Browse Source

New translations common_walk.py (French)

l10n_v0.2.x
linlin 4 years ago
parent
commit
e33722b254
1 changed files with 51 additions and 51 deletions
  1. +51
    -51
      lang/fr/gklearn/kernels/common_walk.py

+ 51
- 51
lang/fr/gklearn/kernels/common_walk.py View File

@@ -26,18 +26,18 @@ class CommonWalk(GraphKernel):
def __init__(self, **kwargs):
GraphKernel.__init__(self)
self.__node_labels = kwargs.get('node_labels', [])
self.__edge_labels = kwargs.get('edge_labels', [])
self.__weight = kwargs.get('weight', 1)
self.__compute_method = kwargs.get('compute_method', None)
self.__ds_infos = kwargs.get('ds_infos', {})
self.__compute_method = self.__compute_method.lower()
self._node_labels = kwargs.get('node_labels', [])
self._edge_labels = kwargs.get('edge_labels', [])
self._weight = kwargs.get('weight', 1)
self._compute_method = kwargs.get('compute_method', None)
self._ds_infos = kwargs.get('ds_infos', {})
self._compute_method = self._compute_method.lower()


def _compute_gm_series(self):
self.__check_graphs(self._graphs)
self.__add_dummy_labels(self._graphs)
if not self.__ds_infos['directed']: # convert
self._check_graphs(self._graphs)
self._add_dummy_labels(self._graphs)
if not self._ds_infos['directed']: # convert
self._graphs = [G.to_directed() for G in self._graphs]
# compute Gram matrix.
@@ -51,15 +51,15 @@ class CommonWalk(GraphKernel):
iterator = itr
# direct product graph method - exponential
if self.__compute_method == 'exp':
if self._compute_method == 'exp':
for i, j in iterator:
kernel = self.__kernel_do_exp(self._graphs[i], self._graphs[j], self.__weight)
kernel = self._kernel_do_exp(self._graphs[i], self._graphs[j], self._weight)
gram_matrix[i][j] = kernel
gram_matrix[j][i] = kernel
# direct product graph method - geometric
elif self.__compute_method == 'geo':
elif self._compute_method == 'geo':
for i, j in iterator:
kernel = self.__kernel_do_geo(self._graphs[i], self._graphs[j], self.__weight)
kernel = self._kernel_do_geo(self._graphs[i], self._graphs[j], self._weight)
gram_matrix[i][j] = kernel
gram_matrix[j][i] = kernel
@@ -67,9 +67,9 @@ class CommonWalk(GraphKernel):
def _compute_gm_imap_unordered(self):
self.__check_graphs(self._graphs)
self.__add_dummy_labels(self._graphs)
if not self.__ds_infos['directed']: # convert
self._check_graphs(self._graphs)
self._add_dummy_labels(self._graphs)
if not self._ds_infos['directed']: # convert
self._graphs = [G.to_directed() for G in self._graphs]
# compute Gram matrix.
@@ -80,10 +80,10 @@ class CommonWalk(GraphKernel):
# G_gn = gn_toshare
# direct product graph method - exponential
if self.__compute_method == 'exp':
if self._compute_method == 'exp':
do_fun = self._wrapper_kernel_do_exp
# direct product graph method - geometric
elif self.__compute_method == 'geo':
elif self._compute_method == 'geo':
do_fun = self._wrapper_kernel_do_geo
parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=_init_worker_gm,
@@ -93,9 +93,9 @@ class CommonWalk(GraphKernel):
def _compute_kernel_list_series(self, g1, g_list):
self.__check_graphs(g_list + [g1])
self.__add_dummy_labels(g_list + [g1])
if not self.__ds_infos['directed']: # convert
self._check_graphs(g_list + [g1])
self._add_dummy_labels(g_list + [g1])
if not self._ds_infos['directed']: # convert
g1 = g1.to_directed()
g_list = [G.to_directed() for G in g_list]
@@ -107,23 +107,23 @@ class CommonWalk(GraphKernel):
iterator = range(len(g_list))
# direct product graph method - exponential
if self.__compute_method == 'exp':
if self._compute_method == 'exp':
for i in iterator:
kernel = self.__kernel_do_exp(g1, g_list[i], self.__weight)
kernel = self._kernel_do_exp(g1, g_list[i], self._weight)
kernel_list[i] = kernel
# direct product graph method - geometric
elif self.__compute_method == 'geo':
elif self._compute_method == 'geo':
for i in iterator:
kernel = self.__kernel_do_geo(g1, g_list[i], self.__weight)
kernel = self._kernel_do_geo(g1, g_list[i], self._weight)
kernel_list[i] = kernel
return kernel_list
def _compute_kernel_list_imap_unordered(self, g1, g_list):
self.__check_graphs(g_list + [g1])
self.__add_dummy_labels(g_list + [g1])
if not self.__ds_infos['directed']: # convert
self._check_graphs(g_list + [g1])
self._add_dummy_labels(g_list + [g1])
if not self._ds_infos['directed']: # convert
g1 = g1.to_directed()
g_list = [G.to_directed() for G in g_list]
@@ -136,10 +136,10 @@ class CommonWalk(GraphKernel):
# G_g_list = g_list_toshare
# direct product graph method - exponential
if self.__compute_method == 'exp':
if self._compute_method == 'exp':
do_fun = self._wrapper_kernel_list_do_exp
# direct product graph method - geometric
elif self.__compute_method == 'geo':
elif self._compute_method == 'geo':
do_fun = self._wrapper_kernel_list_do_geo
def func_assign(result, var_to_assign):
@@ -154,31 +154,31 @@ class CommonWalk(GraphKernel):
def _wrapper_kernel_list_do_exp(self, itr):
return itr, self.__kernel_do_exp(G_g1, G_g_list[itr], self.__weight)
return itr, self._kernel_do_exp(G_g1, G_g_list[itr], self._weight)


