Browse Source

New translations weisfeiler_lehman.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
d7dcbf3b61
1 changed files with 483 additions and 0 deletions
  1. +483
    -0
      lang/fr/gklearn/kernels/weisfeiler_lehman.py

+ 483
- 0
lang/fr/gklearn/kernels/weisfeiler_lehman.py View File

@@ -0,0 +1,483 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 14 15:16:34 2020

@author: ljia

@references:

[1] Shervashidze N, Schweitzer P, Leeuwen EJ, Mehlhorn K, Borgwardt KM.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research.
2011;12(Sep):2539-61.
"""

import numpy as np
import networkx as nx
from collections import Counter
from functools import partial
from gklearn.utils import SpecialLabel
from gklearn.utils.parallel import parallel_gm
from gklearn.kernels import GraphKernel


class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge user kernel.
def __init__(self, **kwargs):
GraphKernel.__init__(self)
self.__node_labels = kwargs.get('node_labels', [])
self.__edge_labels = kwargs.get('edge_labels', [])
self.__height = int(kwargs.get('height', 0))
self.__base_kernel = kwargs.get('base_kernel', 'subtree')
self.__ds_infos = kwargs.get('ds_infos', {})


def _compute_gm_series(self):
if self._verbose >= 2:
import warnings
warnings.warn('A part of the computation is parallelized.')
self.__add_dummy_node_labels(self._graphs)
# for WL subtree kernel
if self.__base_kernel == 'subtree':
gram_matrix = self.__subtree_kernel_do(self._graphs)
# for WL shortest path kernel
elif self.__base_kernel == 'sp':
gram_matrix = self.__sp_kernel_do(self._graphs)
# for WL edge kernel
elif self.__base_kernel == 'edge':
gram_matrix = self.__edge_kernel_do(self._graphs)
# for user defined base kernel
else:
gram_matrix = self.__user_kernel_do(self._graphs)
return gram_matrix
def _compute_gm_imap_unordered(self):
if self._verbose >= 2:
import warnings
warnings.warn('Only a part of the computation is parallelized due to the structure of this kernel.')
return self._compute_gm_series()
def _compute_kernel_list_series(self, g1, g_list): # @todo: this should be better.
if self._verbose >= 2:
import warnings
warnings.warn('A part of the computation is parallelized.')
self.__add_dummy_node_labels(g_list + [g1])
# for WL subtree kernel
if self.__base_kernel == 'subtree':
gram_matrix = self.__subtree_kernel_do(g_list + [g1])
# for WL shortest path kernel
elif self.__base_kernel == 'sp':
gram_matrix = self.__sp_kernel_do(g_list + [g1])
# for WL edge kernel
elif self.__base_kernel == 'edge':
gram_matrix = self.__edge_kernel_do(g_list + [g1])
# for user defined base kernel
else:
gram_matrix = self.__user_kernel_do(g_list + [g1])
return list(gram_matrix[-1][0:-1])
def _compute_kernel_list_imap_unordered(self, g1, g_list):
if self._verbose >= 2:
import warnings
warnings.warn('Only a part of the computation is parallelized due to the structure of this kernel.')
return self._compute_kernel_list_series(g1, g_list)
def _wrapper_kernel_list_do(self, itr):
pass
def _compute_single_kernel_series(self, g1, g2): # @todo: this should be better.
self.__add_dummy_node_labels([g1] + [g2])

