diff --git a/lang/fr/gklearn/kernels/fixed_point.py b/lang/fr/gklearn/kernels/fixed_point.py index b4193e8..249bf9c 100644 --- a/lang/fr/gklearn/kernels/fixed_point.py +++ b/lang/fr/gklearn/kernels/fixed_point.py @@ -60,7 +60,7 @@ class FixedPoint(RandomWalkMeta): iterator = itr for i, j in iterator: - kernel = self.__kernel_do(self._graphs[i], self._graphs[j], lmda) + kernel = self._kernel_do(self._graphs[i], self._graphs[j], lmda) gram_matrix[i][j] = kernel gram_matrix[j][i] = kernel @@ -127,7 +127,7 @@ class FixedPoint(RandomWalkMeta): iterator = range(len(g_list)) for i in iterator: - kernel = self.__kernel_do(g1, g_list[i], lmda) + kernel = self._kernel_do(g1, g_list[i], lmda) kernel_list[i] = kernel else: # @todo @@ -190,7 +190,7 @@ class FixedPoint(RandomWalkMeta): g2 = nx.convert_node_labels_to_integers(g2, first_label=0, label_attribute='label_orignal') if self._p is None and self._q is None: # p and q are uniform distributions as default. - kernel = self.__kernel_do(g1, g2, lmda) + kernel = self._kernel_do(g1, g2, lmda) else: # @todo pass @@ -198,7 +198,7 @@ class FixedPoint(RandomWalkMeta): return kernel - def __kernel_do(self, g1, g2, lmda): + def _kernel_do(self, g1, g2, lmda): # Frist, compute kernels between all pairs of nodes using the method borrowed # from FCSP. It is faster than directly computing all edge kernels @@ -221,10 +221,10 @@ class FixedPoint(RandomWalkMeta): def _wrapper_kernel_do(self, itr): i = itr[0] j = itr[1] - return i, j, self.__kernel_do(G_gn[i], G_gn[j], self._weight) + return i, j, self._kernel_do(G_gn[i], G_gn[j], self._weight) - def _func_fp(x, p_times, lmda, w_times): + def _func_fp(self, x, p_times, lmda, w_times): haha = w_times * x haha = lmda * haha haha = p_times + haha @@ -245,19 +245,19 @@ class FixedPoint(RandomWalkMeta): # Define edge kernels. def compute_ek_11(e1, e2, ke): e1_labels = [e1[2][el] for el in self._edge_labels] - e2_labels = [e2[2][el] for el in self.__edge_labels] + e2_labels = [e2[2][el] for el in self._edge_labels] e1_attrs = [e1[2][ea] for ea in self._edge_attrs] e2_attrs = [e2[2][ea] for ea in self._edge_attrs] return ke(e1_labels, e2_labels, e1_attrs, e2_attrs) def compute_ek_10(e1, e2, ke): - e1_labels = [e1[2][el] for el in self.__edge_labels] - e2_labels = [e2[2][el] for el in self.__edge_labels] + e1_labels = [e1[2][el] for el in self._edge_labels] + e2_labels = [e2[2][el] for el in self._edge_labels] return ke(e1_labels, e2_labels) def compute_ek_01(e1, e2, ke): - e1_attrs = [e1[2][ea] for ea in self.__edge_attrs] - e2_attrs = [e2[2][ea] for ea in self.__edge_attrs] + e1_attrs = [e1[2][ea] for ea in self._edge_attrs] + e2_attrs = [e2[2][ea] for ea in self._edge_attrs] return ke(e1_attrs, e2_attrs) def compute_ek_00(e1, e2, ke):