def _wrapper_kernel_list_do_geo(self, itr):
return itr, self.__kernel_do_geo(G_g1, G_g_list[itr], self.__weight)
return itr, self._kernel_do_geo(G_g1, G_g_list[itr], self._weight)
def _compute_single_kernel_series(self, g1, g2):
self.__check_graphs([g1] + [g2])
self.__add_dummy_labels([g1] + [g2])
if not self.__ds_infos['directed']: # convert
self._check_graphs([g1] + [g2])
self._add_dummy_labels([g1] + [g2])
if not self._ds_infos['directed']: # convert
g1 = g1.to_directed()
g2 = g2.to_directed()
# direct product graph method - exponential
if self.__compute_method == 'exp':
kernel = self.__kernel_do_exp(g1, g2, self.__weight)
if self._compute_method == 'exp':
kernel = self._kernel_do_exp(g1, g2, self._weight)
# direct product graph method - geometric
elif self.__compute_method == 'geo':
kernel = self.__kernel_do_geo(g1, g2, self.__weight)
elif self._compute_method == 'geo':
kernel = self._kernel_do_geo(g1, g2, self._weight)

return kernel
def __kernel_do_exp(self, g1, g2, beta):
def _kernel_do_exp(self, g1, g2, beta):
"""Compute common walk graph kernel between 2 graphs using exponential
series.
@@ -195,7 +195,7 @@ class CommonWalk(GraphKernel):
The common walk Kernel between 2 graphs.
"""
# get tensor product / direct product
gp = direct_product_graph(g1, g2, self.__node_labels, self.__edge_labels)
gp = direct_product_graph(g1, g2, self._node_labels, self._edge_labels)
# return 0 if the direct product graph have no more than 1 node.
if nx.number_of_nodes(gp) < 2:
return 0
@@ -227,10 +227,10 @@ class CommonWalk(GraphKernel):
def _wrapper_kernel_do_exp(self, itr):
i = itr[0]
j = itr[1]
return i, j, self.__kernel_do_exp(G_gn[i], G_gn[j], self.__weight)
return i, j, self._kernel_do_exp(G_gn[i], G_gn[j], self._weight)
def __kernel_do_geo(self, g1, g2, gamma):
def _kernel_do_geo(self, g1, g2, gamma):
"""Compute common walk graph kernel between 2 graphs using geometric
series.
@@ -247,7 +247,7 @@ class CommonWalk(GraphKernel):
The common walk Kernel between 2 graphs.
"""
# get tensor product / direct product
gp = direct_product_graph(g1, g2, self.__node_labels, self.__edge_labels)
gp = direct_product_graph(g1, g2, self._node_labels, self._edge_labels)
# return 0 if the direct product graph have no more than 1 node.
if nx.number_of_nodes(gp) < 2:
return 0
@@ -262,24 +262,24 @@ class CommonWalk(GraphKernel):
def _wrapper_kernel_do_geo(self, itr):
i = itr[0]
j = itr[1]
return i, j, self.__kernel_do_geo(G_gn[i], G_gn[j], self.__weight)
return i, j, self._kernel_do_geo(G_gn[i], G_gn[j], self._weight)
def __check_graphs(self, Gn):
def _check_graphs(self, Gn):
for g in Gn:
if nx.number_of_nodes(g) == 1:
raise Exception('Graphs must contain more than 1 nodes to construct adjacency matrices.')
def __add_dummy_labels(self, Gn):
if len(self.__node_labels) == 0 or (len(self.__node_labels) == 1 and self.__node_labels[0] == SpecialLabel.DUMMY):
def _add_dummy_labels(self, Gn):
if len(self._node_labels) == 0 or (len(self._node_labels) == 1 and self._node_labels[0] == SpecialLabel.DUMMY):
for i in range(len(Gn)):
nx.set_node_attributes(Gn[i], '0', SpecialLabel.DUMMY)
self.__node_labels = [SpecialLabel.DUMMY]
if len(self.__edge_labels) == 0 or (len(self.__edge_labels) == 1 and self.__edge_labels[0] == SpecialLabel.DUMMY):
self._node_labels = [SpecialLabel.DUMMY]
if len(self._edge_labels) == 0 or (len(self._edge_labels) == 1 and self._edge_labels[0] == SpecialLabel.DUMMY):
for i in range(len(Gn)):
nx.set_edge_attributes(Gn[i], '0', SpecialLabel.DUMMY)
self.__edge_labels = [SpecialLabel.DUMMY]
self._edge_labels = [SpecialLabel.DUMMY]
def _init_worker_gm(gn_toshare):


Loading…
Cancel
Save