$ pytest -v --cov-config=.coveragerc --cov-report term --cov=gklearn gklearn/tests/
@@ -50,17 +50,17 @@ A series of demos of using the library can be found on [Google Colab](https://dr
### Other demos
Simply clone this repository and voilà! Then check [`notebooks`](https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks) directory for demos:
Check [`notebooks`](https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks) directory for more demos:
* [`notebooks`](https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks) directory includes test codes of graph kernels based on linear patterns;
* [`notebooks/tests`](https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks/tests) directory includes codes that test some libraries and functions;
* [`notebooks/utils`](https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks/utils) directory includes some useful tools, such as a Gram matrix checker and a function to get properties of datasets;
* [`notebooks/else`](https://github.com/jajupmochi/graphkit-learn/tree/master/notebooks/else) directory includes other codes that we used for experiments.
### Check the docs.
### Documentation
The docs of the library can be found [here](https://graphkit-learn.readthedocs.io/en/master/?badge=master).
## Main contents.
## Main contents
### List of graph kernels
@@ -97,9 +97,9 @@ A demo of generating graph preimages can be found on [Google Colab](https://cola
### Interface to `GEDLIB`
[`GEDLIB`](https://github.com/dbblumenthal/gedlib) is an easily extensible C++ library for (suboptimally) computing the graph edit distance between attributed graphs. A Python interface for `GEDLIB` is integrated in this library, based on [`gedlibpy`](https://github.com/Ryurin/gedlibpy) library.
[`GEDLIB`](https://github.com/dbblumenthal/gedlib) is an easily extensible C++ library for (suboptimally) computing the graph edit distance between attributed graphs. [A Python interface](https://github.com/jajupmochi/graphkit-learn/tree/master/gklearn/gedlib) for `GEDLIB` is integrated in this library, based on [`gedlibpy`](https://github.com/Ryurin/gedlibpy) library.
## Computation optimization methods
### Computation optimization methods
* Python’s `multiprocessing.Pool` module is applied to perform **parallelization** on the computations of all kernels as well as the model selection.
* **The Fast Computation of Shortest Path Kernel (FCSP) method** [8] is implemented in *the random walk kernel*, *the shortest path kernel*, as well as *the structural shortest path kernel* where FCSP is applied on both vertex and edge kernels.