Browse Source

Refactor: deprecate the usage of "__" for the "private" members and methods, use "_" instead.

v0.2.x
jajupmochi 4 years ago
parent
commit
d80f5f64ca
2 changed files with 7 additions and 7 deletions
  1. +5
    -5
      gklearn/ged/learning/cost_matrices_learner.py
  2. +2
    -2
      gklearn/ged/learning/costs_learner.py

+ 5
- 5
gklearn/ged/learning/cost_matrices_learner.py View File

@@ -49,7 +49,7 @@ class CostMatricesLearner(CostsLearner):
np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0]).T@x >= 0.0,
np.array([0.0, 0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0]
prob = cp.Problem(cp.Minimize(cost_fun), constraints)
self.__execute_cvx(prob)
self._execute_cvx(prob)
edit_costs_new = x.value
residual = np.sqrt(prob.value)
elif not self._triangle_rule and not self._allow_zeros: # @todo
@@ -57,7 +57,7 @@ class CostMatricesLearner(CostsLearner):
cost_fun = cp.sum_squares(nb_cost_mat @ x - dis_k_vec)
constraints = [x >= [0.01 for i in range(nb_cost_mat.shape[1])]]
prob = cp.Problem(cp.Minimize(cost_fun), constraints)
self.__execute_cvx(prob)
self._execute_cvx(prob)
edit_costs_new = x.value
residual = np.sqrt(prob.value)
elif self._triangle_rule and not self._allow_zeros: # @todo
@@ -67,7 +67,7 @@ class CostMatricesLearner(CostsLearner):
np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0]).T@x >= 0.0,
np.array([0.0, 0.0, 0.0, 1.0, 1.0, -1.0]).T@x >= 0.0]
prob = cp.Problem(cp.Minimize(cost_fun), constraints)
self.__execute_cvx(prob)
self._execute_cvx(prob)
edit_costs_new = x.value
residual = np.sqrt(prob.value)
else:
@@ -113,7 +113,7 @@ class CostMatricesLearner(CostsLearner):
elif abs(cost - self._cost_list[-2][i]) / cost > self._epsilon_ec:
self._ec_changed = True
break
# if abs(cost - edit_cost_list[-2][i]) > self.__epsilon_ec:
# if abs(cost - edit_cost_list[-2][i]) > self._epsilon_ec:
# ec_changed = True
# break
self._residual_changed = False
@@ -135,7 +135,7 @@ class CostMatricesLearner(CostsLearner):
print('-------------------------------------------------------------------------')
print('States of iteration', self._itrs + 1)
print('-------------------------------------------------------------------------')
# print('Time spend:', self.__runtime_optimize_ec)
# print('Time spend:', self._runtime_optimize_ec)
print('Total number of iterations for optimizing:', self._itrs + 1)
print('Total number of updating edit costs:', self._num_updates_ecs)
print('Was optimization of edit costs converged:', self._converged)


+ 2
- 2
gklearn/ged/learning/costs_learner.py View File

@@ -126,8 +126,8 @@ class CostsLearner(object):

def termination_criterion_met(self, converged, timer, itr, itrs_without_update):
if timer.expired() or (itr >= self._max_itrs if self._max_itrs >= 0 else False):
# if self.__state == AlgorithmState.TERMINATED:
# self.__state = AlgorithmState.INITIALIZED
# if self._state == AlgorithmState.TERMINATED:
# self._state = AlgorithmState.INITIALIZED
return True
return converged or (itrs_without_update > self._max_itrs_without_update if self._max_itrs_without_update >= 0 else False)


Loading…
Cancel
Save