@@ -5,15 +5,15 @@ Created on Tue Aug 18 11:21:31 2020 | |||
@author: ljia | |||
@references: | |||
@references: | |||
[1] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: | |||
[1] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: | |||
Hardness results and efficient alternatives. Learning Theory and Kernel | |||
Machines, pages 129–143, 2003. | |||
""" | |||
import sys | |||
from tqdm import tqdm | |||
from gklearn.utils import get_iters | |||
import numpy as np | |||
import networkx as nx | |||
from gklearn.utils import SpecialLabel | |||
@@ -23,7 +23,7 @@ from gklearn.kernels import GraphKernel | |||
class CommonWalk(GraphKernel): | |||
def __init__(self, **kwargs): | |||
GraphKernel.__init__(self) | |||
self._node_labels = kwargs.get('node_labels', []) | |||
@@ -39,17 +39,16 @@ class CommonWalk(GraphKernel): | |||
self._add_dummy_labels(self._graphs) | |||
if not self._ds_infos['directed']: # convert | |||
self._graphs = [G.to_directed() for G in self._graphs] | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
from itertools import combinations_with_replacement | |||
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
if self._verbose >= 2: | |||
iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = itr | |||
len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, | |||
length=len_itr, verbose=(self._verbose >= 2)) | |||
# direct product graph method - exponential | |||
if self._compute_method == 'exp': | |||
for i, j in iterator: | |||
@@ -62,50 +61,51 @@ class CommonWalk(GraphKernel): | |||
kernel = self._kernel_do_geo(self._graphs[i], self._graphs[j], self._weight) | |||
gram_matrix[i][j] = kernel | |||
gram_matrix[j][i] = kernel | |||
return gram_matrix | |||
def _compute_gm_imap_unordered(self): | |||
self._check_graphs(self._graphs) | |||
self._add_dummy_labels(self._graphs) | |||
if not self._ds_infos['directed']: # convert | |||
self._graphs = [G.to_directed() for G in self._graphs] | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
# def init_worker(gn_toshare): | |||
# global G_gn | |||
# G_gn = gn_toshare | |||
# direct product graph method - exponential | |||
if self._compute_method == 'exp': | |||
do_fun = self._wrapper_kernel_do_exp | |||
# direct product graph method - geometric | |||
elif self._compute_method == 'geo': | |||
do_fun = self._wrapper_kernel_do_geo | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=_init_worker_gm, | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=_init_worker_gm, | |||
glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
return gram_matrix | |||
def _compute_kernel_list_series(self, g1, g_list): | |||
self._check_graphs(g_list + [g1]) | |||
self._add_dummy_labels(g_list + [g1]) | |||
if not self._ds_infos['directed']: # convert | |||
g1 = g1.to_directed() | |||
g_list = [G.to_directed() for G in g_list] | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
if self._verbose >= 2: | |||
iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
iterator = get_iters(range(len(g_list)), desc='Computing kernels', | |||
file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
else: | |||
iterator = range(len(g_list)) | |||
# direct product graph method - exponential | |||
if self._compute_method == 'exp': | |||
for i in iterator: | |||
@@ -116,17 +116,17 @@ class CommonWalk(GraphKernel): | |||
for i in iterator: | |||
kernel = self._kernel_do_geo(g1, g_list[i], self._weight) | |||
kernel_list[i] = kernel | |||
return kernel_list | |||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
self._check_graphs(g_list + [g1]) | |||
self._add_dummy_labels(g_list + [g1]) | |||
if not self._ds_infos['directed']: # convert | |||
g1 = g1.to_directed() | |||
g_list = [G.to_directed() for G in g_list] | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
@@ -134,61 +134,61 @@ class CommonWalk(GraphKernel): | |||
# global G_g1, G_g_list | |||
# G_g1 = g1_toshare | |||
# G_g_list = g_list_toshare | |||
# direct product graph method - exponential | |||
if self._compute_method == 'exp': | |||
do_fun = self._wrapper_kernel_list_do_exp | |||
# direct product graph method - geometric | |||
elif self._compute_method == 'geo': | |||
do_fun = self._wrapper_kernel_list_do_geo | |||
def func_assign(result, var_to_assign): | |||
def func_assign(result, var_to_assign): | |||
var_to_assign[result[0]] = result[1] | |||
itr = range(len(g_list)) | |||
len_itr = len(g_list) | |||
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
init_worker=_init_worker_list, glbv=(g1, g_list), method='imap_unordered', | |||
init_worker=_init_worker_list, glbv=(g1, g_list), method='imap_unordered', | |||
n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
return kernel_list | |||
def _wrapper_kernel_list_do_exp(self, itr): | |||
return itr, self._kernel_do_exp(G_g1, G_g_list[itr], self._weight) | |||
def _wrapper_kernel_list_do_geo(self, itr): | |||
return itr, self._kernel_do_geo(G_g1, G_g_list[itr], self._weight) | |||
def _compute_single_kernel_series(self, g1, g2): | |||
self._check_graphs([g1] + [g2]) | |||
self._add_dummy_labels([g1] + [g2]) | |||
if not self._ds_infos['directed']: # convert | |||
g1 = g1.to_directed() | |||
g2 = g2.to_directed() | |||
# direct product graph method - exponential | |||
if self._compute_method == 'exp': | |||
kernel = self._kernel_do_exp(g1, g2, self._weight) | |||
kernel = self._kernel_do_exp(g1, g2, self._weight) | |||
# direct product graph method - geometric | |||
elif self._compute_method == 'geo': | |||
kernel = self._kernel_do_geo(g1, g2, self._weight) | |||
kernel = self._kernel_do_geo(g1, g2, self._weight) | |||
return kernel | |||
return kernel | |||
def _kernel_do_exp(self, g1, g2, beta): | |||
"""Compute common walk graph kernel between 2 graphs using exponential | |||
"""Compute common walk graph kernel between 2 graphs using exponential | |||
series. | |||
Parameters | |||
---------- | |||
g1, g2 : NetworkX graphs | |||
Graphs between which the kernels are computed. | |||
beta : integer | |||
Weight. | |||
Return | |||
------ | |||
kernel : float | |||
@@ -200,9 +200,9 @@ class CommonWalk(GraphKernel): | |||
if nx.number_of_nodes(gp) < 2: | |||
return 0 | |||
A = nx.adjacency_matrix(gp).todense() | |||
ew, ev = np.linalg.eig(A) | |||
# # remove imaginary part if possible. | |||
# # remove imaginary part if possible. | |||
# # @todo: don't know if it is necessary. | |||
# for i in range(len(ew)): | |||
# if np.abs(ew[i].imag) < 1e-9: | |||
@@ -220,27 +220,27 @@ class CommonWalk(GraphKernel): | |||
kernel = exp_D.sum() | |||
if (kernel.real == 0 and np.abs(kernel.imag) < 1e-9) or np.abs(kernel.imag / kernel.real) < 1e-9: | |||
kernel = kernel.real | |||
return kernel | |||
def _wrapper_kernel_do_exp(self, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, self._kernel_do_exp(G_gn[i], G_gn[j], self._weight) | |||
def _kernel_do_geo(self, g1, g2, gamma): | |||
"""Compute common walk graph kernel between 2 graphs using geometric | |||
"""Compute common walk graph kernel between 2 graphs using geometric | |||
series. | |||
Parameters | |||
---------- | |||
g1, g2 : NetworkX graphs | |||
Graphs between which the kernels are computed. | |||
gamma : integer | |||
Weight. | |||
Return | |||
------ | |||
kernel : float | |||
@@ -258,19 +258,19 @@ class CommonWalk(GraphKernel): | |||
# except np.linalg.LinAlgError: | |||
# return np.nan | |||
def _wrapper_kernel_do_geo(self, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, self._kernel_do_geo(G_gn[i], G_gn[j], self._weight) | |||
def _check_graphs(self, Gn): | |||
for g in Gn: | |||
if nx.number_of_nodes(g) == 1: | |||
raise Exception('Graphs must contain more than 1 nodes to construct adjacency matrices.') | |||
def _add_dummy_labels(self, Gn): | |||
if len(self._node_labels) == 0 or (len(self._node_labels) == 1 and self._node_labels[0] == SpecialLabel.DUMMY): | |||
for i in range(len(Gn)): | |||
@@ -280,13 +280,13 @@ class CommonWalk(GraphKernel): | |||
for i in range(len(Gn)): | |||
nx.set_edge_attributes(Gn[i], '0', SpecialLabel.DUMMY) | |||
self._edge_labels = [SpecialLabel.DUMMY] | |||
def _init_worker_gm(gn_toshare): | |||
global G_gn | |||
G_gn = gn_toshare | |||
def _init_worker_list(g1_toshare, g_list_toshare): | |||
global G_g1, G_g_list | |||
G_g1 = g1_toshare |
@@ -5,13 +5,13 @@ Created on Thu Aug 20 16:09:51 2020 | |||
@author: ljia | |||
@references: | |||
@references: | |||
[1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010. | |||
""" | |||
import sys | |||
from tqdm import tqdm | |||
from gklearn.utils import get_iters | |||
import numpy as np | |||
import networkx as nx | |||
from scipy.sparse import identity | |||
@@ -22,8 +22,8 @@ from gklearn.utils.utils import compute_vertex_kernels | |||
class ConjugateGradient(RandomWalkMeta): | |||
def __init__(self, **kwargs): | |||
super().__init__(**kwargs) | |||
self._node_kernels = kwargs.get('node_kernels', None) | |||
@@ -32,33 +32,28 @@ class ConjugateGradient(RandomWalkMeta): | |||
self._edge_labels = kwargs.get('edge_labels', []) | |||
self._node_attrs = kwargs.get('node_attrs', []) | |||
self._edge_attrs = kwargs.get('edge_attrs', []) | |||
def _compute_gm_series(self): | |||
self._check_edge_weight(self._graphs, self._verbose) | |||
self._check_graphs(self._graphs) | |||
lmda = self._weight | |||
# Compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
# Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
if self._verbose >= 2: | |||
iterator = tqdm(self._graphs, desc='Reindex vertices', file=sys.stdout) | |||
else: | |||
iterator = self._graphs | |||
iterator = get_iters(self._graphs, desc='Reindex vertices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
self._graphs = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
from itertools import combinations_with_replacement | |||
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
if self._verbose >= 2: | |||
iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = itr | |||
len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, length=len_itr, verbose=(self._verbose >= 2)) | |||
for i, j in iterator: | |||
kernel = self._kernel_do(self._graphs[i], self._graphs[j], lmda) | |||
gram_matrix[i][j] = kernel | |||
@@ -66,92 +61,79 @@ class ConjugateGradient(RandomWalkMeta): | |||
else: # @todo | |||
pass | |||
return gram_matrix | |||
def _compute_gm_imap_unordered(self): | |||
self._check_edge_weight(self._graphs, self._verbose) | |||
self._check_graphs(self._graphs) | |||
# Compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
# @todo: parallel this. | |||
# Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
if self._verbose >= 2: | |||
iterator = tqdm(self._graphs, desc='Reindex vertices', file=sys.stdout) | |||
else: | |||
iterator = self._graphs | |||
iterator = get_iters(self._graphs, desc='Reindex vertices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
self._graphs = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
def init_worker(gn_toshare): | |||
global G_gn | |||
G_gn = gn_toshare | |||
do_fun = self._wrapper_kernel_do | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
else: # @todo | |||
pass | |||
return gram_matrix | |||
def _compute_kernel_list_series(self, g1, g_list): | |||
self._check_edge_weight(g_list + [g1], self._verbose) | |||
self._check_graphs(g_list + [g1]) | |||
lmda = self._weight | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
# Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
g1 = nx.convert_node_labels_to_integers(g1, first_label=0, label_attribute='label_orignal') | |||
if self._verbose >= 2: | |||
iterator = tqdm(g_list, desc='Reindex vertices', file=sys.stdout) | |||
else: | |||
iterator = g_list | |||
iterator = get_iters(g_list, desc='Reindex vertices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
g_list = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
if self._verbose >= 2: | |||
iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = range(len(g_list)) | |||
for i in iterator: | |||
kernel = self._kernel_do(g1, g_list[i], lmda) | |||
kernel_list[i] = kernel | |||
else: # @todo | |||
pass | |||
return kernel_list | |||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
self._check_edge_weight(g_list + [g1], self._verbose) | |||
self._check_graphs(g_list + [g1]) | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
# Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
g1 = nx.convert_node_labels_to_integers(g1, first_label=0, label_attribute='label_orignal') | |||