# for WL subtree kernel
if self.__base_kernel == 'subtree':
gram_matrix = self.__subtree_kernel_do([g1] + [g2])
# for WL shortest path kernel
elif self.__base_kernel == 'sp':
gram_matrix = self.__sp_kernel_do([g1] + [g2])
# for WL edge kernel
elif self.__base_kernel == 'edge':
gram_matrix = self.__edge_kernel_do([g1] + [g2])
# for user defined base kernel
else:
gram_matrix = self.__user_kernel_do([g1] + [g2])
return gram_matrix[0][1]
def __subtree_kernel_do(self, Gn):
"""Calculate Weisfeiler-Lehman kernels between graphs.
Parameters
----------
Gn : List of NetworkX graph
List of graphs between which the kernels are calculated.
Return
------
gram_matrix : Numpy matrix
Kernel matrix, each element of which is the Weisfeiler-Lehman kernel between 2 praphs.
"""
gram_matrix = np.zeros((len(Gn), len(Gn)))
# initial for height = 0
all_num_of_each_label = [] # number of occurence of each label in each graph in this iteration
# for each graph
for G in Gn:
# set all labels into a tuple.
for nd, attrs in G.nodes(data=True): # @todo: there may be a better way.
G.nodes[nd]['label_tuple'] = tuple(attrs[name] for name in self.__node_labels)
# get the set of original labels
labels_ori = list(nx.get_node_attributes(G, 'label_tuple').values())
# number of occurence of each label in G
all_num_of_each_label.append(dict(Counter(labels_ori)))
# calculate subtree kernel with the 0th iteration and add it to the final kernel.
self.__compute_gram_matrix(gram_matrix, all_num_of_each_label, Gn)
# iterate each height
for h in range(1, self.__height + 1):
all_set_compressed = {} # a dictionary mapping original labels to new ones in all graphs in this iteration
num_of_labels_occured = 0 # number of the set of letters that occur before as node labels at least once in all graphs
# all_labels_ori = set() # all unique orignal labels in all graphs in this iteration
all_num_of_each_label = [] # number of occurence of each label in G
# @todo: parallel this part.
for idx, G in enumerate(Gn):
all_multisets = []
for node, attrs in G.nodes(data=True):
# Multiset-label determination.
multiset = [G.nodes[neighbors]['label_tuple'] for neighbors in G[node]]
# sorting each multiset
multiset.sort()
multiset = [attrs['label_tuple']] + multiset # add the prefix
all_multisets.append(tuple(multiset))
# label compression
set_unique = list(set(all_multisets)) # set of unique multiset labels
# a dictionary mapping original labels to new ones.
set_compressed = {}
# if a label occured before, assign its former compressed label,
# else assign the number of labels occured + 1 as the compressed label.
for value in set_unique:
if value in all_set_compressed.keys():
set_compressed.update({value: all_set_compressed[value]})
else:
set_compressed.update({value: str(num_of_labels_occured + 1)})
num_of_labels_occured += 1
all_set_compressed.update(set_compressed)
# relabel nodes
for idx, node in enumerate(G.nodes()):
G.nodes[node]['label_tuple'] = set_compressed[all_multisets[idx]]
# get the set of compressed labels
labels_comp = list(nx.get_node_attributes(G, 'label_tuple').values())
# all_labels_ori.update(labels_comp)
all_num_of_each_label.append(dict(Counter(labels_comp)))
# calculate subtree kernel with h iterations and add it to the final kernel
self.__compute_gram_matrix(gram_matrix, all_num_of_each_label, Gn)
return gram_matrix

