Browse Source

New translations fixed_point.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
d805747218
1 changed files with 11 additions and 11 deletions
  1. +11
    -11
      lang/fr/gklearn/kernels/fixed_point.py

+ 11
- 11
lang/fr/gklearn/kernels/fixed_point.py View File

@@ -60,7 +60,7 @@ class FixedPoint(RandomWalkMeta):
iterator = itr
for i, j in iterator:
kernel = self.__kernel_do(self._graphs[i], self._graphs[j], lmda)
kernel = self._kernel_do(self._graphs[i], self._graphs[j], lmda)
gram_matrix[i][j] = kernel
gram_matrix[j][i] = kernel

@@ -127,7 +127,7 @@ class FixedPoint(RandomWalkMeta):
iterator = range(len(g_list))
for i in iterator:
kernel = self.__kernel_do(g1, g_list[i], lmda)
kernel = self._kernel_do(g1, g_list[i], lmda)
kernel_list[i] = kernel

else: # @todo
@@ -190,7 +190,7 @@ class FixedPoint(RandomWalkMeta):
g2 = nx.convert_node_labels_to_integers(g2, first_label=0, label_attribute='label_orignal')
if self._p is None and self._q is None: # p and q are uniform distributions as default.
kernel = self.__kernel_do(g1, g2, lmda)
kernel = self._kernel_do(g1, g2, lmda)

else: # @todo
pass
@@ -198,7 +198,7 @@ class FixedPoint(RandomWalkMeta):
return kernel
def __kernel_do(self, g1, g2, lmda):
def _kernel_do(self, g1, g2, lmda):
# Frist, compute kernels between all pairs of nodes using the method borrowed
# from FCSP. It is faster than directly computing all edge kernels
@@ -221,10 +221,10 @@ class FixedPoint(RandomWalkMeta):
def _wrapper_kernel_do(self, itr):
i = itr[0]
j = itr[1]
return i, j, self.__kernel_do(G_gn[i], G_gn[j], self._weight)
return i, j, self._kernel_do(G_gn[i], G_gn[j], self._weight)
def _func_fp(x, p_times, lmda, w_times):
def _func_fp(self, x, p_times, lmda, w_times):
haha = w_times * x
haha = lmda * haha
haha = p_times + haha
@@ -245,19 +245,19 @@ class FixedPoint(RandomWalkMeta):
# Define edge kernels.
def compute_ek_11(e1, e2, ke):
e1_labels = [e1[2][el] for el in self._edge_labels]
e2_labels = [e2[2][el] for el in self.__edge_labels]
e2_labels = [e2[2][el] for el in self._edge_labels]
e1_attrs = [e1[2][ea] for ea in self._edge_attrs]
e2_attrs = [e2[2][ea] for ea in self._edge_attrs]
return ke(e1_labels, e2_labels, e1_attrs, e2_attrs)
def compute_ek_10(e1, e2, ke):
e1_labels = [e1[2][el] for el in self.__edge_labels]
e2_labels = [e2[2][el] for el in self.__edge_labels]
e1_labels = [e1[2][el] for el in self._edge_labels]
e2_labels = [e2[2][el] for el in self._edge_labels]
return ke(e1_labels, e2_labels)
def compute_ek_01(e1, e2, ke):
e1_attrs = [e1[2][ea] for ea in self.__edge_attrs]
e2_attrs = [e2[2][ea] for ea in self.__edge_attrs]
e1_attrs = [e1[2][ea] for ea in self._edge_attrs]
e2_attrs = [e2[2][ea] for ea in self._edge_attrs]
return ke(e1_attrs, e2_attrs)
def compute_ek_00(e1, e2, ke):


Loading…
Cancel
Save