# @todo: parallel this. | |||
if self._verbose >= 2: | |||
iterator = tqdm(g_list, desc='Reindex vertices', file=sys.stdout) | |||
else: | |||
iterator = g_list | |||
iterator = get_iters(g_list, desc='Reindex vertices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
g_list = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
def init_worker(g1_toshare, g_list_toshare): | |||
@@ -159,56 +141,56 @@ class ConjugateGradient(RandomWalkMeta): | |||
G_g1 = g1_toshare | |||
G_g_list = g_list_toshare | |||
do_fun = self._wrapper_kernel_list_do | |||
def func_assign(result, var_to_assign): | |||
do_fun = self._wrapper_kernel_list_do | |||
def func_assign(result, var_to_assign): | |||
var_to_assign[result[0]] = result[1] | |||
itr = range(len(g_list)) | |||
len_itr = len(g_list) | |||
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', | |||
init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', | |||
n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
else: # @todo | |||
pass | |||
return kernel_list | |||
def _wrapper_kernel_list_do(self, itr): | |||
return itr, self._kernel_do(G_g1, G_g_list[itr], self._weight) | |||
def _compute_single_kernel_series(self, g1, g2): | |||
self._check_edge_weight([g1] + [g2], self._verbose) | |||
self._check_graphs([g1] + [g2]) | |||
lmda = self._weight | |||
# Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
g1 = nx.convert_node_labels_to_integers(g1, first_label=0, label_attribute='label_orignal') | |||
g2 = nx.convert_node_labels_to_integers(g2, first_label=0, label_attribute='label_orignal') | |||
if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
kernel = self._kernel_do(g1, g2, lmda) | |||
else: # @todo | |||
pass | |||
return kernel | |||
return kernel | |||
def _kernel_do(self, g1, g2, lmda): | |||
# Frist, compute kernels between all pairs of nodes using the method borrowed | |||
# from FCSP. It is faster than directly computing all edge kernels | |||
# from FCSP. It is faster than directly computing all edge kernels | |||
# when $d_1d_2>2$, where $d_1$ and $d_2$ are vertex degrees of the | |||
# graphs compared, which is the most case we went though. For very | |||
# graphs compared, which is the most case we went though. For very | |||
# sparse graphs, this would be slow. | |||
vk_dict = self._compute_vertex_kernels(g1, g2) | |||
# Compute the weight matrix of the direct product graph. | |||
w_times, w_dim = self._compute_weight_matrix(g1, g2, vk_dict) | |||
# Compute the weight matrix of the direct product graph. | |||
w_times, w_dim = self._compute_weight_matrix(g1, g2, vk_dict) | |||
# use uniform distribution if there is no prior knowledge. | |||
p_times_uni = 1 / w_dim | |||
A = identity(w_times.shape[0]) - w_times * lmda | |||
@@ -217,27 +199,27 @@ class ConjugateGradient(RandomWalkMeta): | |||
# use uniform distribution if there is no prior knowledge. | |||
q_times = np.full((1, w_dim), p_times_uni) | |||
return np.dot(q_times, x) | |||
def _wrapper_kernel_do(self, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, self._kernel_do(G_gn[i], G_gn[j], self._weight) | |||
def _func_fp(x, p_times, lmda, w_times): | |||
haha = w_times * x | |||
haha = lmda * haha | |||
haha = p_times + haha | |||
return p_times + lmda * np.dot(w_times, x) | |||
def _compute_vertex_kernels(self, g1, g2): | |||
"""Compute vertex kernels between vertices of two graphs. | |||
""" | |||
return compute_vertex_kernels(g1, g2, self._node_kernels, node_labels=self._node_labels, node_attrs=self._node_attrs) | |||
# @todo: move if out to make it faster. | |||
# @todo: node/edge kernels use direct function rather than dicts. | |||
def _compute_weight_matrix(self, g1, g2, vk_dict): | |||
@@ -250,20 +232,20 @@ class ConjugateGradient(RandomWalkMeta): | |||
e1_attrs = [e1[2][ea] for ea in self._edge_attrs] | |||
e2_attrs = [e2[2][ea] for ea in self._edge_attrs] | |||
return ke(e1_labels, e2_labels, e1_attrs, e2_attrs) | |||
def compute_ek_10(e1, e2, ke): | |||
e1_labels = [e1[2][el] for el in self._edge_labels] | |||
e2_labels = [e2[2][el] for el in self._edge_labels] | |||
return ke(e1_labels, e2_labels) | |||
def compute_ek_01(e1, e2, ke): | |||
e1_attrs = [e1[2][ea] for ea in self._edge_attrs] | |||
e2_attrs = [e2[2][ea] for ea in self._edge_attrs] | |||
return ke(e1_attrs, e2_attrs) | |||
def compute_ek_00(e1, e2, ke): | |||
return 1 | |||
# Select the proper edge kernel. | |||
if len(self._edge_labels) > 0: | |||
# edge symb and non-synb labeled | |||
@@ -283,11 +265,11 @@ class ConjugateGradient(RandomWalkMeta): | |||
else: | |||
ke = None | |||
ek_temp = compute_ek_00 # @todo: check how much slower is this. | |||
# Compute the weight matrix. | |||
w_dim = nx.number_of_nodes(g1) * nx.number_of_nodes(g2) | |||
w_times = np.zeros((w_dim, w_dim)) | |||
if vk_dict: # node labeled | |||
if self._ds_infos['directed']: | |||
for e1 in g1.edges(data=True): | |||
@@ -5,13 +5,13 @@ Created on Thu Aug 20 16:09:51 2020 | |||
@author: ljia | |||
@references: | |||
@references: | |||
[1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010. | |||
""" | |||
import sys | |||
from tqdm import tqdm | |||
from gklearn.utils import get_iters | |||
import numpy as np | |||
import networkx as nx | |||
from scipy import optimize | |||
@@ -22,8 +22,8 @@ from gklearn.utils.utils import compute_vertex_kernels | |||
class FixedPoint(RandomWalkMeta): | |||
def __init__(self, **kwargs): | |||
super().__init__(**kwargs) | |||
self._node_kernels = kwargs.get('node_kernels', None) | |||
@@ -32,33 +32,28 @@ class FixedPoint(RandomWalkMeta): | |||
self._edge_labels = kwargs.get('edge_labels', []) | |||
self._node_attrs = kwargs.get('node_attrs', []) | |||
self._edge_attrs = kwargs.get('edge_attrs', []) | |||
def _compute_gm_series(self): | |||
self._check_edge_weight(self._graphs, self._verbose) | |||
self._check_graphs(self._graphs) | |||
lmda = self._weight | |||
# Compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
# Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
if self._verbose >= 2: | |||
iterator = tqdm(self._graphs, desc='Reindex vertices', file=sys.stdout) | |||
else: | |||
iterator = self._graphs | |||
iterator = get_iters(self._graphs, desc='Reindex vertices', file=sys.stdout,verbose=(self._verbose >= 2)) | |||
self._graphs = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
from itertools import combinations_with_replacement | |||
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
if self._verbose >= 2: | |||
iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = itr | |||
len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, length=len_itr, verbose=(self._verbose >= 2)) | |||
for i, j in iterator: | |||
kernel = self._kernel_do(self._graphs[i], self._graphs[j], lmda) | |||
gram_matrix[i][j] = kernel | |||
@@ -66,92 +61,80 @@ class FixedPoint(RandomWalkMeta): | |||
else: # @todo | |||
pass | |||
return gram_matrix | |||
def _compute_gm_imap_unordered(self): | |||
self._check_edge_weight(self._graphs, self._verbose) | |||
self._check_graphs(self._graphs) | |||
# Compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
# @todo: parallel this. | |||
# Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
if self._verbose >= 2: | |||
iterator = tqdm(self._graphs, desc='Reindex vertices', file=sys.stdout) | |||
else: | |||
iterator = self._graphs | |||
iterator = get_iters(self._graphs, desc='Reindex vertices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
self._graphs = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
def init_worker(gn_toshare): | |||
global G_gn | |||
G_gn = gn_toshare | |||
do_fun = self._wrapper_kernel_do | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
else: # @todo | |||
pass | |||
return gram_matrix | |||
def _compute_kernel_list_series(self, g1, g_list): | |||
self._check_edge_weight(g_list + [g1], self._verbose) | |||
self._check_graphs(g_list + [g1]) | |||
lmda = self._weight | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
# Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
g1 = nx.convert_node_labels_to_integers(g1, first_label=0, label_attribute='label_orignal') | |||
if self._verbose >= 2: | |||
iterator = tqdm(g_list, desc='Reindex vertices', file=sys.stdout) | |||
else: | |||
iterator = g_list | |||
iterator = get_iters(g_list, desc='Reindex vertices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
g_list = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
if self._verbose >= 2: | |||
iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = range(len(g_list)) | |||
iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
for i in iterator: | |||
kernel = self._kernel_do(g1, g_list[i], lmda) | |||
kernel_list[i] = kernel | |||
else: # @todo | |||
pass | |||
return kernel_list | |||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
self._check_edge_weight(g_list + [g1], self._verbose) | |||
self._check_graphs(g_list + [g1]) | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
# Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
g1 = nx.convert_node_labels_to_integers(g1, first_label=0, label_attribute='label_orignal') | |||
# @todo: parallel this. | |||
if self._verbose >= 2: | |||
iterator = tqdm(g_list, desc='Reindex vertices', file=sys.stdout) | |||
else: | |||
iterator = g_list | |||
iterator = get_iters(g_list, desc='Reindex vertices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
g_list = [nx.convert_node_labels_to_integers(g, first_label=0, label_attribute='label_orignal') for g in iterator] | |||
if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
def init_worker(g1_toshare, g_list_toshare): | |||
@@ -159,56 +142,56 @@ class FixedPoint(RandomWalkMeta): | |||
G_g1 = g1_toshare | |||
G_g_list = g_list_toshare | |||
do_fun = self._wrapper_kernel_list_do | |||
def func_assign(result, var_to_assign): | |||
do_fun = self._wrapper_kernel_list_do | |||
def func_assign(result, var_to_assign): | |||
var_to_assign[result[0]] = result[1] | |||
itr = range(len(g_list)) | |||
len_itr = len(g_list) | |||
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', | |||
init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', | |||
n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
else: # @todo | |||
pass | |||
return kernel_list | |||
def _wrapper_kernel_list_do(self, itr): | |||
return itr, self._kernel_do(G_g1, G_g_list[itr], self._weight) | |||
def _compute_single_kernel_series(self, g1, g2): | |||
self._check_edge_weight([g1] + [g2], self._verbose) | |||
self._check_graphs([g1] + [g2]) | |||
lmda = self._weight | |||
# Reindex nodes using consecutive integers for the convenience of kernel computation. | |||
g1 = nx.convert_node_labels_to_integers(g1, first_label=0, label_attribute='label_orignal') | |||
g2 = nx.convert_node_labels_to_integers(g2, first_label=0, label_attribute='label_orignal') | |||
if self._p is None and self._q is None: # p and q are uniform distributions as default. | |||
kernel = self._kernel_do(g1, g2, lmda) | |||
else: # @todo | |||
pass | |||
return kernel | |||
return kernel | |||
def _kernel_do(self, g1, g2, lmda): | |||
# Frist, compute kernels between all pairs of nodes using the method borrowed | |||
# from FCSP. It is faster than directly computing all edge kernels | |||
# from FCSP. It is faster than directly computing all edge kernels | |||
# when $d_1d_2>2$, where $d_1$ and $d_2$ are vertex degrees of the | |||
# graphs compared, which is the most case we went though. For very | |||
# graphs compared, which is the most case we went though. For very | |||
# sparse graphs, this would be slow. | |||
vk_dict = self._compute_vertex_kernels(g1, g2) | |||
# Compute the weight matrix of the direct product graph. | |||
w_times, w_dim = self._compute_weight_matrix(g1, g2, vk_dict) | |||
# Compute the weight matrix of the direct product graph. | |||
w_times, w_dim = self._compute_weight_matrix(g1, g2, vk_dict) | |||
# use uniform distribution if there is no prior knowledge. | |||
p_times_uni = 1 / w_dim | |||
p_times = np.full((w_dim, 1), p_times_uni) | |||
@@ -216,27 +199,27 @@ class FixedPoint(RandomWalkMeta): | |||
# use uniform distribution if there is no prior knowledge. | |||
q_times = np.full((1, w_dim), p_times_uni) | |||
return np.dot(q_times, x) | |||
def _wrapper_kernel_do(self, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, self._kernel_do(G_gn[i], G_gn[j], self._weight) | |||
def _func_fp(self, x, p_times, lmda, w_times): | |||
haha = w_times * x | |||
haha = lmda * haha | |||