def __compute_gram_matrix(self, gram_matrix, all_num_of_each_label, Gn):
"""Compute Gram matrix using the base kernel.
"""
if self._parallel == 'imap_unordered':
# compute kernels.
def init_worker(alllabels_toshare):
global G_alllabels
G_alllabels = alllabels_toshare
do_partial = partial(self._wrapper_compute_subtree_kernel, gram_matrix)
parallel_gm(do_partial, gram_matrix, Gn, init_worker=init_worker,
glbv=(all_num_of_each_label,), n_jobs=self._n_jobs, verbose=self._verbose)
elif self._parallel is None:
for i in range(len(gram_matrix)):
for j in range(i, len(gram_matrix)):
gram_matrix[i][j] = self.__compute_subtree_kernel(all_num_of_each_label[i],
all_num_of_each_label[j], gram_matrix[i][j])
gram_matrix[j][i] = gram_matrix[i][j]
def __compute_subtree_kernel(self, num_of_each_label1, num_of_each_label2, kernel):
"""Compute the subtree kernel.
"""
labels = set(list(num_of_each_label1.keys()) + list(num_of_each_label2.keys()))
vector1 = np.array([(num_of_each_label1[label]
if (label in num_of_each_label1.keys()) else 0)
for label in labels])
vector2 = np.array([(num_of_each_label2[label]
if (label in num_of_each_label2.keys()) else 0)
for label in labels])
kernel += np.dot(vector1, vector2)
return kernel
def _wrapper_compute_subtree_kernel(self, gram_matrix, itr):
i = itr[0]
j = itr[1]
return i, j, self.__compute_subtree_kernel(G_alllabels[i], G_alllabels[j], gram_matrix[i][j])
def _wl_spkernel_do(Gn, node_label, edge_label, height):
"""Calculate Weisfeiler-Lehman shortest path kernels between graphs.
Parameters
----------
Gn : List of NetworkX graph
List of graphs between which the kernels are calculated.
node_label : string
node attribute used as label.
edge_label : string
edge attribute used as label.
height : int
subtree height.
Return
------
gram_matrix : Numpy matrix
Kernel matrix, each element of which is the Weisfeiler-Lehman kernel between 2 praphs.
"""
pass
from gklearn.utils.utils import getSPGraph
# init.
height = int(height)
gram_matrix = np.zeros((len(Gn), len(Gn))) # init kernel
Gn = [ getSPGraph(G, edge_weight = edge_label) for G in Gn ] # get shortest path graphs of Gn
# initial for height = 0
for i in range(0, len(Gn)):
for j in range(i, len(Gn)):
for e1 in Gn[i].edges(data = True):
for e2 in Gn[j].edges(data = True):
if e1[2]['cost'] != 0 and e1[2]['cost'] == e2[2]['cost'] and ((e1[0] == e2[0] and e1[1] == e2[1]) or (e1[0] == e2[1] and e1[1] == e2[0])):
gram_matrix[i][j] += 1
gram_matrix[j][i] = gram_matrix[i][j]
# iterate each height
for h in range(1, height + 1):
all_set_compressed = {} # a dictionary mapping original labels to new ones in all graphs in this iteration
num_of_labels_occured = 0 # number of the set of letters that occur before as node labels at least once in all graphs
for G in Gn: # for each graph
set_multisets = []
for node in G.nodes(data = True):
# Multiset-label determination.
multiset = [ G.node[neighbors][node_label] for neighbors in G[node[0]] ]
# sorting each multiset
multiset.sort()
multiset = node[1][node_label] + ''.join(multiset) # concatenate to a string and add the prefix
set_multisets.append(multiset)
# label compression
set_unique = list(set(set_multisets)) # set of unique multiset labels
# a dictionary mapping original labels to new ones.
set_compressed = {}
# if a label occured before, assign its former compressed label, else assign the number of labels occured + 1 as the compressed label
for value in set_unique:
if value in all_set_compressed.keys():
set_compressed.update({ value : all_set_compressed[value] })
else:
set_compressed.update({ value : str(num_of_labels_occured + 1) })
num_of_labels_occured += 1
all_set_compressed.update(set_compressed)
# relabel nodes
for node in G.nodes(data = True):
node[1][node_label] = set_compressed[set_multisets[node[0]]]
# calculate subtree kernel with h iterations and add it to the final kernel
for i in range(0, len(Gn)):
for j in range(i, len(Gn)):
for e1 in Gn[i].edges(data = True):
for e2 in Gn[j].edges(data = True):
if e1[2]['cost'] != 0 and e1[2]['cost'] == e2[2]['cost'] and ((e1[0] == e2[0] and e1[1] == e2[1]) or (e1[0] == e2[1] and e1[1] == e2[0])):
gram_matrix[i][j] += 1
gram_matrix[j][i] = gram_matrix[i][j]
return gram_matrix
def _wl_edgekernel_do(Gn, node_label, edge_label, height):
"""Calculate Weisfeiler-Lehman edge kernels between graphs.
Parameters
----------
Gn : List of NetworkX graph
List of graphs between which the kernels are calculated.
node_label : string
node attribute used as label.
edge_label : string
edge attribute used as label.
height : int
subtree height.
Return
------
gram_matrix : Numpy matrix
Kernel matrix, each element of which is the Weisfeiler-Lehman kernel between 2 praphs.
"""
pass
# init.
height = int(height)
gram_matrix = np.zeros((len(Gn), len(Gn))) # init kernel
