordered(self): |
|
|
def _compute_gm_imap_unordered(self): |
|
|
self._check_edge_weight(self._graphs) |
|
|
|
|
|
|
|
|
self._check_edge_weight(self._graphs, self._verbose) |
|
|
self._check_graphs(self._graphs) |
|
|
self._check_graphs(self._graphs) |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
import warnings |
|
|
import warnings |
|
@@ -88,7 +88,7 @@ class SpectralDecomposition(RandomWalk): |
|
|
# compute Gram matrix. |
|
|
# compute Gram matrix. |
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) |
|
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
|
|
|
|
|
if self._q is None: |
|
|
# precompute the spectral decomposition of each graph. |
|
|
# precompute the spectral decomposition of each graph. |
|
|
P_list = [] |
|
|
P_list = [] |
|
|
D_list = [] |
|
|
D_list = [] |
|
@@ -104,7 +104,7 @@ class SpectralDecomposition(RandomWalk): |
|
|
D_list.append(ew) |
|
|
D_list.append(ew) |
|
|
P_list.append(ev) # @todo: parallel? |
|
|
P_list.append(ev) # @todo: parallel? |
|
|
|
|
|
|
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
|
|
|
|
|
if self._p is None: # p is uniform distribution as default. |
|
|
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in self._graphs] # @todo: parallel? |
|
|
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in self._graphs] # @todo: parallel? |
|
|
|
|
|
|
|
|
def init_worker(q_T_list_toshare, P_list_toshare, D_list_toshare): |
|
|
def init_worker(q_T_list_toshare, P_list_toshare, D_list_toshare): |
|
@@ -126,7 +126,7 @@ class SpectralDecomposition(RandomWalk): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_kernel_list_series(self, g1, g_list): |
|
|
def _compute_kernel_list_series(self, g1, g_list): |
|
|
self._check_edge_weight(g_list + [g1]) |
|
|
|
|
|
|
|
|
self._check_edge_weight(g_list + [g1], self._verbose) |
|
|
self._check_graphs(g_list + [g1]) |
|
|
self._check_graphs(g_list + [g1]) |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
import warnings |
|
|
import warnings |
|
@@ -135,16 +135,16 @@ class SpectralDecomposition(RandomWalk): |
|
|
# compute kernel list. |
|
|
# compute kernel list. |
|
|
kernel_list = [None] * len(g_list) |
|
|
kernel_list = [None] * len(g_list) |
|
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
|
|
|
|
|
if self._q is None: |
|
|
# precompute the spectral decomposition of each graph. |
|
|
# precompute the spectral decomposition of each graph. |
|
|
A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
D1, P1 = np.linalg.eig(A1) |
|
|
D1, P1 = np.linalg.eig(A1) |
|
|
P_list = [] |
|
|
P_list = [] |
|
|
D_list = [] |
|
|
D_list = [] |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
iterator = tqdm(range(len(g_list)), desc='spectral decompose', file=sys.stdout) |
|
|
|
|
|
|
|
|
iterator = tqdm(g_list, desc='spectral decompose', file=sys.stdout) |
|
|
else: |
|
|
else: |
|
|
iterator = range(len(g_list)) |
|
|
|
|
|
|
|
|
iterator = g_list |
|
|
for G in iterator: |
|
|
for G in iterator: |
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
# don't normalize adjacency matrices if q is a uniform vector. Note |
|
|
# A actually is the transpose of the adjacency matrix. |
|
|
# A actually is the transpose of the adjacency matrix. |
|
@@ -153,11 +153,11 @@ class SpectralDecomposition(RandomWalk): |
|
|
D_list.append(ew) |
|
|
D_list.append(ew) |
|
|
P_list.append(ev) |
|
|
P_list.append(ev) |
|
|
|
|
|
|
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
|
|
|
|
|
if self._p is None: # p is uniform distribution as default. |
|
|
q_T1 = 1 / nx.number_of_nodes(g1) |
|
|
q_T1 = 1 / nx.number_of_nodes(g1) |
|
|
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in g_list] |
|
|
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in g_list] |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) |
|
|
|
|
|
|
|
|
iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) |
|
|
else: |
|
|
else: |
|
|
iterator = range(len(g_list)) |
|
|
iterator = range(len(g_list)) |
|
|
|
|
|
|
|