haha = p_times + haha | |||
return p_times + lmda * np.dot(w_times, x) | |||
def _compute_vertex_kernels(self, g1, g2): | |||
"""Compute vertex kernels between vertices of two graphs. | |||
""" | |||
return compute_vertex_kernels(g1, g2, self._node_kernels, node_labels=self._node_labels, node_attrs=self._node_attrs) | |||
# @todo: move if out to make it faster. | |||
# @todo: node/edge kernels use direct function rather than dicts. | |||
def _compute_weight_matrix(self, g1, g2, vk_dict): | |||
@@ -249,20 +232,20 @@ class FixedPoint(RandomWalkMeta): | |||
e1_attrs = [e1[2][ea] for ea in self._edge_attrs] | |||
e2_attrs = [e2[2][ea] for ea in self._edge_attrs] | |||
return ke(e1_labels, e2_labels, e1_attrs, e2_attrs) | |||
def compute_ek_10(e1, e2, ke): | |||
e1_labels = [e1[2][el] for el in self._edge_labels] | |||
e2_labels = [e2[2][el] for el in self._edge_labels] | |||
return ke(e1_labels, e2_labels) | |||
def compute_ek_01(e1, e2, ke): | |||
e1_attrs = [e1[2][ea] for ea in self._edge_attrs] | |||
e2_attrs = [e2[2][ea] for ea in self._edge_attrs] | |||
return ke(e1_attrs, e2_attrs) | |||
def compute_ek_00(e1, e2, ke): | |||
return 1 | |||
# Select the proper edge kernel. | |||
if len(self._edge_labels) > 0: | |||
# edge symb and non-synb labeled | |||
@@ -282,11 +265,11 @@ class FixedPoint(RandomWalkMeta): | |||
else: | |||
ke = None | |||
ek_temp = compute_ek_00 # @todo: check how much slower is this. | |||
# Compute the weight matrix. | |||
w_dim = nx.number_of_nodes(g1) * nx.number_of_nodes(g2) | |||
w_times = np.zeros((w_dim, w_dim)) | |||
if vk_dict: # node labeled | |||
if self._ds_infos['directed']: | |||
for e1 in g1.edges(data=True): | |||
@@ -7,19 +7,19 @@ Created on Wed Jun 3 22:22:57 2020 | |||
@references: | |||
[1] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between | |||
labeled graphs. In Proceedings of the 20th International Conference on | |||
[1] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between | |||
labeled graphs. In Proceedings of the 20th International Conference on | |||
Machine Learning, Washington, DC, United States, 2003. | |||
[2] Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and | |||
Jean-Philippe Vert. Extensions of marginalized graph kernels. In | |||
Proceedings of the twenty-first international conference on Machine | |||
[2] Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and | |||
Jean-Philippe Vert. Extensions of marginalized graph kernels. In | |||
Proceedings of the twenty-first international conference on Machine | |||
learning, page 70. ACM, 2004. | |||
""" | |||
import sys | |||
from multiprocessing import Pool | |||
from tqdm import tqdm | |||
from gklearn.utils import get_iters | |||
import numpy as np | |||
import networkx as nx | |||
from gklearn.utils import SpecialLabel | |||
@@ -30,7 +30,7 @@ from gklearn.kernels import GraphKernel | |||
class Marginalized(GraphKernel): | |||
def __init__(self, **kwargs): | |||
GraphKernel.__init__(self) | |||
self._node_labels = kwargs.get('node_labels', []) | |||
@@ -44,35 +44,31 @@ class Marginalized(GraphKernel): | |||
def _compute_gm_series(self): | |||
self._add_dummy_labels(self._graphs) | |||
if self._remove_totters: | |||
if self._verbose >= 2: | |||
iterator = tqdm(self._graphs, desc='removing tottering', file=sys.stdout) | |||
else: | |||
iterator = self._graphs | |||
iterator = get_iters(self._graphs, desc='removing tottering', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
# @todo: this may not work. | |||
self._graphs = [untotterTransformation(G, self._node_labels, self._edge_labels) for G in iterator] | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
from itertools import combinations_with_replacement | |||
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
if self._verbose >= 2: | |||
iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = itr | |||
len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, | |||
length=len_itr, verbose=(self._verbose >= 2)) | |||
for i, j in iterator: | |||
kernel = self._kernel_do(self._graphs[i], self._graphs[j]) | |||
gram_matrix[i][j] = kernel | |||
gram_matrix[j][i] = kernel # @todo: no directed graph considered? | |||
return gram_matrix | |||
def _compute_gm_imap_unordered(self): | |||
self._add_dummy_labels(self._graphs) | |||
if self._remove_totters: | |||
pool = Pool(self._n_jobs) | |||
itr = range(0, len(self._graphs)) | |||
@@ -81,57 +77,49 @@ class Marginalized(GraphKernel): | |||
else: | |||
chunksize = 100 | |||
remove_fun = self._wrapper_untotter | |||
if self._verbose >= 2: | |||
iterator = tqdm(pool.imap_unordered(remove_fun, itr, chunksize), | |||
desc='removing tottering', file=sys.stdout) | |||
else: | |||
iterator = pool.imap_unordered(remove_fun, itr, chunksize) | |||
iterator = get_iters(pool.imap_unordered(remove_fun, itr, chunksize), | |||
desc='removing tottering', file=sys.stdout, | |||
length=len(self._graphs), verbose=(self._verbose >= 2)) | |||
for i, g in iterator: | |||
self._graphs[i] = g | |||
pool.close() | |||
pool.join() | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
def init_worker(gn_toshare): | |||
global G_gn | |||
G_gn = gn_toshare | |||
do_fun = self._wrapper_kernel_do | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
return gram_matrix | |||
def _compute_kernel_list_series(self, g1, g_list): | |||
self._add_dummy_labels(g_list + [g1]) | |||
if self._remove_totters: | |||
g1 = untotterTransformation(g1, self._node_labels, self._edge_labels) # @todo: this may not work. | |||
if self._verbose >= 2: | |||
iterator = tqdm(g_list, desc='removing tottering', file=sys.stdout) | |||
else: | |||
iterator = g_list | |||
iterator = get_iters(g_list, desc='removing tottering', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
# @todo: this may not work. | |||
g_list = [untotterTransformation(G, self._node_labels, self._edge_labels) for G in iterator] | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
if self._verbose >= 2: | |||
iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = range(len(g_list)) | |||
iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
for i in iterator: | |||
kernel = self._kernel_do(g1, g_list[i]) | |||
kernel_list[i] = kernel | |||
return kernel_list | |||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
self._add_dummy_labels(g_list + [g1]) | |||
if self._remove_totters: | |||
g1 = untotterTransformation(g1, self._node_labels, self._edge_labels) # @todo: this may not work. | |||
pool = Pool(self._n_jobs) | |||
@@ -141,16 +129,14 @@ class Marginalized(GraphKernel): | |||
else: | |||
chunksize = 100 | |||
remove_fun = self._wrapper_untotter | |||
if self._verbose >= 2: | |||
iterator = tqdm(pool.imap_unordered(remove_fun, itr, chunksize), | |||
desc='removing tottering', file=sys.stdout) | |||
else: | |||
iterator = pool.imap_unordered(remove_fun, itr, chunksize) | |||
iterator = get_iters(pool.imap_unordered(remove_fun, itr, chunksize), | |||
desc='removing tottering', file=sys.stdout, | |||
length=len(g_list), verbose=(self._verbose >= 2)) | |||
for i, g in iterator: | |||
g_list[i] = g | |||
pool.close() | |||
pool.join() | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
@@ -159,38 +145,38 @@ class Marginalized(GraphKernel): | |||
G_g1 = g1_toshare | |||
G_g_list = g_list_toshare | |||
do_fun = self._wrapper_kernel_list_do | |||
def func_assign(result, var_to_assign): | |||
def func_assign(result, var_to_assign): | |||
var_to_assign[result[0]] = result[1] | |||
itr = range(len(g_list)) | |||
len_itr = len(g_list) | |||
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', | |||
init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', | |||
n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
return kernel_list | |||
def _wrapper_kernel_list_do(self, itr): | |||
return itr, self._kernel_do(G_g1, G_g_list[itr]) | |||
def _compute_single_kernel_series(self, g1, g2): | |||
self._add_dummy_labels([g1] + [g2]) | |||
if self._remove_totters: | |||
g1 = untotterTransformation(g1, self._node_labels, self._edge_labels) # @todo: this may not work. | |||
g2 = untotterTransformation(g2, self._node_labels, self._edge_labels) | |||
kernel = self._kernel_do(g1, g2) | |||
return kernel | |||
return kernel | |||
def _kernel_do(self, g1, g2): | |||
"""Compute marginalized graph kernel between 2 graphs. | |||
Parameters | |||
---------- | |||
g1, g2 : NetworkX graphs | |||
2 graphs between which the kernel is computed. | |||
Return | |||
------ | |||
kernel : float | |||
@@ -204,10 +190,10 @@ class Marginalized(GraphKernel): | |||
# (uniform distribution over |G|) | |||
p_init_G1 = 1 / num_nodes_G1 | |||
p_init_G2 = 1 / num_nodes_G2 | |||
q = self._p_quit * self._p_quit | |||
r1 = q | |||
# # initial R_inf | |||
# # matrix to save all the R_inf for all pairs of nodes | |||
# R_inf = np.zeros([num_nodes_G1, num_nodes_G2]) | |||
@@ -229,7 +215,7 @@ class Marginalized(GraphKernel): | |||
# neighbor_n2 = g2[node2[0]] | |||
# if len(neighbor_n2) > 0: | |||
# p_trans_n2 = (1 - p_quit) / len(neighbor_n2) | |||
# | |||
# | |||
# for neighbor1 in neighbor_n1: | |||
# for neighbor2 in neighbor_n2: | |||
# t = p_trans_n1 * p_trans_n2 * \ | |||
@@ -238,7 +224,7 @@ class Marginalized(GraphKernel): | |||
# deltakernel( | |||
# neighbor_n1[neighbor1][edge_label], | |||
# neighbor_n2[neighbor2][edge_label]) | |||
# | |||
# | |||
# R_inf_new[node1[0]][node2[0]] += t * R_inf[neighbor1][ | |||
# neighbor2] # ref [1] equation (8) | |||
# R_inf[:] = R_inf_new | |||
@@ -249,8 +235,8 @@ class Marginalized(GraphKernel): | |||
# s = p_init_G1 * p_init_G2 * deltakernel( | |||
# node1[1][node_label], node2[1][node_label]) | |||
# kernel += s * R_inf[node1[0]][node2[0]] # ref [1] equation (6) | |||
R_inf = {} # dict to save all the R_inf for all pairs of nodes | |||
# initial R_inf, the 1st iteration. | |||
for node1 in g1.nodes(): | |||
@@ -266,7 +252,7 @@ class Marginalized(GraphKernel): | |||
R_inf[(node1, node2)] = self._p_quit | |||
else: | |||
R_inf[(node1, node2)] = 1 | |||
# compute all transition probability first. | |||
t_dict = {} | |||
if self._n_iteration > 1: | |||
@@ -287,11 +273,11 @@ class Marginalized(GraphKernel): | |||
p_trans_n1 * p_trans_n2 * \ | |||
deltakernel(tuple(g1.nodes[neighbor1][nl] for nl in self._node_labels), tuple(g2.nodes[neighbor2][nl] for nl in self._node_labels)) * \ | |||
deltakernel(tuple(neighbor_n1[neighbor1][el] for el in self._edge_labels), tuple(neighbor_n2[neighbor2][el] for el in self._edge_labels)) | |||
# Compute R_inf with a simple interative method | |||
for i in range(2, self._n_iteration + 1): | |||
R_inf_old = R_inf.copy() | |||
# Compute R_inf for each pair of nodes | |||
for node1 in g1.nodes(): | |||
neighbor_n1 = g1[node1] | |||
@@ -301,32 +287,32 @@ class Marginalized(GraphKernel): | |||
if len(neighbor_n1) > 0: | |||
for node2 in g2.nodes(): | |||
neighbor_n2 = g2[node2] | |||
if len(neighbor_n2) > 0: | |||
if len(neighbor_n2) > 0: | |||
R_inf[(node1, node2)] = r1 | |||
for neighbor1 in neighbor_n1: | |||
for neighbor2 in neighbor_n2: | |||
R_inf[(node1, node2)] += \ | |||
(t_dict[(node1, node2, neighbor1, neighbor2)] * \ | |||
R_inf_old[(neighbor1, neighbor2)]) # ref [1] equation (8) | |||
# add elements of R_inf up and compute kernel. | |||
for (n1, n2), value in R_inf.items(): | |||
s = p_init_G1 * p_init_G2 * deltakernel(tuple(g1.nodes[n1][nl] for nl in self._node_labels), tuple(g2.nodes[n2][nl] for nl in self._node_labels)) | |||
kernel += s * value # ref [1] equation (6) | |||
return kernel | |||
def _wrapper_kernel_do(self, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, self._kernel_do(G_gn[i], G_gn[j]) | |||
def _wrapper_untotter(self, i): | |||
return i, untotterTransformation(self._graphs[i], self._node_labels, self._edge_labels) # @todo: this may not work. | |||
def _add_dummy_labels(self, Gn): | |||
if len(self._node_labels) == 0 or (len(self._node_labels) == 1 and self._node_labels[0] == SpecialLabel.DUMMY): | |||
for i in range(len(Gn)): | |||
@@ -5,15 +5,15 @@ Created on Fri Apr 10 18:33:13 2020 | |||
@author: ljia | |||
@references: | |||
@references: | |||
[1] Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre | |||
Baldi. Graph kernels for chemical informatics. Neural networks, | |||
[1] Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre | |||
Baldi. Graph kernels for chemical informatics. Neural networks, | |||
18(8):1093–1110, 2005. | |||
""" | |||
import sys | |||
from multiprocessing import Pool | |||
from tqdm import tqdm | |||
