Browse Source

New translations utils.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
cda5c3278c
1 changed files with 8 additions and 5 deletions
  1. +8
    -5
      lang/fr/gklearn/experiments/papers/PRL_2020/utils.py

+ 8
- 5
lang/fr/gklearn/experiments/papers/PRL_2020/utils.py View File

@@ -158,7 +158,7 @@ def cross_validate(graphs, targets, kernel_name, output_dir='outputs/', ds_name=
sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
param_grid_precomputed = {'compute_method': ['fp'],
'node_kernels': [sub_kernel], 'edge_kernels': [sub_kernel],
'weight': np.logspace(-3, -10, num=8, base=10)}
'weight': np.logspace(-4, -10, num=7, base=10)}
elif kernel_name == 'SpectralDecomposition':
from gklearn.kernels.randomWalkKernel import randomwalkkernel
@@ -196,14 +196,17 @@ def cross_validate(graphs, targets, kernel_name, output_dir='outputs/', ds_name=
elif kernel_name == 'Treelet':
from gklearn.kernels.treeletKernel import treeletkernel
estimator = treeletkernel
from gklearn.utils.kernels import polynomialkernel
from gklearn.utils.kernels import gaussiankernel, polynomialkernel
import functools
gkernels = [functools.partial(gaussiankernel, gamma=1 / ga)
# for ga in np.linspace(1, 10, 10)]
for ga in np.logspace(0, 10, num=11, base=10)]
pkernels = [functools.partial(polynomialkernel, d=d, c=c) for d in range(1, 11)
for c in np.logspace(0, 10, num=11, base=10)]
for ga in np.logspace(0, 10, num=11, base=10)]
pkernels = [functools.partial(polynomialkernel, d=d, c=c) for d in range(1, 11)
for c in np.logspace(0, 10, num=11, base=10)]
# pkernels = [functools.partial(polynomialkernel, d=1, c=1)]

param_grid_precomputed = {'sub_kernel': pkernels + gkernels}
# 'parallel': [None]}
elif kernel_name == 'WLSubtree':
from gklearn.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel


Loading…
Cancel
Save