Browse Source

New translations knn.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
d0ec6ec1a2
1 changed files with 141 additions and 0 deletions
  1. +141
    -0
      lang/fr/gklearn/utils/knn.py

+ 141
- 0
lang/fr/gklearn/utils/knn.py View File

@@ -0,0 +1,141 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon May 11 11:03:01 2020

@author: ljia
"""
import numpy as np
from sklearn.model_selection import ShuffleSplit
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from gklearn.utils.utils import get_graph_kernel_by_name
# from gklearn.preimage.utils import get_same_item_indices

def sum_squares(a, b):
"""
Return the sum of squares of the difference between a and b, aka MSE
"""
return np.sum([(a[i] - b[i])**2 for i in range(len(a))])


def euclid_d(x, y):
"""
1D euclidean distance
"""
return np.sqrt((x-y)**2)


def man_d(x, y):
"""
1D manhattan distance
"""
return np.abs((x-y))


def knn_regression(D_app, D_test, y_app, y_test, n_neighbors, verbose=True, text=None):

from sklearn.neighbors import KNeighborsRegressor
knn = KNeighborsRegressor(n_neighbors=n_neighbors, metric='precomputed')
knn.fit(D_app, y_app)
y_pred = knn.predict(D_app)
y_pred_test = knn.predict(D_test.T)
perf_app = np.sqrt(sum_squares(y_pred, y_app)/len(y_app))
perf_test = np.sqrt(sum_squares(y_pred_test, y_test)/len(y_test))

if (verbose):
print("Learning error with {} train examples : {}".format(text, perf_app))
print("Test error with {} train examples : {}".format(text, perf_test))

return perf_app, perf_test


def knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=True, text=None):
knn = KNeighborsClassifier(n_neighbors=n_neighbors, metric='precomputed')
knn.fit(d_app, y_app)
y_pred = knn.predict(d_app)
y_pred_test = knn.predict(d_test.T)
perf_app = accuracy_score(y_app, y_pred)
perf_test = accuracy_score(y_test, y_pred_test)

if (verbose):
print("Learning accuracy with {} costs : {}".format(text, perf_app))
print("Test accuracy with {} costs : {}".format(text, perf_test))
return perf_app, perf_test

def knn_cv(dataset, kernel_options, trainset=None, n_neighbors=1, n_splits=50, test_size=0.9, verbose=True):
'''
Perform a knn classification cross-validation on given dataset.
'''
# Gn = dataset.graphs
y_all = dataset.targets
# compute kernel distances.
dis_mat = __compute_kernel_distances(dataset, kernel_options, trainset=trainset)
rs = ShuffleSplit(n_splits=n_splits, test_size=test_size, random_state=0)
# train_indices = [[] for _ in range(n_splits)]
# test_indices = [[] for _ in range(n_splits)]
# idx_targets = get_same_item_indices(y_all)
# for key, item in idx_targets.items():
# i = 0
# for train_i, test_i in rs.split(item): # @todo: careful when parallel.
# train_indices[i] += [item[idx] for idx in train_i]
# test_indices[i] += [item[idx] for idx in test_i]
# i += 1
accuracies = []
# for trial in range(len(train_indices)):
# train_index = train_indices[trial]
# test_index = test_indices[trial]
for train_index, test_index in rs.split(y_all):
# print(train_index, test_index)
# G_app = [Gn[i] for i in train_index]
# G_test = [Gn[i] for i in test_index]
y_app = [y_all[i] for i in train_index]
y_test = [y_all[i] for i in test_index]
N = len(train_index)
d_app = dis_mat.copy()
d_app = d_app[train_index,:]
d_app = d_app[:,train_index]
d_test = np.zeros((N, len(test_index)))
for i in range(N):
for j in range(len(test_index)):
d_test[i, j] = dis_mat[train_index[i], test_index[j]]
accuracies.append(knn_classification(d_app, d_test, y_app, y_test, n_neighbors, verbose=verbose, text=''))
results = {}
results['ave_perf_train'] = np.mean([i[0] for i in accuracies], axis=0)
results['std_perf_train'] = np.std([i[0] for i in accuracies], axis=0, ddof=1)
results['ave_perf_test'] = np.mean([i[1] for i in accuracies], axis=0)
results['std_perf_test'] = np.std([i[1] for i in accuracies], axis=0, ddof=1)

return results
def __compute_kernel_distances(dataset, kernel_options, trainset=None):
graph_kernel = get_graph_kernel_by_name(kernel_options['name'],
node_labels=dataset.node_labels,
edge_labels=dataset.edge_labels,
node_attrs=dataset.node_attrs,
edge_attrs=dataset.edge_attrs,
ds_infos=dataset.get_dataset_infos(keys=['directed']),
kernel_options=kernel_options)
gram_matrix, run_time = graph_kernel.compute(dataset.graphs, **kernel_options)

dis_mat, _, _, _ = graph_kernel.compute_distance_matrix()
if trainset is not None:
gram_matrix_unnorm = graph_kernel.gram_matrix_unnorm

return dis_mat

Loading…
Cancel
Save