from gklearn.utils import get_iters | |||
import numpy as np | |||
import networkx as nx | |||
from collections import Counter | |||
@@ -25,7 +25,7 @@ from gklearn.utils import Trie | |||
class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
def __init__(self, **kwargs): | |||
GraphKernel.__init__(self) | |||
self._node_labels = kwargs.get('node_labels', []) | |||
@@ -38,16 +38,14 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
def _compute_gm_series(self): | |||
self._add_dummy_labels(self._graphs) | |||
from itertools import combinations_with_replacement | |||
itr_kernel = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
if self._verbose >= 2: | |||
iterator_ps = tqdm(range(0, len(self._graphs)), desc='getting paths', file=sys.stdout) | |||
iterator_kernel = tqdm(itr_kernel, desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator_ps = range(0, len(self._graphs)) | |||
iterator_kernel = itr_kernel | |||
itr_kernel = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
iterator_ps = get_iters(range(0, len(self._graphs)), desc='getting paths', file=sys.stdout, length=len(self._graphs), verbose=(self._verbose >= 2)) | |||
len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
iterator_kernel = get_iters(itr_kernel, desc='Computing kernels', | |||
file=sys.stdout, length=len_itr, verbose=(self._verbose >= 2)) | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
if self._compute_method == 'trie': | |||
@@ -62,13 +60,13 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
kernel = self._kernel_do_naive(all_paths[i], all_paths[j]) | |||
gram_matrix[i][j] = kernel | |||
gram_matrix[j][i] = kernel | |||
return gram_matrix | |||
def _compute_gm_imap_unordered(self): | |||
self._add_dummy_labels(self._graphs) | |||
# get all paths of all graphs before computing kernels to save time, | |||
# but this may cost a lot of memory for large datasets. | |||
pool = Pool(self._n_jobs) | |||
@@ -80,23 +78,21 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
all_paths = [[] for _ in range(len(self._graphs))] | |||
if self._compute_method == 'trie' and self._k_func is not None: | |||
get_ps_fun = self._wrapper_find_all_path_as_trie | |||
elif self._compute_method != 'trie' and self._k_func is not None: | |||
get_ps_fun = partial(self._wrapper_find_all_paths_until_length, True) | |||
else: | |||
get_ps_fun = partial(self._wrapper_find_all_paths_until_length, False) | |||
if self._verbose >= 2: | |||
iterator = tqdm(pool.imap_unordered(get_ps_fun, itr, chunksize), | |||
desc='getting paths', file=sys.stdout) | |||
elif self._compute_method != 'trie' and self._k_func is not None: | |||
get_ps_fun = partial(self._wrapper_find_all_paths_until_length, True) | |||
else: | |||
iterator = pool.imap_unordered(get_ps_fun, itr, chunksize) | |||
get_ps_fun = partial(self._wrapper_find_all_paths_until_length, False) | |||
iterator = get_iters(pool.imap_unordered(get_ps_fun, itr, chunksize), | |||
desc='getting paths', file=sys.stdout, | |||
length=len(self._graphs), verbose=(self._verbose >= 2)) | |||
for i, ps in iterator: | |||
all_paths[i] = ps | |||
pool.close() | |||
pool.join() | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
if self._compute_method == 'trie' and self._k_func is not None: | |||
def init_worker(trie_toshare): | |||
global G_trie | |||
@@ -106,28 +102,24 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
def init_worker(plist_toshare): | |||
global G_plist | |||
G_plist = plist_toshare | |||
do_fun = self._wrapper_kernel_do_naive | |||
do_fun = self._wrapper_kernel_do_naive | |||
else: | |||
def init_worker(plist_toshare): | |||
global G_plist | |||
G_plist = plist_toshare | |||
do_fun = self._wrapper_kernel_do_kernelless # @todo: what is this? | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
glbv=(all_paths,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
do_fun = self._wrapper_kernel_do_kernelless # @todo: what is this? | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
glbv=(all_paths,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
return gram_matrix | |||
def _compute_kernel_list_series(self, g1, g_list): | |||
self._add_dummy_labels(g_list + [g1]) | |||
if self._verbose >= 2: | |||
iterator_ps = tqdm(g_list, desc='getting paths', file=sys.stdout) | |||
iterator_kernel = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator_ps = g_list | |||
iterator_kernel = range(len(g_list)) | |||
iterator_ps = get_iters(g_list, desc='getting paths', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
iterator_kernel = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
kernel_list = [None] * len(g_list) | |||
if self._compute_method == 'trie': | |||
@@ -142,13 +134,13 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
for i in iterator_kernel: | |||
kernel = self._kernel_do_naive(paths_g1, paths_g_list[i]) | |||
kernel_list[i] = kernel | |||
return kernel_list | |||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
self._add_dummy_labels(g_list + [g1]) | |||
# get all paths of all graphs before computing kernels to save time, | |||
# but this may cost a lot of memory for large datasets. | |||
pool = Pool(self._n_jobs) | |||
@@ -162,48 +154,46 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
paths_g1 = self._find_all_path_as_trie(g1) | |||
get_ps_fun = self._wrapper_find_all_path_as_trie | |||
elif self._compute_method != 'trie' and self._k_func is not None: | |||
paths_g1 = self._find_all_paths_until_length(g1) | |||
get_ps_fun = partial(self._wrapper_find_all_paths_until_length, True) | |||
paths_g1 = self._find_all_paths_until_length(g1) | |||
get_ps_fun = partial(self._wrapper_find_all_paths_until_length, True) | |||
else: | |||
paths_g1 = self._find_all_paths_until_length(g1) | |||
paths_g1 = self._find_all_paths_until_length(g1) | |||
get_ps_fun = partial(self._wrapper_find_all_paths_until_length, False) | |||
if self._verbose >= 2: | |||
iterator = tqdm(pool.imap_unordered(get_ps_fun, itr, chunksize), | |||
desc='getting paths', file=sys.stdout) | |||
else: | |||
iterator = pool.imap_unordered(get_ps_fun, itr, chunksize) | |||
iterator = get_iters(pool.imap_unordered(get_ps_fun, itr, chunksize), | |||
desc='getting paths', file=sys.stdout, | |||
length=len(g_list), verbose=(self._verbose >= 2)) | |||
for i, ps in iterator: | |||
paths_g_list[i] = ps | |||
pool.close() | |||
pool.join() | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
def init_worker(p1_toshare, plist_toshare): | |||
global G_p1, G_plist | |||
G_p1 = p1_toshare | |||
G_plist = plist_toshare | |||
do_fun = self._wrapper_kernel_list_do | |||
def func_assign(result, var_to_assign): | |||
def func_assign(result, var_to_assign): | |||
var_to_assign[result[0]] = result[1] | |||
itr = range(len(g_list)) | |||
len_itr = len(g_list) | |||
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
init_worker=init_worker, glbv=(paths_g1, paths_g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
return kernel_list | |||
def _wrapper_kernel_list_do(self, itr): | |||
if self._compute_method == 'trie' and self._k_func is not None: | |||
return itr, self._kernel_do_trie(G_p1, G_plist[itr]) | |||
elif self._compute_method != 'trie' and self._k_func is not None: | |||
return itr, self._kernel_do_naive(G_p1, G_plist[itr]) | |||
return itr, self._kernel_do_naive(G_p1, G_plist[itr]) | |||
else: | |||
return itr, self._kernel_do_kernelless(G_p1, G_plist[itr]) | |||
def _compute_single_kernel_series(self, g1, g2): | |||
self._add_dummy_labels([g1] + [g2]) | |||
if self._compute_method == 'trie': | |||
@@ -214,32 +204,32 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
paths_g1 = self._find_all_paths_until_length(g1) | |||
paths_g2 = self._find_all_paths_until_length(g2) | |||
kernel = self._kernel_do_naive(paths_g1, paths_g2) | |||
return kernel | |||
return kernel | |||
def _kernel_do_trie(self, trie1, trie2): | |||
"""Compute path graph kernels up to depth d between 2 graphs using trie. | |||
Parameters | |||
---------- | |||
trie1, trie2 : list | |||
Tries that contains all paths in 2 graphs. | |||
k_func : function | |||
A kernel function applied using different notions of fingerprint | |||
A kernel function applied using different notions of fingerprint | |||
similarity. | |||
Return | |||
------ | |||
kernel : float | |||
Path kernel up to h between 2 graphs. | |||
""" | |||
if self._k_func == 'tanimoto': | |||
# traverse all paths in graph1 and search them in graph2. Deep-first | |||
if self._k_func == 'tanimoto': | |||
# traverse all paths in graph1 and search them in graph2. Deep-first | |||
# search is applied. | |||
def traverseTrie1t(root, trie2, setlist, pcurrent=[]): | |||
def traverseTrie1t(root, trie2, setlist, pcurrent=[]): # @todo: no need to use value (# of occurrence of paths) in this case. | |||
for key, node in root['children'].items(): | |||
pcurrent.append(key) | |||
if node['isEndOfWord']: | |||
if node['isEndOfWord']: | |||
setlist[1] += 1 | |||
count2 = trie2.searchWord(pcurrent) | |||
if count2 != 0: | |||
@@ -250,17 +240,17 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
del pcurrent[-1] | |||
if pcurrent != []: | |||
del pcurrent[-1] | |||
# traverse all paths in graph2 and find out those that are not in | |||
# graph1. Deep-first search is applied. | |||
# traverse all paths in graph2 and find out those that are not in | |||
# graph1. Deep-first search is applied. | |||
def traverseTrie2t(root, trie1, setlist, pcurrent=[]): | |||
for key, node in root['children'].items(): | |||
pcurrent.append(key) | |||
if node['isEndOfWord']: | |||
# print(node['count']) | |||
count1 = trie1.searchWord(pcurrent) | |||
if count1 == 0: | |||
if count1 == 0: | |||
setlist[1] += 1 | |||
if node['children'] != {}: | |||
traverseTrie2t(node, trie1, setlist, pcurrent) | |||
@@ -268,7 +258,7 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
del pcurrent[-1] | |||
if pcurrent != []: | |||
del pcurrent[-1] | |||
setlist = [0, 0] # intersection and union of path sets of g1, g2. | |||
# print(trie1.root) | |||
# print(trie2.root) | |||
@@ -277,9 +267,9 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
traverseTrie2t(trie2.root, trie1, setlist) | |||
# print(setlist) | |||
kernel = setlist[0] / setlist[1] | |||
elif self._k_func == 'MinMax': # MinMax kernel | |||
# traverse all paths in graph1 and search them in graph2. Deep-first | |||
elif self._k_func == 'MinMax': # MinMax kernel | |||
# traverse all paths in graph1 and search them in graph2. Deep-first | |||
# search is applied. | |||
def traverseTrie1m(root, trie2, sumlist, pcurrent=[]): | |||
for key, node in root['children'].items(): | |||
@@ -296,16 +286,16 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
del pcurrent[-1] | |||
if pcurrent != []: | |||
del pcurrent[-1] | |||
# traverse all paths in graph2 and find out those that are not in | |||
# graph1. Deep-first search is applied. | |||
# traverse all paths in graph2 and find out those that are not in | |||
# graph1. Deep-first search is applied. | |||
def traverseTrie2m(root, trie1, sumlist, pcurrent=[]): | |||
for key, node in root['children'].items(): | |||
pcurrent.append(key) | |||
if node['isEndOfWord']: | |||
if node['isEndOfWord']: | |||
# print(node['count']) | |||
count1 = trie1.searchWord(pcurrent) | |||
if count1 == 0: | |||
if count1 == 0: | |||
sumlist[1] += node['count'] | |||
if node['children'] != {}: | |||
traverseTrie2m(node, trie1, sumlist, pcurrent) | |||
@@ -313,7 +303,7 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
del pcurrent[-1] | |||
if pcurrent != []: | |||
del pcurrent[-1] | |||
sumlist = [0, 0] # sum of mins and sum of maxs | |||
# print(trie1.root) | |||
# print(trie2.root) | |||
@@ -324,37 +314,37 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
kernel = sumlist[0] / sumlist[1] | |||
else: | |||
raise Exception('The given "k_func" cannot be recognized. Possible choices include: "tanimoto", "MinMax".') | |||
return kernel | |||
def _wrapper_kernel_do_trie(self, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, self._kernel_do_trie(G_trie[i], G_trie[j]) | |||
def _kernel_do_naive(self, paths1, paths2): | |||
"""Compute path graph kernels up to depth d between 2 graphs naively. | |||
Parameters | |||
---------- | |||
paths_list : list of list | |||
List of list of paths in all graphs, where for unlabeled graphs, each | |||
path is represented by a list of nodes; while for labeled graphs, each | |||
