Browse Source

New translations utils.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
e013752e06
1 changed files with 112 additions and 0 deletions
  1. +112
    -0
      lang/fr/gklearn/experiments/papers/PRL_2020/utils.py

+ 112
- 0
lang/fr/gklearn/experiments/papers/PRL_2020/utils.py View File

@@ -0,0 +1,112 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 22 11:33:28 2020

@author: ljia
"""
import multiprocessing


Graph_Kernel_List = ['PathUpToH', 'WLSubtree', 'SylvesterEquation', 'Marginalized', 'ShortestPath', 'Treelet', 'ConjugateGradient', 'FixedPoint', 'SpectralDecomposition', 'StructuralSP', 'CommonWalk']
# Graph_Kernel_List = ['CommonWalk', 'Marginalized', 'SylvesterEquation', 'ConjugateGradient', 'FixedPoint', 'SpectralDecomposition', 'ShortestPath', 'StructuralSP', 'PathUpToH', 'Treelet', 'WLSubtree']


Graph_Kernel_List_VSym = ['PathUpToH', 'WLSubtree', 'Marginalized', 'ShortestPath', 'Treelet', 'ConjugateGradient', 'FixedPoint', 'StructuralSP', 'CommonWalk']


Graph_Kernel_List_ESym = ['PathUpToH', 'Marginalized', 'Treelet', 'ConjugateGradient', 'FixedPoint', 'StructuralSP', 'CommonWalk']


Graph_Kernel_List_VCon = ['ShortestPath', 'ConjugateGradient', 'FixedPoint', 'StructuralSP']


Graph_Kernel_List_ECon = ['ConjugateGradient', 'FixedPoint', 'StructuralSP']


Dataset_List = ['Alkane', 'Acyclic', 'MAO', 'PAH', 'MUTAG', 'Letter-med', 'ENZYMES', 'AIDS', 'NCI1', 'NCI109', 'DD']


def compute_graph_kernel(graphs, kernel_name, n_jobs=multiprocessing.cpu_count(), chunksize=None):
if kernel_name == 'CommonWalk':
from gklearn.kernels.commonWalkKernel import commonwalkkernel
estimator = commonwalkkernel
params = {'compute_method': 'geo', 'weight': 0.1}
elif kernel_name == 'Marginalized':
from gklearn.kernels.marginalizedKernel import marginalizedkernel
estimator = marginalizedkernel
params = {'p_quit': 0.5, 'n_iteration': 5, 'remove_totters': False}
elif kernel_name == 'SylvesterEquation':
from gklearn.kernels.randomWalkKernel import randomwalkkernel
estimator = randomwalkkernel
params = {'compute_method': 'sylvester', 'weight': 0.1}
elif kernel_name == 'ConjugateGradient':
from gklearn.kernels.randomWalkKernel import randomwalkkernel
estimator = randomwalkkernel
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
import functools
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
params = {'compute_method': 'conjugate', 'weight': 0.1, 'node_kernels': sub_kernel, 'edge_kernels': sub_kernel}
elif kernel_name == 'FixedPoint':
from gklearn.kernels.randomWalkKernel import randomwalkkernel
estimator = randomwalkkernel
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
import functools
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
params = {'compute_method': 'fp', 'weight': 1e-3, 'node_kernels': sub_kernel, 'edge_kernels': sub_kernel}
elif kernel_name == 'SpectralDecomposition':
from gklearn.kernels.randomWalkKernel import randomwalkkernel
estimator = randomwalkkernel
params = {'compute_method': 'spectral', 'sub_kernel': 'geo', 'weight': 0.1}
elif kernel_name == 'ShortestPath':
from gklearn.kernels.spKernel import spkernel
estimator = spkernel
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
import functools
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
params = {'node_kernels': sub_kernel}
elif kernel_name == 'StructuralSP':
from gklearn.kernels.structuralspKernel import structuralspkernel
estimator = structuralspkernel
from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
import functools
mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
params = {'node_kernels': sub_kernel, 'edge_kernels': sub_kernel}
elif kernel_name == 'PathUpToH':
from gklearn.kernels.untilHPathKernel import untilhpathkernel
estimator = untilhpathkernel
params = {'depth': 5, 'k_func': 'MinMax', 'compute_method': 'trie'}
elif kernel_name == 'Treelet':
from gklearn.kernels.treeletKernel import treeletkernel
estimator = treeletkernel
from gklearn.utils.kernels import polynomialkernel
import functools
sub_kernel = functools.partial(polynomialkernel, d=4, c=1e+8)
params = {'sub_kernel': sub_kernel}
elif kernel_name == 'WLSubtree':
from gklearn.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel
estimator = weisfeilerlehmankernel
params = {'base_kernel': 'subtree', 'height': 5}
# params['parallel'] = None
params['n_jobs'] = n_jobs
params['chunksize'] = chunksize
params['verbose'] = True
results = estimator(graphs, **params)
return results[0], results[1]

Loading…
Cancel
Save