diff --git a/lang/fr/gklearn/experiments/papers/PRL_2020/runtimes_28cores.py b/lang/fr/gklearn/experiments/papers/PRL_2020/runtimes_28cores.py new file mode 100644 index 0000000..4c827ce --- /dev/null +++ b/lang/fr/gklearn/experiments/papers/PRL_2020/runtimes_28cores.py @@ -0,0 +1,57 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Mon Sep 21 10:34:26 2020 + +@author: ljia +""" +from utils import Graph_Kernel_List, Dataset_List, compute_graph_kernel +from gklearn.utils.graphdataset import load_predefined_dataset +import logging + + +def xp_runtimes_of_all_28cores(): + + # Run and save. + import pickle + import os + save_dir = 'outputs/runtimes_of_all_28cores/' + if not os.path.exists(save_dir): + os.makedirs(save_dir) + + run_times = {} + + for kernel_name in Graph_Kernel_List: + print() + print('Kernel:', kernel_name) + + run_times[kernel_name] = [] + for ds_name in Dataset_List: + print() + print('Dataset:', ds_name) + + # get graphs. + graphs, _ = load_predefined_dataset(ds_name) + + # Compute Gram matrix. + run_time = 'error' + try: + gram_matrix, run_time = compute_graph_kernel(graphs, kernel_name, n_jobs=28) + except Exception as exp: + print('An exception occured when running this experiment:') + LOG_FILENAME = save_dir + 'error.txt' + logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) + logging.exception('') + print(repr(exp)) + run_times[kernel_name].append(run_time) + + pickle.dump(run_time, open(save_dir + 'run_time.' + kernel_name + '.' + ds_name + '.pkl', 'wb')) + + # Save all. + pickle.dump(run_times, open(save_dir + 'run_times.pkl', 'wb')) + + return + + +if __name__ == '__main__': + xp_runtimes_of_all_28cores()