path is represented by a string consists of labels of nodes and/or | |||
List of list of paths in all graphs, where for unlabeled graphs, each | |||
path is represented by a list of nodes; while for labeled graphs, each | |||
path is represented by a string consists of labels of nodes and/or | |||
edges on that path. | |||
k_func : function | |||
A kernel function applied using different notions of fingerprint | |||
A kernel function applied using different notions of fingerprint | |||
similarity. | |||
Return | |||
------ | |||
kernel : float | |||
Path kernel up to h between 2 graphs. | |||
""" | |||
all_paths = list(set(paths1 + paths2)) | |||
if self._k_func == 'tanimoto': | |||
length_union = len(set(paths1 + paths2)) | |||
kernel = (len(set(paths1)) + len(set(paths2)) - | |||
@@ -363,7 +353,7 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
# vector2 = [(1 if path in paths2 else 0) for path in all_paths] | |||
# kernel_uv = np.dot(vector1, vector2) | |||
# kernel = kernel_uv / (len(set(paths1)) + len(set(paths2)) - kernel_uv) | |||
elif self._k_func == 'MinMax': # MinMax kernel | |||
path_count1 = Counter(paths1) | |||
path_count2 = Counter(paths2) | |||
@@ -373,7 +363,7 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
for key in all_paths] | |||
kernel = np.sum(np.minimum(vector1, vector2)) / \ | |||
np.sum(np.maximum(vector1, vector2)) | |||
elif self._k_func is None: # no sub-kernel used; compare paths directly. | |||
path_count1 = Counter(paths1) | |||
path_count2 = Counter(paths2) | |||
@@ -382,27 +372,27 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
vector2 = [(path_count2[key] if (key in path_count2.keys()) else 0) | |||
for key in all_paths] | |||
kernel = np.dot(vector1, vector2) | |||
else: | |||
raise Exception('The given "k_func" cannot be recognized. Possible choices include: "tanimoto", "MinMax" and None.') | |||
return kernel | |||
def _wrapper_kernel_do_naive(self, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, self._kernel_do_naive(G_plist[i], G_plist[j]) | |||
def _find_all_path_as_trie(self, G): | |||
# all_path = find_all_paths_until_length(G, length, ds_attrs, | |||
# all_path = find_all_paths_until_length(G, length, ds_attrs, | |||
# node_label=node_label, | |||
# edge_label=edge_label) | |||
# ptrie = Trie() | |||
# for path in all_path: | |||
# ptrie.insertWord(path) | |||
# ptrie = Trie() | |||
# path_l = [[n] for n in G.nodes] # paths of length l | |||
# path_l_str = paths2labelseqs(path_l, G, ds_attrs, node_label, edge_label) | |||
@@ -421,15 +411,15 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
# path_l_str = paths2labelseqs(path_l, G, ds_attrs, node_label, edge_label) | |||
# for p in path_l_str: | |||
# ptrie.insertWord(p) | |||
# | |||
# | |||
# print(time.time() - time1) | |||
# print(ptrie.root) | |||
# print() | |||
# traverse all paths up to length h in a graph and construct a trie with | |||
# them. Deep-first search is applied. Notice the reverse of each path is | |||
# also stored to the trie. | |||
# traverse all paths up to length h in a graph and construct a trie with | |||
# them. Deep-first search is applied. Notice the reverse of each path is | |||
# also stored to the trie. | |||
def traverseGraph(root, ptrie, G, pcurrent=[]): | |||
if len(pcurrent) < self._depth + 1: | |||
for neighbor in G[root]: | |||
@@ -439,8 +429,8 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
ptrie.insertWord(plstr[0]) | |||
traverseGraph(neighbor, ptrie, G, pcurrent) | |||
del pcurrent[-1] | |||
ptrie = Trie() | |||
path_l = [[n] for n in G.nodes] # paths of length l | |||
path_l_str = self._paths2labelseqs(path_l, G) | |||
@@ -448,18 +438,18 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
ptrie.insertWord(p) | |||
for n in G.nodes: | |||
traverseGraph(n, ptrie, G, pcurrent=[n]) | |||
# def traverseGraph(root, all_paths, length, G, ds_attrs, node_label, edge_label, | |||
# pcurrent=[]): | |||
# if len(pcurrent) < length + 1: | |||
# for neighbor in G[root]: | |||
# if neighbor not in pcurrent: | |||
# pcurrent.append(neighbor) | |||
# plstr = paths2labelseqs([pcurrent], G, ds_attrs, | |||
# plstr = paths2labelseqs([pcurrent], G, ds_attrs, | |||
# node_label, edge_label) | |||
# all_paths.append(pcurrent[:]) | |||
# traverseGraph(neighbor, all_paths, length, G, ds_attrs, | |||
# traverseGraph(neighbor, all_paths, length, G, ds_attrs, | |||
# node_label, edge_label, pcurrent) | |||
# del pcurrent[-1] | |||
# | |||
@@ -470,24 +460,24 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
## for p in path_l_str: | |||
## ptrie.insertWord(p) | |||
# for n in G.nodes: | |||
# traverseGraph(n, all_paths, length, G, ds_attrs, node_label, edge_label, | |||
# traverseGraph(n, all_paths, length, G, ds_attrs, node_label, edge_label, | |||
# pcurrent=[n]) | |||
# print(ptrie.root) | |||
return ptrie | |||
def _wrapper_find_all_path_as_trie(self, itr_item): | |||
g = itr_item[0] | |||
i = itr_item[1] | |||
return i, self._find_all_path_as_trie(g) | |||
# @todo: (can be removed maybe) this method find paths repetively, it could be faster. | |||
def _find_all_paths_until_length(self, G, tolabelseqs=True): | |||
"""Find all paths no longer than a certain maximum length in a graph. A | |||
"""Find all paths no longer than a certain maximum length in a graph. A | |||
recursive depth first search is applied. | |||
Parameters | |||
---------- | |||
G : NetworkX graphs | |||
@@ -500,13 +490,13 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
Node attribute used as label. The default node label is atom. | |||
edge_label : string | |||
Edge attribute used as label. The default edge label is bond_type. | |||
Return | |||
------ | |||
path : list | |||
List of paths retrieved, where for unlabeled graphs, each path is | |||
represented by a list of nodes; while for labeled graphs, each path is | |||
represented by a list of strings consists of labels of nodes and/or | |||
List of paths retrieved, where for unlabeled graphs, each path is | |||
represented by a list of nodes; while for labeled graphs, each path is | |||
represented by a list of strings consists of labels of nodes and/or | |||
edges on that path. | |||
""" | |||
# path_l = [tuple([n]) for n in G.nodes] # paths of length l | |||
@@ -519,10 +509,10 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
# tmp = path + (neighbor, ) | |||
# if tuple(tmp[::-1]) not in path_l_new: | |||
# path_l_new.append(tuple(tmp)) | |||
# all_paths += path_l_new | |||
# path_l = path_l_new[:] | |||
path_l = [[n] for n in G.nodes] # paths of length l | |||
all_paths = [p.copy() for p in path_l] | |||
for l in range(1, self._depth + 1): | |||
@@ -533,28 +523,28 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
tmp = path + [neighbor] | |||
# if tmp[::-1] not in path_lplus1: | |||
path_lplus1.append(tmp) | |||
all_paths += path_lplus1 | |||
path_l = [p.copy() for p in path_lplus1] | |||
# for i in range(0, self._depth + 1): | |||
# new_paths = find_all_paths(G, i) | |||
# if new_paths == []: | |||
# break | |||
# all_paths.extend(new_paths) | |||
# consider labels | |||
# print(paths2labelseqs(all_paths, G, ds_attrs, node_label, edge_label)) | |||
# print() | |||
return (self._paths2labelseqs(all_paths, G) if tolabelseqs else all_paths) | |||
def _wrapper_find_all_paths_until_length(self, tolabelseqs, itr_item): | |||
g = itr_item[0] | |||
i = itr_item[1] | |||
return i, self._find_all_paths_until_length(g, tolabelseqs=tolabelseqs) | |||
def _paths2labelseqs(self, plist, G): | |||
if len(self._node_labels) > 0: | |||
if len(self._edge_labels) > 0: | |||
@@ -589,8 +579,8 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None | |||
else: | |||
return [tuple(['0' for node in path]) for path in plist] | |||
# return [tuple([len(path)]) for path in all_paths] | |||
def _add_dummy_labels(self, Gn): | |||
if self._k_func is not None: | |||
if len(self._node_labels) == 0 or (len(self._node_labels) == 1 and self._node_labels[0] == SpecialLabel.DUMMY): | |||
@@ -15,7 +15,7 @@ import sys | |||
from itertools import product | |||
# from functools import partial | |||
from multiprocessing import Pool | |||
from tqdm import tqdm | |||
from gklearn.utils import get_iters | |||
import numpy as np | |||
import networkx as nx | |||
from gklearn.utils.parallel import parallel_gm, parallel_me | |||
@@ -38,10 +38,7 @@ class ShortestPath(GraphKernel): | |||
def _compute_gm_series(self): | |||
self._all_graphs_have_edges(self._graphs) | |||
# get shortest path graph of each graph. | |||
if self._verbose >= 2: | |||
iterator = tqdm(self._graphs, desc='getting sp graphs', file=sys.stdout) | |||
else: | |||
iterator = self._graphs | |||
iterator = get_iters(self._graphs, desc='getting sp graphs', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
self._graphs = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | |||
# compute Gram matrix. | |||
@@ -49,10 +46,9 @@ class ShortestPath(GraphKernel): | |||
from itertools import combinations_with_replacement | |||
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
if self._verbose >= 2: | |||
iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = itr | |||
len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
iterator = get_iters(itr, desc='Computing kernels', | |||
length=len_itr, file=sys.stdout,verbose=(self._verbose >= 2)) | |||
for i, j in iterator: | |||
kernel = self._sp_do(self._graphs[i], self._graphs[j]) | |||
gram_matrix[i][j] = kernel | |||
@@ -71,11 +67,9 @@ class ShortestPath(GraphKernel): | |||
chunksize = int(len(self._graphs) / self._n_jobs) + 1 | |||
else: | |||
chunksize = 100 | |||
if self._verbose >= 2: | |||
iterator = tqdm(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize), | |||
desc='getting sp graphs', file=sys.stdout) | |||
else: | |||
iterator = pool.imap_unordered(get_sp_graphs_fun, itr, chunksize) | |||
iterator = get_iters(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize), | |||
desc='getting sp graphs', file=sys.stdout, | |||
length=len(self._graphs), verbose=(self._verbose >= 2)) | |||
for i, g in iterator: | |||
self._graphs[i] = g | |||
pool.close() | |||
@@ -98,18 +92,12 @@ class ShortestPath(GraphKernel): | |||
self._all_graphs_have_edges([g1] + g_list) | |||
# get shortest path graphs of g1 and each graph in g_list. | |||
g1 = getSPGraph(g1, edge_weight=self._edge_weight) | |||
if self._verbose >= 2: | |||
iterator = tqdm(g_list, desc='getting sp graphs', file=sys.stdout) | |||
else: | |||
iterator = g_list | |||
iterator = get_iters(g_list, desc='getting sp graphs', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
g_list = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator] | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
if self._verbose >= 2: | |||
iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = range(len(g_list)) | |||
iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
for i in iterator: | |||
kernel = self._sp_do(g1, g_list[i]) | |||
kernel_list[i] = kernel | |||
@@ -128,11 +116,9 @@ class ShortestPath(GraphKernel): | |||
chunksize = int(len(g_list) / self._n_jobs) + 1 | |||
else: | |||
chunksize = 100 | |||
if self._verbose >= 2: | |||
iterator = tqdm(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize), | |||
desc='getting sp graphs', file=sys.stdout) | |||
else: | |||
iterator = pool.imap_unordered(get_sp_graphs_fun, itr, chunksize) | |||
iterator = get_iters(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize), | |||
desc='getting sp graphs', file=sys.stdout, | |||
length=len(g_list), verbose=(self._verbose >= 2)) | |||
for i, g in iterator: | |||
g_list[i] = g | |||
pool.close() | |||
@@ -5,13 +5,13 @@ Created on Thu Aug 20 16:12:45 2020 | |||
@author: ljia | |||
@references: | |||
@references: | |||
[1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010. | |||
""" | |||
import sys | |||
from tqdm import tqdm | |||
from gklearn.utils import get_iters | |||
import numpy as np | |||
import networkx as nx | |||
from scipy.sparse import kron | |||
@@ -20,12 +20,12 @@ from gklearn.kernels import RandomWalkMeta | |||
class SpectralDecomposition(RandomWalkMeta): | |||
def __init__(self, **kwargs): | |||
super().__init__(**kwargs) | |||
self._sub_kernel = kwargs.get('sub_kernel', None) | |||
def _compute_gm_series(self): | |||
self._check_edge_weight(self._graphs, self._verbose) | |||
@@ -33,18 +33,15 @@ class SpectralDecomposition(RandomWalkMeta): | |||
if self._verbose >= 2: | |||
import warnings | |||
warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