# initial for height = 0
for i in range(0, len(Gn)):
for j in range(i, len(Gn)):
for e1 in Gn[i].edges(data = True):
for e2 in Gn[j].edges(data = True):
if e1[2][edge_label] == e2[2][edge_label] and ((e1[0] == e2[0] and e1[1] == e2[1]) or (e1[0] == e2[1] and e1[1] == e2[0])):
gram_matrix[i][j] += 1
gram_matrix[j][i] = gram_matrix[i][j]
# iterate each height
for h in range(1, height + 1):
all_set_compressed = {} # a dictionary mapping original labels to new ones in all graphs in this iteration
num_of_labels_occured = 0 # number of the set of letters that occur before as node labels at least once in all graphs
for G in Gn: # for each graph
set_multisets = []
for node in G.nodes(data = True):
# Multiset-label determination.
multiset = [ G.node[neighbors][node_label] for neighbors in G[node[0]] ]
# sorting each multiset
multiset.sort()
multiset = node[1][node_label] + ''.join(multiset) # concatenate to a string and add the prefix
set_multisets.append(multiset)
# label compression
set_unique = list(set(set_multisets)) # set of unique multiset labels
# a dictionary mapping original labels to new ones.
set_compressed = {}
# if a label occured before, assign its former compressed label, else assign the number of labels occured + 1 as the compressed label
for value in set_unique:
if value in all_set_compressed.keys():
set_compressed.update({ value : all_set_compressed[value] })
else:
set_compressed.update({ value : str(num_of_labels_occured + 1) })
num_of_labels_occured += 1
all_set_compressed.update(set_compressed)
# relabel nodes
for node in G.nodes(data = True):
node[1][node_label] = set_compressed[set_multisets[node[0]]]
# calculate subtree kernel with h iterations and add it to the final kernel
for i in range(0, len(Gn)):
for j in range(i, len(Gn)):
for e1 in Gn[i].edges(data = True):
for e2 in Gn[j].edges(data = True):
if e1[2][edge_label] == e2[2][edge_label] and ((e1[0] == e2[0] and e1[1] == e2[1]) or (e1[0] == e2[1] and e1[1] == e2[0])):
gram_matrix[i][j] += 1
gram_matrix[j][i] = gram_matrix[i][j]
return gram_matrix
def _wl_userkernel_do(Gn, node_label, edge_label, height, base_kernel):
"""Calculate Weisfeiler-Lehman kernels based on user-defined kernel between graphs.
Parameters
----------
Gn : List of NetworkX graph
List of graphs between which the kernels are calculated.
node_label : string
node attribute used as label.
edge_label : string
edge attribute used as label.
height : int
subtree height.
base_kernel : string
Name of the base kernel function used in each iteration of WL kernel. This function returns a Numpy matrix, each element of which is the user-defined Weisfeiler-Lehman kernel between 2 praphs.
Return
------
gram_matrix : Numpy matrix
Kernel matrix, each element of which is the Weisfeiler-Lehman kernel between 2 praphs.
"""
pass
# init.
height = int(height)
gram_matrix = np.zeros((len(Gn), len(Gn))) # init kernel
# initial for height = 0
gram_matrix = base_kernel(Gn, node_label, edge_label)
# iterate each height
for h in range(1, height + 1):
all_set_compressed = {} # a dictionary mapping original labels to new ones in all graphs in this iteration
num_of_labels_occured = 0 # number of the set of letters that occur before as node labels at least once in all graphs
for G in Gn: # for each graph
set_multisets = []
for node in G.nodes(data = True):
# Multiset-label determination.
multiset = [ G.node[neighbors][node_label] for neighbors in G[node[0]] ]
# sorting each multiset
multiset.sort()
multiset = node[1][node_label] + ''.join(multiset) # concatenate to a string and add the prefix
set_multisets.append(multiset)
# label compression
set_unique = list(set(set_multisets)) # set of unique multiset labels
# a dictionary mapping original labels to new ones.
set_compressed = {}
# if a label occured before, assign its former compressed label, else assign the number of labels occured + 1 as the compressed label
for value in set_unique:
if value in all_set_compressed.keys():
set_compressed.update({ value : all_set_compressed[value] })
else:
set_compressed.update({ value : str(num_of_labels_occured + 1) })
num_of_labels_occured += 1
all_set_compressed.update(set_compressed)
# relabel nodes
for node in G.nodes(data = True):
node[1][node_label] = set_compressed[set_multisets[node[0]]]
# calculate kernel with h iterations and add it to the final kernel
gram_matrix += base_kernel(Gn, node_label, edge_label)
return gram_matrix
def __add_dummy_node_labels(self, Gn):
if len(self.__node_labels) == 0 or (len(self.__node_labels) == 1 and self.__node_labels[0] == SpecialLabel.DUMMY):
for i in range(len(Gn)):
nx.set_node_attributes(Gn[i], '0', SpecialLabel.DUMMY)
self.__node_labels = [SpecialLabel.DUMMY]
class WLSubtree(WeisfeilerLehman):
def __init__(self, **kwargs):
kwargs['base_kernel'] = 'subtree'
super().__init__(**kwargs)

Loading…
Cancel
Save