diff --git a/lang/zh/gklearn/gedlib/lib/libsvm.3.22/svm-predict.c b/lang/zh/gklearn/gedlib/lib/libsvm.3.22/svm-predict.c new file mode 100644 index 0000000..859c9ff --- /dev/null +++ b/lang/zh/gklearn/gedlib/lib/libsvm.3.22/svm-predict.c @@ -0,0 +1,239 @@ +#include +#include +#include +#include +#include +#include "svm.h" + +int print_null(const char *s,...) {return 0;} + +static int (*info)(const char *fmt,...) = &printf; + +struct svm_node *x; +int max_nr_attr = 64; + +struct svm_model* model; +int predict_probability=0; + +static char *line = NULL; +static int max_line_len; + +static char* readline(FILE *input) +{ + int len; + + if(fgets(line,max_line_len,input) == NULL) + return NULL; + + while(strrchr(line,'\n') == NULL) + { + max_line_len *= 2; + line = (char *) realloc(line,max_line_len); + len = (int) strlen(line); + if(fgets(line+len,max_line_len-len,input) == NULL) + break; + } + return line; +} + +void exit_input_error(int line_num) +{ + fprintf(stderr,"Wrong input format at line %d\n", line_num); + exit(1); +} + +void predict(FILE *input, FILE *output) +{ + int correct = 0; + int total = 0; + double error = 0; + double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0; + + int svm_type=svm_get_svm_type(model); + int nr_class=svm_get_nr_class(model); + double *prob_estimates=NULL; + int j; + + if(predict_probability) + { + if (svm_type==NU_SVR || svm_type==EPSILON_SVR) + info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model)); + else + { + int *labels=(int *) malloc(nr_class*sizeof(int)); + svm_get_labels(model,labels); + prob_estimates = (double *) malloc(nr_class*sizeof(double)); + fprintf(output,"labels"); + for(j=0;j start from 0 + + label = strtok(line," \t\n"); + if(label == NULL) // empty line + exit_input_error(total+1); + + target_label = strtod(label,&endptr); + if(endptr == label || *endptr != '\0') + exit_input_error(total+1); + + while(1) + { + if(i>=max_nr_attr-1) // need one more for index = -1 + { + max_nr_attr *= 2; + x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node)); + } + + idx = strtok(NULL,":"); + val = strtok(NULL," \t"); + + if(val == NULL) + break; + errno = 0; + x[i].index = (int) strtol(idx,&endptr,10); + if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index) + exit_input_error(total+1); + else + inst_max_index = x[i].index; + + errno = 0; + x[i].value = strtod(val,&endptr); + if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr))) + exit_input_error(total+1); + + ++i; + } + x[i].index = -1; + + if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC)) + { + predict_label = svm_predict_probability(model,x,prob_estimates); + fprintf(output,"%g",predict_label); + for(j=0;j=argc-2) + exit_with_help(); + + input = fopen(argv[i],"r"); + if(input == NULL) + { + fprintf(stderr,"can't open input file %s\n",argv[i]); + exit(1); + } + + output = fopen(argv[i+2],"w"); + if(output == NULL) + { + fprintf(stderr,"can't open output file %s\n",argv[i+2]); + exit(1); + } + + if((model=svm_load_model(argv[i+1]))==0) + { + fprintf(stderr,"can't open model file %s\n",argv[i+1]); + exit(1); + } + + x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct svm_node)); + if(predict_probability) + { + if(svm_check_probability_model(model)==0) + { + fprintf(stderr,"Model does not support probabiliy estimates\n"); + exit(1); + } + } + else + { + if(svm_check_probability_model(model)!=0) + info("Model supports probability estimates, but disabled in prediction.\n"); + } + + predict(input,output); + svm_free_and_destroy_model(&model); + free(x); + free(line); + fclose(input); + fclose(output); + return 0; +}