if self._q is None: | |||
# precompute the spectral decomposition of each graph. | |||
P_list = [] | |||
D_list = [] | |||
if self._verbose >= 2: | |||
iterator = tqdm(self._graphs, desc='spectral decompose', file=sys.stdout) | |||
else: | |||
iterator = self._graphs | |||
iterator = get_iters(self._graphs, desc='spectral decompose', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
for G in iterator: | |||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||
# A actually is the transpose of the adjacency matrix. | |||
@@ -60,42 +57,37 @@ class SpectralDecomposition(RandomWalkMeta): | |||
from itertools import combinations_with_replacement | |||
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
if self._verbose >= 2: | |||
iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = itr | |||
len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, length=len_itr, verbose=(self._verbose >= 2)) | |||
for i, j in iterator: | |||
kernel = self._kernel_do(q_T_list[i], q_T_list[j], P_list[i], P_list[j], D_list[i], D_list[j], self._weight, self._sub_kernel) | |||
gram_matrix[i][j] = kernel | |||
gram_matrix[j][i] = kernel | |||
else: # @todo | |||
pass | |||
else: # @todo | |||
pass | |||
return gram_matrix | |||
def _compute_gm_imap_unordered(self): | |||
self._check_edge_weight(self._graphs, self._verbose) | |||
self._check_graphs(self._graphs) | |||
if self._verbose >= 2: | |||
import warnings | |||
warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
if self._q is None: | |||
# precompute the spectral decomposition of each graph. | |||
P_list = [] | |||
D_list = [] | |||
if self._verbose >= 2: | |||
iterator = tqdm(self._graphs, desc='spectral decompose', file=sys.stdout) | |||
else: | |||
iterator = self._graphs | |||
iterator = get_iters(self._graphs, desc='spectral decompose', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
for G in iterator: | |||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||
# A actually is the transpose of the adjacency matrix. | |||
@@ -106,45 +98,42 @@ class SpectralDecomposition(RandomWalkMeta): | |||
if self._p is None: # p is uniform distribution as default. | |||
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in self._graphs] # @todo: parallel? | |||
def init_worker(q_T_list_toshare, P_list_toshare, D_list_toshare): | |||
global G_q_T_list, G_P_list, G_D_list | |||
G_q_T_list = q_T_list_toshare | |||
G_P_list = P_list_toshare | |||
G_D_list = D_list_toshare | |||
do_fun = self._wrapper_kernel_do | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
do_fun = self._wrapper_kernel_do | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
glbv=(q_T_list, P_list, D_list), n_jobs=self._n_jobs, verbose=self._verbose) | |||
else: # @todo | |||
pass | |||
else: # @todo | |||
pass | |||
return gram_matrix | |||
def _compute_kernel_list_series(self, g1, g_list): | |||
self._check_edge_weight(g_list + [g1], self._verbose) | |||
self._check_graphs(g_list + [g1]) | |||
if self._verbose >= 2: | |||
import warnings | |||
warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
if self._q is None: | |||
# precompute the spectral decomposition of each graph. | |||
A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||
D1, P1 = np.linalg.eig(A1) | |||
P_list = [] | |||
D_list = [] | |||
if self._verbose >= 2: | |||
iterator = tqdm(g_list, desc='spectral decompose', file=sys.stdout) | |||
else: | |||
iterator = g_list | |||
iterator = get_iters(g_list, desc='spectral decompose', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
for G in iterator: | |||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||
# A actually is the transpose of the adjacency matrix. | |||
@@ -156,33 +145,30 @@ class SpectralDecomposition(RandomWalkMeta): | |||
if self._p is None: # p is uniform distribution as default. | |||
q_T1 = 1 / nx.number_of_nodes(g1) | |||
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in g_list] | |||
if self._verbose >= 2: | |||
iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = range(len(g_list)) | |||
iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
for i in iterator: | |||
kernel = self._kernel_do(q_T1, q_T_list[i], P1, P_list[i], D1, D_list[i], self._weight, self._sub_kernel) | |||
kernel_list[i] = kernel | |||
else: # @todo | |||
pass | |||
else: # @todo | |||
pass | |||
return kernel_list | |||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
self._check_edge_weight(g_list + [g1], self._verbose) | |||
self._check_graphs(g_list + [g1]) | |||
if self._verbose >= 2: | |||
import warnings | |||
warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
if self._q is None: | |||
# precompute the spectral decomposition of each graph. | |||
A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||
@@ -204,7 +190,7 @@ class SpectralDecomposition(RandomWalkMeta): | |||
if self._p is None: # p is uniform distribution as default. | |||
q_T1 = 1 / nx.number_of_nodes(g1) | |||
q_T_list = [np.full((1, nx.number_of_nodes(G)), 1 / nx.number_of_nodes(G)) for G in g_list] # @todo: parallel? | |||
def init_worker(q_T1_toshare, P1_toshare, D1_toshare, q_T_list_toshare, P_list_toshare, D_list_toshare): | |||
global G_q_T1, G_P1, G_D1, G_q_T_list, G_P_list, G_D_list | |||
G_q_T1 = q_T1_toshare | |||
@@ -214,34 +200,34 @@ class SpectralDecomposition(RandomWalkMeta): | |||
G_P_list = P_list_toshare | |||
G_D_list = D_list_toshare | |||
do_fun = self._wrapper_kernel_list_do | |||
def func_assign(result, var_to_assign): | |||
do_fun = self._wrapper_kernel_list_do | |||
def func_assign(result, var_to_assign): | |||
var_to_assign[result[0]] = result[1] | |||
itr = range(len(g_list)) | |||
len_itr = len(g_list) | |||
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
init_worker=init_worker, glbv=(q_T1, P1, D1, q_T_list, P_list, D_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
else: # @todo | |||
pass | |||
else: # @todo | |||
pass | |||
return kernel_list | |||
def _wrapper_kernel_list_do(self, itr): | |||
return itr, self._kernel_do(G_q_T1, G_q_T_list[itr], G_P1, G_P_list[itr], G_D1, G_D_list[itr], self._weight, self._sub_kernel) | |||
def _compute_single_kernel_series(self, g1, g2): | |||
self._check_edge_weight([g1] + [g2], self._verbose) | |||
self._check_graphs([g1] + [g2]) | |||
if self._verbose >= 2: | |||
import warnings | |||
warnings.warn('All labels are ignored. Only works for undirected graphs.') | |||
if self._q is None: | |||
# precompute the spectral decomposition of each graph. | |||
A1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||
@@ -257,10 +243,10 @@ class SpectralDecomposition(RandomWalkMeta): | |||
pass | |||
else: # @todo | |||
pass | |||
return kernel | |||
return kernel | |||
def _kernel_do(self, q_T1, q_T2, P1, P2, D1, D2, weight, sub_kernel): | |||
# use uniform distribution if there is no prior knowledge. | |||
kl = kron(np.dot(q_T1, P1), np.dot(q_T2, P2)).todense() | |||
@@ -276,7 +262,7 @@ class SpectralDecomposition(RandomWalkMeta): | |||
kmiddle = np.linalg.inv(kmiddle) | |||
return np.dot(np.dot(kl, kmiddle), kl.T)[0, 0] | |||
def _wrapper_kernel_do(self, itr): | |||
i = itr[0] | |||
j = itr[1] |
@@ -5,13 +5,13 @@ Created on Wed Aug 19 17:24:46 2020 | |||
@author: ljia | |||
@references: | |||
@references: | |||
[1] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010. | |||
""" | |||
import sys | |||
from tqdm import tqdm | |||
from gklearn.utils import get_iters | |||
import numpy as np | |||
import networkx as nx | |||
from control import dlyap | |||
@@ -20,11 +20,11 @@ from gklearn.kernels import RandomWalkMeta | |||
class SylvesterEquation(RandomWalkMeta): | |||
def __init__(self, **kwargs): | |||
super().__init__(**kwargs) | |||
def _compute_gm_series(self): | |||
self._check_edge_weight(self._graphs, self._verbose) | |||
@@ -32,24 +32,21 @@ class SylvesterEquation(RandomWalkMeta): | |||
if self._verbose >= 2: | |||
import warnings | |||
warnings.warn('All labels are ignored.') | |||
lmda = self._weight | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
if self._q is None: | |||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||
# A_wave_list actually contains the transposes of the adjacency matrices. | |||
if self._verbose >= 2: | |||
iterator = tqdm(self._graphs, desc='compute adjacency matrices', file=sys.stdout) | |||
else: | |||
iterator = self._graphs | |||
iterator = get_iters(self._graphs, desc='compute adjacency matrices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] | |||
# # normalized adjacency matrices | |||
# A_wave_list = [] | |||
# for G in tqdm(Gn, desc='compute adjacency matrices', file=sys.stdout): | |||
# A_tilde = nx.adjacency_matrix(G, eweight).todense().transpose() | |||
# A_tilde = nx.adjacency_matrix(G, eweight).todense().transpose() | |||
# norm = A_tilde.sum(axis=0) | |||
# norm[norm == 0] = 1 | |||
# A_wave_list.append(A_tilde / norm) | |||
@@ -57,119 +54,105 @@ class SylvesterEquation(RandomWalkMeta): | |||
if self._p is None: # p is uniform distribution as default. | |||
from itertools import combinations_with_replacement | |||
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
if self._verbose >= 2: | |||
iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = itr | |||
len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, length=len_itr, verbose=(self._verbose >= 2)) | |||
for i, j in iterator: | |||
kernel = self._kernel_do(A_wave_list[i], A_wave_list[j], lmda) | |||
gram_matrix[i][j] = kernel | |||
gram_matrix[j][i] = kernel | |||
else: # @todo | |||
pass | |||
else: # @todo | |||
pass | |||
return gram_matrix | |||
def _compute_gm_imap_unordered(self): | |||
self._check_edge_weight(self._graphs, self._verbose) | |||
self._check_graphs(self._graphs) | |||
if self._verbose >= 2: | |||
import warnings | |||
warnings.warn('All labels are ignored.') | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
if self._q is None: | |||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||
# A_wave_list actually contains the transposes of the adjacency matrices. | |||
if self._verbose >= 2: | |||
iterator = tqdm(self._graphs, desc='compute adjacency matrices', file=sys.stdout) | |||
else: | |||
iterator = self._graphs | |||
iterator = get_iters(self._graphs, desc='compute adjacency matrices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel? | |||
if self._p is None: # p is uniform distribution as default. | |||
def init_worker(A_wave_list_toshare): | |||
global G_A_wave_list | |||
G_A_wave_list = A_wave_list_toshare | |||
do_fun = self._wrapper_kernel_do | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
glbv=(A_wave_list,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
else: # @todo | |||
pass | |||
else: # @todo | |||
pass | |||
return gram_matrix | |||
def _compute_kernel_list_series(self, g1, g_list): | |||
self._check_edge_weight(g_list + [g1], self._verbose) | |||
self._check_graphs(g_list + [g1]) | |||
if self._verbose >= 2: | |||
import warnings | |||
warnings.warn('All labels are ignored.') | |||
lmda = self._weight | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
if self._q is None: | |||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||
# A_wave_list actually contains the transposes of the adjacency matrices. | |||
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||
if self._verbose >= 2: | |||
iterator = tqdm(g_list, desc='compute adjacency matrices', file=sys.stdout) | |||
else: | |||
iterator = g_list | |||
iterator = get_iters(g_list, desc='compute adjacency matrices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] | |||
if self._p is None: # p is uniform distribution as default. | |||
if self._verbose >= 2: | |||
iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = range(len(g_list)) | |||
iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
for i in iterator: | |||
kernel = self._kernel_do(A_wave_1, A_wave_list[i], lmda) | |||
kernel_list[i] = kernel | |||
else: # @todo | |||
pass | |||
else: # @todo | |||
pass | |||
return kernel_list | |||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
self._check_edge_weight(g_list + [g1], self._verbose) | |||
self._check_graphs(g_list + [g1]) | |||
if self._verbose >= 2: | |||
import warnings | |||
warnings.warn('All labels are ignored.') | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
if self._q is None: | |||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||
# A_wave_list actually contains the transposes of the adjacency matrices. | |||
A_wave_1 = nx.adjacency_matrix(g1, self._edge_weight).todense().transpose() | |||