@@ -174,7 +174,7 @@ class SpectralDecomposition(RandomWalk): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_kernel_list_imap_unordered(self, g1, g_list): |
|
|
def _compute_kernel_list_imap_unordered(self, g1, g_list): |
|
|
self._check_edge_weight(g_list + [g1]) |
|
|
|
|
|
|
|
|
self._check_edge_weight(g_list + [g1], self._verbose) |
|
|
self._check_graphs(g_list + [g1]) |
|
|
self._check_graphs(g_list + [g1]) |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
import warnings |
|
|
import warnings |
|
@@ -183,7 +183,7 @@ class SpectralDecomposition(RandomWalk): |
|
|
# compute kernel list. |
|
|
# compute kernel list. |
|
|
kernel_list = [None] * len(g_list) |
|
|
kernel_list = [None] * len(g_list) |
|
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
|
|
|
|
|
if self._q is None: |
|
|
# precompute the spectral decomposition of each graph. |
|
|
# precompute the spectral decomposition of each graph. |
|
|
A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
D1, P1 = np.linalg.eig(A1) |
|
|
D1, P1 = np.linalg.eig(A1) |
|
@@ -201,7 +201,7 @@ class SpectralDecomposition(RandomWalk): |
|
|
D_list.append(ew) |
|
|
D_list.append(ew) |
|
|
P_list.append(ev) # @todo: parallel? |
|
|
P_list.append(ev) # @todo: parallel? |
|
|
|
|
|
|
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
|
|
|
|
|
if self._p is None: # p is uniform distribution as default. |
|
|
q_T1 = 1 / nx.number_of_nodes(g1) |
|
|
q_T1 = 1 / nx.number_of_nodes(g1) |
|
|
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in g_list] # @todo: parallel? |
|
|
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in g_list] # @todo: parallel? |
|
|
|
|
|
|
|
@@ -221,7 +221,7 @@ class SpectralDecomposition(RandomWalk): |
|
|
itr = range(len(g_list)) |
|
|
itr = range(len(g_list)) |
|
|
len_itr = len(g_list) |
|
|
len_itr = len(g_list) |
|
|
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, |
|
|
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, |
|
|
init_worker=init_worker, glbv=(q_T1, P1, D1, q_T_list, P_list, D_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) |
|
|
|
|
|
|
|
|
init_worker=init_worker, glbv=(q_T1, P1, D1, q_T_list, P_list, D_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) |
|
|
|
|
|
|
|
|
else: # @todo |
|
|
else: # @todo |
|
|
pass |
|
|
pass |
|
@@ -236,20 +236,20 @@ class SpectralDecomposition(RandomWalk): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_single_kernel_series(self, g1, g2): |
|
|
def _compute_single_kernel_series(self, g1, g2): |
|
|
self._check_edge_weight([g1] + [g2]) |
|
|
|
|
|
|
|
|
self._check_edge_weight([g1] + [g2], self._verbose) |
|
|
self._check_graphs([g1] + [g2]) |
|
|
self._check_graphs([g1] + [g2]) |
|
|
if self._verbose >= 2: |
|
|
if self._verbose >= 2: |
|
|
import warnings |
|
|
import warnings |
|
|
warnings.warn('All labels are ignored. Only works for undirected graphs.') |
|
|
warnings.warn('All labels are ignored. Only works for undirected graphs.') |
|
|
|
|
|
|
|
|
if self._q == None: |
|
|
|
|
|
|
|
|
if self._q is None: |
|
|
# precompute the spectral decomposition of each graph. |
|
|
# precompute the spectral decomposition of each graph. |
|
|
A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() |
|
|
D1, P1 = np.linalg.eig(A1) |
|
|
D1, P1 = np.linalg.eig(A1) |
|
|
A2 = nx.adjacency_matrix(g2, self._edge_weight).todense().transpose() |
|
|
A2 = nx.adjacency_matrix(g2, self._edge_weight).todense().transpose() |
|
|
D2, P2 = np.linalg.eig(A2) |
|
|
D2, P2 = np.linalg.eig(A2) |
|
|
|
|
|
|
|
|
if self._p == None: # p is uniform distribution as default. |
|
|
|
|
|
|
|
|
if self._p is None: # p is uniform distribution as default. |
|
|
q_T1 = 1 / nx.number_of_nodes(g1) |
|
|
q_T1 = 1 / nx.number_of_nodes(g1) |
|
|
q_T2 = 1 / nx.number_of_nodes(g2) |
|
|
q_T2 = 1 / nx.number_of_nodes(g2) |
|
|
kernel = self.__kernel_do(q_T1, q_T2, P1, P2, D1, D2, self._weight, self._sub_kernel) |
|
|
kernel = self.__kernel_do(q_T1, q_T2, P1, P2, D1, D2, self._weight, self._sub_kernel) |
|
|