if self._verbose >= 2: | |||
iterator = tqdm(g_list, desc='compute adjacency matrices', file=sys.stdout) | |||
else: | |||
iterator = g_list | |||
iterator = get_iters(g_list, desc='compute adjacency matrices', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
A_wave_list = [nx.adjacency_matrix(G, self._edge_weight).todense().transpose() for G in iterator] # @todo: parallel? | |||
if self._p is None: # p is uniform distribution as default. | |||
@@ -178,37 +161,37 @@ class SylvesterEquation(RandomWalkMeta): | |||
G_A_wave_1 = A_wave_1_toshare | |||
G_A_wave_list = A_wave_list_toshare | |||
do_fun = self._wrapper_kernel_list_do | |||
def func_assign(result, var_to_assign): | |||
do_fun = self._wrapper_kernel_list_do | |||
def func_assign(result, var_to_assign): | |||
var_to_assign[result[0]] = result[1] | |||
itr = range(len(g_list)) | |||
len_itr = len(g_list) | |||
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
init_worker=init_worker, glbv=(A_wave_1, A_wave_list), method='imap_unordered', | |||
init_worker=init_worker, glbv=(A_wave_1, A_wave_list), method='imap_unordered', | |||
n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
else: # @todo | |||
pass | |||
else: # @todo | |||
pass | |||
return kernel_list | |||
def _wrapper_kernel_list_do(self, itr): | |||
return itr, self._kernel_do(G_A_wave_1, G_A_wave_list[itr], self._weight) | |||
def _compute_single_kernel_series(self, g1, g2): | |||
self._check_edge_weight([g1] + [g2], self._verbose) | |||
self._check_graphs([g1] + [g2]) | |||
if self._verbose >= 2: | |||
import warnings | |||
warnings.warn('All labels are ignored.') | |||
lmda = self._weight | |||
if self._q is None: | |||
# don't normalize adjacency matrices if q is a uniform vector. Note | |||
# A_wave_list actually contains the transposes of the adjacency matrices. | |||
@@ -220,12 +203,12 @@ class SylvesterEquation(RandomWalkMeta): | |||
pass | |||
else: # @todo | |||
pass | |||
return kernel | |||
return kernel | |||
def _kernel_do(self, A_wave1, A_wave2, lmda): | |||
S = lmda * A_wave2 | |||
T_t = A_wave1 | |||
# use uniform distribution if there is no prior knowledge. | |||
@@ -237,8 +220,8 @@ class SylvesterEquation(RandomWalkMeta): | |||
# use uniform distribution if there is no prior knowledge. | |||
q_times = np.full((1, nb_pd), p_times_uni) | |||
return np.dot(q_times, X) | |||
def _wrapper_kernel_do(self, itr): | |||
i = itr[0] | |||
j = itr[1] |
@@ -5,15 +5,15 @@ Created on Mon Apr 13 18:02:46 2020 | |||
@author: ljia | |||
@references: | |||
@references: | |||
[1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in | |||
[1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in | |||
chemoinformatics. Pattern Recognition Letters. 2012 Nov 1;33(15):2038-47. | |||
""" | |||
import sys | |||
from multiprocessing import Pool | |||
from tqdm import tqdm | |||
from gklearn.utils import get_iters | |||
import numpy as np | |||
import networkx as nx | |||
from collections import Counter | |||
@@ -25,7 +25,7 @@ from gklearn.kernels import GraphKernel | |||
class Treelet(GraphKernel): | |||
def __init__(self, **kwargs): | |||
GraphKernel.__init__(self) | |||
self._node_labels = kwargs.get('node_labels', []) | |||
@@ -38,38 +38,35 @@ class Treelet(GraphKernel): | |||
def _compute_gm_series(self): | |||
self._add_dummy_labels(self._graphs) | |||
# get all canonical keys of all graphs before computing kernels to save | |||
# get all canonical keys of all graphs before computing kernels to save | |||
# time, but this may cost a lot of memory for large dataset. | |||
canonkeys = [] | |||
if self._verbose >= 2: | |||
iterator = tqdm(self._graphs, desc='getting canonkeys', file=sys.stdout) | |||
else: | |||
iterator = self._graphs | |||
iterator = get_iters(self._graphs, desc='getting canonkeys', file=sys.stdout, | |||
verbose=(self._verbose >= 2)) | |||
for g in iterator: | |||
canonkeys.append(self._get_canonkeys(g)) | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
from itertools import combinations_with_replacement | |||
itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
if self._verbose >= 2: | |||
iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = itr | |||
len_itr = int(len(self._graphs) * (len(self._graphs) + 1) / 2) | |||
iterator = get_iters(itr, desc='Computing kernels', file=sys.stdout, | |||
length=len_itr, verbose=(self._verbose >= 2)) | |||
for i, j in iterator: | |||
kernel = self._kernel_do(canonkeys[i], canonkeys[j]) | |||
gram_matrix[i][j] = kernel | |||
gram_matrix[j][i] = kernel # @todo: no directed graph considered? | |||
return gram_matrix | |||
def _compute_gm_imap_unordered(self): | |||
self._add_dummy_labels(self._graphs) | |||
# get all canonical keys of all graphs before computing kernels to save | |||
# get all canonical keys of all graphs before computing kernels to save | |||
# time, but this may cost a lot of memory for large dataset. | |||
pool = Pool(self._n_jobs) | |||
itr = zip(self._graphs, range(0, len(self._graphs))) | |||
@@ -79,60 +76,52 @@ class Treelet(GraphKernel): | |||
chunksize = 100 | |||
canonkeys = [[] for _ in range(len(self._graphs))] | |||
get_fun = self._wrapper_get_canonkeys | |||
if self._verbose >= 2: | |||
iterator = tqdm(pool.imap_unordered(get_fun, itr, chunksize), | |||
desc='getting canonkeys', file=sys.stdout) | |||
else: | |||
iterator = pool.imap_unordered(get_fun, itr, chunksize) | |||
iterator = get_iters(pool.imap_unordered(get_fun, itr, chunksize), | |||
desc='getting canonkeys', file=sys.stdout, | |||
length=len(self._graphs), verbose=(self._verbose >= 2)) | |||
for i, ck in iterator: | |||
canonkeys[i] = ck | |||
pool.close() | |||
pool.join() | |||
# compute Gram matrix. | |||
gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
def init_worker(canonkeys_toshare): | |||
global G_canonkeys | |||
G_canonkeys = canonkeys_toshare | |||
do_fun = self._wrapper_kernel_do | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
glbv=(canonkeys,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
return gram_matrix | |||
def _compute_kernel_list_series(self, g1, g_list): | |||
self._add_dummy_labels(g_list + [g1]) | |||
# get all canonical keys of all graphs before computing kernels to save | |||
# get all canonical keys of all graphs before computing kernels to save | |||
# time, but this may cost a lot of memory for large dataset. | |||
canonkeys_1 = self._get_canonkeys(g1) | |||
canonkeys_list = [] | |||
if self._verbose >= 2: | |||
iterator = tqdm(g_list, desc='getting canonkeys', file=sys.stdout) | |||
else: | |||
iterator = g_list | |||
iterator = get_iters(g_list, desc='getting canonkeys', file=sys.stdout, verbose=(self._verbose >= 2)) | |||
for g in iterator: | |||
canonkeys_list.append(self._get_canonkeys(g)) | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
if self._verbose >= 2: | |||
iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
else: | |||
iterator = range(len(g_list)) | |||
iterator = get_iters(range(len(g_list)), desc='Computing kernels', file=sys.stdout, length=len(g_list), verbose=(self._verbose >= 2)) | |||
for i in iterator: | |||
kernel = self._kernel_do(canonkeys_1, canonkeys_list[i]) | |||
kernel_list[i] = kernel | |||
return kernel_list | |||
def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
self._add_dummy_labels(g_list + [g1]) | |||
# get all canonical keys of all graphs before computing kernels to save | |||
# get all canonical keys of all graphs before computing kernels to save | |||
# time, but this may cost a lot of memory for large dataset. | |||
canonkeys_1 = self._get_canonkeys(g1) | |||
canonkeys_list = [[] for _ in range(len(g_list))] | |||
@@ -143,16 +132,14 @@ class Treelet(GraphKernel): | |||
else: | |||
chunksize = 100 | |||
get_fun = self._wrapper_get_canonkeys | |||
if self._verbose >= 2: | |||
iterator = tqdm(pool.imap_unordered(get_fun, itr, chunksize), | |||
desc='getting canonkeys', file=sys.stdout) | |||
else: | |||
iterator = pool.imap_unordered(get_fun, itr, chunksize) | |||
iterator = get_iters(pool.imap_unordered(get_fun, itr, chunksize), | |||
desc='getting canonkeys', file=sys.stdout, | |||
length=len(g_list), verbose=(self._verbose >= 2)) | |||
for i, ck in iterator: | |||
canonkeys_list[i] = ck | |||
pool.close() | |||
pool.join() | |||
# compute kernel list. | |||
kernel_list = [None] * len(g_list) | |||
@@ -161,37 +148,37 @@ class Treelet(GraphKernel): | |||
G_ck_1 = ck_1_toshare | |||
G_ck_list = ck_list_toshare | |||
do_fun = self._wrapper_kernel_list_do | |||
def func_assign(result, var_to_assign): | |||
def func_assign(result, var_to_assign): | |||
var_to_assign[result[0]] = result[1] | |||
itr = range(len(g_list)) | |||
len_itr = len(g_list) | |||
parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
init_worker=init_worker, glbv=(canonkeys_1, canonkeys_list), method='imap_unordered', | |||
init_worker=init_worker, glbv=(canonkeys_1, canonkeys_list), method='imap_unordered', | |||
n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
return kernel_list | |||
def _wrapper_kernel_list_do(self, itr): | |||
return itr, self._kernel_do(G_ck_1, G_ck_list[itr]) | |||
def _compute_single_kernel_series(self, g1, g2): | |||
self._add_dummy_labels([g1] + [g2]) | |||
canonkeys_1 = self._get_canonkeys(g1) | |||
canonkeys_2 = self._get_canonkeys(g2) | |||
kernel = self._kernel_do(canonkeys_1, canonkeys_2) | |||
return kernel | |||
return kernel | |||
def _kernel_do(self, canonkey1, canonkey2): | |||
"""Compute treelet graph kernel between 2 graphs. | |||
Parameters | |||
---------- | |||
canonkey1, canonkey2 : list | |||
List of canonical keys in 2 graphs, where each key is represented by a string. | |||
Return | |||
------ | |||
kernel : float | |||
@@ -199,38 +186,38 @@ class Treelet(GraphKernel): | |||
""" | |||
keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs | |||
vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys]) | |||
vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys]) | |||
kernel = self._sub_kernel(vector1, vector2) | |||
vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys]) | |||
kernel = self._sub_kernel(vector1, vector2) | |||
return kernel | |||
def _wrapper_kernel_do(self, itr): | |||
i = itr[0] | |||
j = itr[1] | |||
return i, j, self._kernel_do(G_canonkeys[i], G_canonkeys[j]) | |||
def _get_canonkeys(self, G): | |||
"""Generate canonical keys of all treelets in a graph. | |||
Parameters | |||
---------- | |||
G : NetworkX graphs | |||
The graph in which keys are generated. | |||
Return | |||
------ | |||
canonkey/canonkey_l : dict | |||
For unlabeled graphs, canonkey is a dictionary which records amount of | |||
every tree pattern. For labeled graphs, canonkey_l is one which keeps | |||
For unlabeled graphs, canonkey is a dictionary which records amount of | |||
every tree pattern. For labeled graphs, canonkey_l is one which keeps | |||
track of amount of every treelet. | |||
""" | |||
patterns = {} # a dictionary which consists of lists of patterns for all graphlet. | |||
canonkey = {} # canonical key, a dictionary which records amount of every tree pattern. | |||
### structural analysis ### | |||
### In this section, a list of patterns is generated for each graphlet, | |||
### where every pattern is represented by nodes ordered by Morgan's | |||
### In this section, a list of patterns is generated for each graphlet, | |||
### where every pattern is represented by nodes ordered by Morgan's | |||
### extended labeling. | |||
# linear patterns | |||
patterns['0'] = list(G.nodes()) | |||
@@ -238,16 +225,16 @@ class Treelet(GraphKernel): | |||
for i in range(1, 6): # for i in range(1, 6): | |||
patterns[str(i)] = find_all_paths(G, i, self._ds_infos['directed']) | |||
canonkey[str(i)] = len(patterns[str(i)]) | |||
# n-star patterns | |||
patterns['3star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 3] | |||
patterns['4star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 4] | |||
patterns['5star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5] | |||
patterns['5star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5] | |||
# n-star patterns | |||
canonkey['6'] = len(patterns['3star']) | |||
canonkey['8'] = len(patterns['4star']) | |||
canonkey['d'] = len(patterns['5star']) | |||
# pattern 7 | |||
patterns['7'] = [] # the 1st line of Table 1 in Ref [1] | |||
for pattern in patterns['3star']: | |||
@@ -261,7 +248,7 @@ class Treelet(GraphKernel): | |||
new_pattern = pattern_t + [neighborx] | |||
patterns['7'].append(new_pattern) | |||
canonkey['7'] = len(patterns['7']) | |||
# pattern 11 | |||
patterns['11'] = [] # the 4th line of Table 1 in Ref [1] | |||
for pattern in patterns['4star']: | |||
@@ -274,7 +261,7 @@ class Treelet(GraphKernel): | |||
new_pattern = pattern_t + [neighborx] | |||
patterns['11'].append(new_pattern) | |||
canonkey['b'] = len(patterns['11']) | |||
# pattern 12 | |||
patterns['12'] = [] # the 5th line of Table 1 in Ref [1] | |||
rootlist = [] # a list of root nodes, whose extended labels are 3 | |||
@@ -294,7 +281,7 @@ class Treelet(GraphKernel): | |||
# new_patterns = [ pattern + [neighborx1] + [neighborx2] for neighborx1 in G[pattern[i]] if neighborx1 != pattern[0] for neighborx2 in G[pattern[i]] if (neighborx1 > neighborx2 and neighborx2 != pattern[0]) ] | |||
patterns['12'].append(new_pattern) | |||
canonkey['c'] = int(len(patterns['12']) / 2) | |||
# pattern 9 | |||
patterns['9'] = [] # the 2nd line of Table 1 in Ref [1] | |||
for pattern in patterns['3star']: | |||
@@ -311,10 +298,10 @@ class Treelet(GraphKernel): | |||
new_pattern = pattern_t + [neighborx1] + [neighborx2] | |||
patterns['9'].append(new_pattern) | |||
canonkey['9'] = len(patterns['9']) | |||
# pattern 10 | |||
patterns['10'] = [] # the 3rd line of Table 1 in Ref [1] | |||
for pattern in patterns['3star']: | |||
for pattern in patterns['3star']: | |||
for i in range(1, len(pattern)): | |||
if G.degree(pattern[i]) >= 2: | |||
for neighborx in G[pattern[i]]: | |||
@@ -324,20 +311,20 @@ class Treelet(GraphKernel): | |||
new_patterns = [ pattern_t + [neighborx] + [neighborxx] for neighborxx in G[neighborx] if neighborxx != pattern[i] ] | |||
patterns['10'].extend(new_patterns) | |||
canonkey['a'] = len(patterns['10']) | |||
### labeling information ### | |||
### In this section, a list of canonical keys is generated for every | |||
### pattern obtained in the structural analysis section above, which is a | |||
### In this section, a list of canonical keys is generated for every | |||
### pattern obtained in the structural analysis section above, which is a | |||
### string corresponding to a unique treelet. A dictionary is built to keep | |||
### track of the amount of every treelet. | |||
if len(self._node_labels) > 0 or len(self._edge_labels) > 0: | |||
canonkey_l = {} # canonical key, a dictionary which keeps track of amount of every treelet. | |||
# linear patterns | |||
canonkey_t = Counter(get_mlti_dim_node_attrs(G, self._node_labels)) | |||
for key in canonkey_t: | |||
canonkey_l[('0', key)] = canonkey_t[key] | |||
for i in range(1, 6): # for i in range(1, 6): | |||
treelet = [] | |||
for pattern in patterns[str(i)]: | |||
@@ -349,7 +336,7 @@ class Treelet(GraphKernel): | |||
canonkey_t = canonlist if canonlist < canonlist[::-1] else canonlist[::-1] | |||
treelet.append(tuple([str(i)] + canonkey_t)) | |||
canonkey_l.update(Counter(treelet)) | |||
# n-star patterns | |||
for i in range(3, 6): | |||
treelet = [] | |||
@@ -361,12 +348,12 @@ class Treelet(GraphKernel): | |||
canonlist.append(tuple((nlabels, elabels))) | |||
canonlist.sort() | |||
canonlist = list(chain.from_iterable(canonlist)) | |||
canonkey_t = tuple(['d' if i == 5 else str(i * 2)] + | |||
[tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
canonkey_t = tuple(['d' if i == 5 else str(i * 2)] + | |||
[tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
+ canonlist) | |||
treelet.append(canonkey_t) | |||
canonkey_l.update(Counter(treelet)) | |||
# pattern 7 | |||
treelet = [] | |||
for pattern in patterns['7']: | |||
@@ -377,15 +364,15 @@ class Treelet(GraphKernel): | |||
canonlist.append(tuple((nlabels, elabels))) | |||
canonlist.sort() | |||
canonlist = list(chain.from_iterable(canonlist)) | |||
canonkey_t = tuple(['7'] | |||
+ [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] + canonlist | |||
+ [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] | |||
canonkey_t = tuple(['7'] | |||
+ [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] + canonlist | |||
+ [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] | |||
+ [tuple(G[pattern[3]][pattern[0]][el] for el in self._edge_labels)] | |||
+ [tuple(G.nodes[pattern[4]][nl] for nl in self._node_labels)] | |||
+ [tuple(G.nodes[pattern[4]][nl] for nl in self._node_labels)] | |||
+ [tuple(G[pattern[4]][pattern[3]][el] for el in self._edge_labels)]) | |||
treelet.append(canonkey_t) | |||
canonkey_l.update(Counter(treelet)) | |||
# pattern 11 | |||
treelet = [] | |||
for pattern in patterns['11']: | |||
@@ -396,15 +383,15 @@ class Treelet(GraphKernel): | |||
canonlist.append(tuple((nlabels, elabels))) | |||
canonlist.sort() | |||
canonlist = list(chain.from_iterable(canonlist)) | |||
canonkey_t = tuple(['b'] | |||
+ [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] + canonlist | |||
+ [tuple(G.nodes[pattern[4]][nl] for nl in self._node_labels)] | |||
canonkey_t = tuple(['b'] | |||
+ [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] + canonlist | |||
+ [tuple(G.nodes[pattern[4]][nl] for nl in self._node_labels)] | |||
+ [tuple(G[pattern[4]][pattern[0]][el] for el in self._edge_labels)] | |||
+ [tuple(G.nodes[pattern[5]][nl] for nl in self._node_labels)] | |||
+ [tuple(G.nodes[pattern[5]][nl] for nl in self._node_labels)] | |||
+ [tuple(G[pattern[5]][pattern[4]][el] for el in self._edge_labels)]) | |||
treelet.append(canonkey_t) | |||
canonkey_l.update(Counter(treelet)) | |||
# pattern 10 | |||
treelet = [] | |||
for pattern in patterns['10']: | |||
@@ -418,15 +405,15 @@ class Treelet(GraphKernel): | |||
canonlist.sort() | |||
canonkey0 = list(chain.from_iterable(canonlist)) | |||
canonkey_t = tuple(['a'] | |||
+ [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] | |||
+ [tuple(G.nodes[pattern[4]][nl] for nl in self._node_labels)] | |||
+ [tuple(G[pattern[4]][pattern[3]][el] for el in self._edge_labels)] | |||
+ [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
+ [tuple(G[pattern[0]][pattern[3]][el] for el in self._edge_labels)] | |||
+ [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] | |||
+ [tuple(G.nodes[pattern[4]][nl] for nl in self._node_labels)] | |||
+ [tuple(G[pattern[4]][pattern[3]][el] for el in self._edge_labels)] | |||
+ [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
+ [tuple(G[pattern[0]][pattern[3]][el] for el in self._edge_labels)] | |||
+ canonkey4 + canonkey0) | |||
treelet.append(canonkey_t) | |||
canonkey_l.update(Counter(treelet)) | |||
# pattern 12 | |||
treelet = [] | |||
for pattern in patterns['12']: | |||
@@ -444,22 +431,22 @@ class Treelet(GraphKernel): | |||
canonlist3.append(tuple((nlabels, elabels))) | |||
canonlist3.sort() | |||
canonlist3 = list(chain.from_iterable(canonlist3)) | |||
# 2 possible key can be generated from 2 nodes with extended label 3, | |||
# 2 possible key can be generated from 2 nodes with extended label 3, | |||
# select the one with lower lexicographic order. | |||
canonkey_t1 = tuple(['c'] | |||
+ [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] + canonlist0 | |||
+ [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] | |||
+ [tuple(G[pattern[3]][pattern[0]][el] for el in self._edge_labels)] | |||
canonkey_t1 = tuple(['c'] | |||
+ [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] + canonlist0 | |||
+ [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] | |||
+ [tuple(G[pattern[3]][pattern[0]][el] for el in self._edge_labels)] | |||
+ canonlist3) | |||
canonkey_t2 = tuple(['c'] | |||
+ [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] + canonlist3 | |||
+ [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
+ [tuple(G[pattern[0]][pattern[3]][el] for el in self._edge_labels)] | |||
canonkey_t2 = tuple(['c'] | |||
+ [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels)] + canonlist3 | |||
+ [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
+ [tuple(G[pattern[0]][pattern[3]][el] for el in self._edge_labels)] | |||
+ canonlist0) | |||
treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2) | |||
canonkey_l.update(Counter(treelet)) | |||
# pattern 9 | |||
treelet = [] | |||
for pattern in patterns['9']: | |||
@@ -469,7 +456,7 @@ class Treelet(GraphKernel): | |||
tuple(G[pattern[5]][pattern[3]][el] for el in self._edge_labels)] | |||
prekey2 = [tuple(G.nodes[pattern[2]][nl] for nl in self._node_labels), | |||
tuple(G[pattern[2]][pattern[0]][el] for el in self._edge_labels)] | |||
prekey3 = [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels), | |||
prekey3 = [tuple(G.nodes[pattern[3]][nl] for nl in self._node_labels), | |||
tuple(G[pattern[3]][pattern[0]][el] for el in self._edge_labels)] | |||
if prekey2 + canonkey2 < prekey3 + canonkey3: | |||
canonkey_t = [tuple(G.nodes[pattern[1]][nl] for nl in self._node_labels)] \ | |||
@@ -480,21 +467,21 @@ class Treelet(GraphKernel): | |||
+ [tuple(G[pattern[1]][pattern[0]][el] for el in self._edge_labels)] \ | |||
+ prekey3 + prekey2 + canonkey3 + canonkey2 | |||
treelet.append(tuple(['9'] | |||
+ [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
+ [tuple(G.nodes[pattern[0]][nl] for nl in self._node_labels)] | |||
+ canonkey_t)) | |||
canonkey_l.update(Counter(treelet)) | |||
return canonkey_l | |||
return canonkey | |||
def _wrapper_get_canonkeys(self, itr_item): | |||
g = itr_item[0] | |||
i = itr_item[1] | |||
return i, self._get_canonkeys(g) | |||
def _add_dummy_labels(self, Gn): | |||
if len(self._node_labels) == 0 or (len(self._node_labels) == 1 and self._node_labels[0] == SpecialLabel.DUMMY): | |||
for i in range(len(Gn)): | |||
@@ -555,5 +555,12 @@ if __name__ == "__main__": | |||
# test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered') | |||
# test_RandomWalk('Acyclic', 'fp', None, None) | |||
# test_RandomWalk('Acyclic', 'spectral', 'exp', 'imap_unordered') | |||
# test_CommonWalk('AIDS', 0.01, 'geo') | |||
# test_CommonWalk('Acyclic', 0.01, 'geo') | |||
# test_Marginalized('Acyclic', False) | |||
# test_ShortestPath('Acyclic') | |||
# test_PathUpToH('Acyclic', 'MinMax') | |||
# test_Treelet('Acyclic') | |||
# test_SylvesterEquation('Acyclic') | |||
# test_ConjugateGradient('Acyclic') | |||
# test_FixedPoint('Acyclic') | |||
# test_SpectralDecomposition('Acyclic', 'exp') |
@@ -25,3 +25,4 @@ from gklearn.utils.utils import normalize_gram_matrix, compute_distance_matrix | |||
from gklearn.utils.trie import Trie | |||
from gklearn.utils.knn import knn_cv, knn_classification | |||
from gklearn.utils.model_selection_precomputed import model_selection_for_precomputed_kernel | |||
from gklearn.utils.iters import get_iters |
@@ -0,0 +1,55 @@ | |||
#!/usr/bin/env python3 | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Created on Thu Dec 24 10:35:26 2020 | |||
@author: ljia | |||
""" | |||
from tqdm import tqdm | |||
import math | |||
def get_iters(iterable, desc=None, file=None, length=None, verbose=True, **kwargs): | |||
if verbose: | |||
if 'miniters' not in kwargs: | |||
if length is None: | |||
try: | |||
kwargs['miniters'] = math.ceil(len(iterable) / 100) | |||
except TypeError: | |||
raise | |||
kwargs['miniters'] = 100 | |||
else: | |||
kwargs['miniters'] = math.ceil(length / 100) | |||
if 'maxinterval' not in kwargs: | |||
kwargs['maxinterval'] = 600 | |||
return tqdm(iterable, desc=desc, file=file, **kwargs) | |||
else: | |||
return iterable | |||
# class mytqdm(tqdm): | |||
# def __init__(iterable=None, desc=None, total=None, leave=True, | |||
# file=None, ncols=None, mininterval=0.1, maxinterval=10.0, | |||
# miniters=None, ascii=None, disable=False, unit='it', | |||
# unit_scale=False, dynamic_ncols=False, smoothing=0.3, | |||
# bar_format=None, initial=0, position=None, postfix=None, | |||
# unit_divisor=1000, write_bytes=None, lock_args=None, | |||
# nrows=None, | |||
# gui=False, **kwargs): | |||
# if iterable is not None: | |||
# miniters=math.ceil(len(iterable) / 100) | |||
# maxinterval=600 | |||
# super().__init__(iterable=iterable, desc=desc, total=total, leave=leave, | |||
# file=file, ncols=ncols, mininterval=mininterval, maxinterval=maxinterval, | |||
# miniters=miniters, ascii=ascii, disable=disable, unit=unit, | |||
# unit_scale=unit_scale, dynamic_ncols=dynamic_ncols, smoothing=smoothing, | |||
# bar_format=bar_format, initial=initial, position=position, postfix=postfix, | |||
# unit_divisor=unit_divisor, write_bytes=write_bytes, lock_args=lock_args, | |||
# nrows=nrows, | |||
# gui=gui, **kwargs) | |||
# tqdm = mytqdm |